Abnormal increase in urinary aquaporin-2 excretion in response to hypertonic saline in essential hypertension

Carolina Cannillo Graffe, Jesper Nørgaard Bech, Thomas Guldager Lauridsen, Henrik Vase, Erling Bjerregaard Pedersen, Carolina Cannillo Graffe, Jesper Nørgaard Bech, Thomas Guldager Lauridsen, Henrik Vase, Erling Bjerregaard Pedersen

Abstract

Background: Dysregulation of the expression/shuttling of the aquaporin-2 water channel (AQP2) and the epithelial sodium channel (ENaC) in renal collecting duct principal cells has been found in animal models of hypertension. We tested whether a similar dysregulation exists in essential hypertension.

Methods: We measured urinary excretion of AQP2 and ENaC β-subunit corrected for creatinine (u-AQP2(CR), u-ENaC(β-CR)), prostaglandin E2 (u-PGE2) and cyclic AMP (u-cAMP), fractional sodium excretion (FE(Na)), free water clearance (C(H2O)), as well as plasma concentrations of vasopressin (AVP), renin (PRC), angiotensin II (Ang II), aldosterone (Aldo), and atrial and brain natriuretic peptide (ANP, BNP) in 21 patients with essential hypertension and 20 normotensive controls during 24-h urine collection (baseline), and after hypertonic saline infusion on a 4-day high sodium (HS) diet (300 mmol sodium/day) and a 4-day low sodium (LS) diet (30 mmol sodium/day).

Results: At baseline, no differences in u-AQP2(CR) or u-ENaC(β-CR) were measured between patients and controls. U-AQP2(CR) increased significantly more after saline in patients than controls, whereas u-ENaC(β-CR) increased similarly. The saline caused exaggerated natriuretic increases in patients during HS intake. Neither baseline levels of u-PGE2, u-cAMP, AVP, PRC, Ang II, Aldo, ANP, and BNP nor changes after saline could explain the abnormal u-AQP2(CR) response.

Conclusions: No differences were found in u-AQP2(CR) and u-ENaC(β-CR) between patients and controls at baseline. However, in response to saline, u-AQP2(CR) was abnormally increased in patients, whereas the u-ENaC(β-CR) response was normal. The mechanism behind the abnormal AQP2 regulation is not clarified, but it does not seem to be AVP-dependent. Clinicaltrial.gov identifier: NCT00345124.

References

    1. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC. Amiloride-sensitive epithelial Na + channel is made of three homologous subunits. Nature. 1994;367:463–467. doi: 10.1038/367463a0.
    1. Renard S, Lingueglia E, Voilley N, Lazdunski M, Barbry P. Biochemical analysis of the membrane topology of the amiloride-sensitive Na + channel. J Biol Chem. 1994;269:12981–12986.
    1. Kemendy AE, Kleyman TR, Eaton DC. Aldosterone alters the open probability of amiloride-blockable sodium channels in A6 epithelia. Am J Physiol. 1992;263:C825–C837.
    1. Pacha J, Frindt G, Antonian L, Silver RB, Palmer LG. Regulation of Na channels of the rat cortical collecting tubule by aldosterone. J Gen Physiol. 1993;102:25–42. doi: 10.1085/jgp.102.1.25.
    1. Fuller PJ, Young MJ. Mechanisms of mineralocorticoid action. Hypertension. 2005;46:1227–1235. doi: 10.1161/01.HYP.0000193502.77417.17.
    1. Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev. 2005;10:15–22. doi: 10.1007/s10741-005-2344-2.
    1. Lauridsen TG, Vase H, Starklint J, Bech JN, Pedersen EB. Protein-enriched diet increases water absorption via the aquaporin-2 water channels in healthy humans. Nephrol Dial Transplant. 2010;25:2502–2510. doi: 10.1093/ndt/gfq111.
    1. Deen PM, Croes H, van Aubel RA, Ginsel LA, van Os CH. Water channels encoded by mutant aquaporin-2 genes in nephrogenic diabetes insipidus are impaired in their cellular routing. J Clin Invest. 1995;95:2291–2296. doi: 10.1172/JCI117920.
    1. Sabolic I, Katsura T, Verbavatz JM, Brown D. The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J Membr Biol. 1995;143:165–175. doi: 10.1007/BF00233445.
    1. Marples D, Knepper MA, Christensen EI, Nielsen S. Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am J Physiol. 1995;269:C655–C664.
    1. Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci USA. 1995;92:1013–1017. doi: 10.1073/pnas.92.4.1013.
    1. Yamamoto T, Sasaki S, Fushimi K, Ishibashi K, Yaoita E, Kawasaki K, Marumo F, Kihara I. Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats. Am J Physiol. 1995;268:C1546–C1551.
    1. Kanno K, Sasaki S, Hirata Y, Ishikawa S, Fushimi K, Nakanishi S, Bichet DG, Marumo F. Urinary excretion of aquaporin-2 in patients with diabetes insipidus. N Engl J Med. 1995;332:1540–1545. doi: 10.1056/NEJM199506083322303.
    1. Rai T, Sekine K, Kanno K, Hata K, Miura M, Mizushima A, Marumo F, Sasaki S. Urinary excretion of aquaporin-2 water channel protein in human and rat. J Am Soc Nephrol. 1997;8:1357–1362.
    1. Wen H, Frokiaer J, Kwon TH, Nielsen S. Urinary excretion of aquaporin-2 in rat is mediated by a vasopressin-dependent apical pathway. J Am Soc Nephrol. 1999;10:1416–1429.
    1. Buemi M, Nostro L, Di PG, Cavallaro E, Sturiale A, Floccari F, Aloisi C, Ruello A, Calapai G, Corica F, Frisina N. Aquaporin-2 water channels in spontaneously hypertensive rats. Am J Hypertens. 2004;17:1170–1178. doi: 10.1016/j.amjhyper.2004.07.003.
    1. Kim SW, Wang W, Kwon TH, Knepper MA, Frokiaer J, Nielsen S. Increased expression of ENaC subunits and increased apical targeting of AQP2 in the kidneys of spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2005;289:F957–F968. doi: 10.1152/ajprenal.00413.2004.
    1. Lee J, Kim S, Kim J, Jeong MH, Oh Y, Choi KC. Increased expression of renal aquaporin water channels in spontaneously hypertensive rats. Kidney Blood Press Res. 2006;29:18–23. doi: 10.1159/000092483.
    1. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW. Liddle's syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell. 1994;79:407–414. doi: 10.1016/0092-8674(94)90250-X.
    1. Munroe PB, Strautnieks SS, Farrall M, Daniel HI, Lawson M, DeFreitas P, Fogarty P, Gardiner RM, Caulfield M. Absence of linkage of the epithelial sodium channel to hypertension in black Caribbeans. Am J Hypertens. 1998;11:942–945. doi: 10.1016/S0895-7061(98)00092-2.
    1. Niu T, Xu X, Cordell HJ, Rogus J, Zhou Y, Fang Z, Lindpaintner K. Linkage analysis of candidate genes and gene-gene interactions in chinese hypertensive sib pairs. Hypertension. 1999;33:1332–1337. doi: 10.1161/01.HYP.33.6.1332.
    1. Wong ZY, Stebbing M, Ellis JA, Lamantia A, Harrap SB. Genetic linkage of beta and gamma subunits of epithelial sodium channel to systolic blood pressure. Lancet. 1999;353:1222–1225. doi: 10.1016/S0140-6736(98)10118-6.
    1. Persu A, Barbry P, Bassilana F, Houot AM, Mengual R, Lazdunski M, Corvol P, Jeunemaitre X. Genetic analysis of the beta subunit of the epithelial Na + channel in essential hypertension. Hypertension. 1998;32:129–137. doi: 10.1161/01.HYP.32.1.129.
    1. Persu A, Coscoy S, Houot AM, Corvol P, Barbry P, Jeunemaitre X. Polymorphisms of the gamma subunit of the epithelial Na + channel in essential hypertension. J Hypertens. 1999;17:639–645. doi: 10.1097/00004872-199917050-00007.
    1. Su YR, Rutkowski MP, Klanke CA, Wu X, Cui Y, Pun RY, Carter V, Reif M, Menon AG. A novel variant of the beta-subunit of the amiloride-sensitive sodium channel in African Americans. J Am Soc Nephrol. 1996;7:2543–2549.
    1. Pedersen EB, Eiskjaer H, Madsen B, Danielsen H, Egeblad M, Nielsen CB. Effect of captopril on renal extraction of renin, angiotensin II, atrial natriuretic peptide and vasopressin, and renal vein renin ratio in patients with arterial hypertension and unilateral renal artery disease. Nephrol Dial Transplant. 1993;8:1064–1070.
    1. Jensen KT, Carstens J, Ivarsen P, Pedersen EB. A new, fast and reliable radioimmunoassay of brain natriuretic peptide in human plasma, Reference values in healthy subjects and in patients with different diseases. Scand J Clin Lab Invest. 1997;57:529–540. doi: 10.3109/00365519709084604.
    1. Pedersen EB, Danielsen H, Spencer ES. Effect of indapamide on renal plasma flow, glomerular filtration rate and arginine vasopressin in plasma in essential hypertension. Eur J Clin Pharmacol. 1984;26:543–547. doi: 10.1007/BF00543482.
    1. Pedersen EB, Eiskjaer H, Madsen B, Danielsen H, Egeblad M, Nielsen CB. Effect of captopril on renal extraction of renin, angiotensin II, atrial natriuretic peptide and vasopressin, and renal vein renin ratio in patients with arterial hypertension and unilateral renal artery disease. Nephrol Dial Transplant. 1993;8:1064–1070.
    1. Lee YJ, Song IK, Jang KJ, Nielsen J, Frokiaer J, Nielsen S, Kwon TH. Increased AQP2 targeting in primary cultured IMCD cells in response to angiotensin II through AT1 receptor. Am J Physiol Renal Physiol. 2007;292:F340–F350.
    1. Pedersen RS, Bentzen H, Bech JN, Pedersen EB. Effect of water deprivation and hypertonic saline infusion on urinary AQP2 excretion in healthy humans. Am J Physiol Renal Physiol. 2001;280:F860–F867.
    1. Lauridsen TG, Vase H, Starklint J, Graffe CC, Bech JN, Nielsen S, Pedersen EB. Increased renal sodium absorption by inhibition of prostaglandin synthesis during fasting in healthy man. A possible role of the epithelial sodium channels. BMC Nephrol. 2010;11:28. doi: 10.1186/1471-2369-11-28.
    1. Lee J, Kang DG, Kim Y. Increased expression and shuttling of aquaporin-2 water channels in the kidney in DOCA-salt hypertensive rats. Clin Exp Hypertens. 2000;22:531–541. doi: 10.1081/CEH-100100089.
    1. Lee J, Oh Y, Kim SW. Altered renal expression of aquaporin-2 water channels in rats with experimental two-kidney, one clip hypertension. J Korean Med Sci. 2001;16:462–466.
    1. Procino G, Romano F, Torielli L, Ferrari P, Bianchi G, Svelto M, Valenti G. Altered expression of renal aquaporins and alpha-adducin polymorphisms may contribute to the establishment of salt-sensitive hypertension. Am J Hypertens. 2011;24:822–828. doi: 10.1038/ajh.2011.47.
    1. Bruun NE, Skott P, Damkjaer NM, Rasmussen S, Schutten HJ, Leth A, Pedersen EB, Giese J. Normal renal tubular response to changes of sodium intake in hypertensive man. J Hypertens. 1990;8:219–227.
    1. Graffe CC, Bech JN, Pedersen EB. The Effect of High and Low Sodium Intake on Urinary Aquaporin-2 Excretion in Healthy Humans. Am J Physiol Renal Physiol. 2012;302:F264–F275. doi: 10.1152/ajprenal.00442.2010.
    1. Kulick A, Panico C, Gill P, Welch WJ. Low salt intake increases adenosine type 1 receptor expression and function in the rat proximal tubule. Am J Physiol Renal Physiol. 2008;295:F37–F41. doi: 10.1152/ajprenal.00061.2008.
    1. Pochynyuk O, Rieg T, Bugaj V, Schroth J, Fridman A, Boss GR, Insel PA, Stockand JD, Vallon V. Dietary Na + inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y2-receptor tone. FASEB J. 2010;24:2056–2065. doi: 10.1096/fj.09-151506.
    1. Jackson EK, Herzer WA, Mi Z, Vyas SJ, Kost CK Jr. Low-dose angiotensin II reduces urinary cyclic AMP excretion in spontaneously hypertensive, but not normotensive, rats: independence from hypertension and renal hemodynamic effects of angiotensin. J Pharmacol Exp Ther. 1999;291:115–123.

Source: PubMed

3
Subscribe