Drinking water disinfection byproducts: review and approach to toxicity evaluation

G A Boorman, G A Boorman

Abstract

There is widespread potential for human exposure to disinfection byproducts (DBPs) in drinking water because everyone drinks, bathes, cooks, and cleans with water. The need for clean and safe water led the U.S. Congress to pass the Safe Drinking Water Act more than 20 years ago in 1974. In 1976, chloroform, a trihalomethane (THM) and a principal DBP, was shown to be carcinogenic in rodents. This prompted the U.S. Environmental Protection Agency (U.S. EPA) in 1979 to develop a drinking water rule that would provide guidance on the levels of THMs allowed in drinking water. Further concern was raised by epidemiology studies suggesting a weak association between the consumption of chlorinated drinking water and the occurrence of bladder, colon, and rectal cancer. In 1992 the U.S. EPA initiated a negotiated rulemaking to evaluate the need for additional controls for microbial pathogens and DBPs. The goal was to develop an approach that would reduce the level of exposure from disinfectants and DBPs without undermining the control of microbial pathogens. The product of these deliberations was a proposed stage 1 DBP rule. It was agreed that additional information was necessary on how to optimize the use of disinfectants while maintaining control of pathogens before further controls to reduce exposure beyond stage 1 were warranted. In response to this need, the U.S. EPA developed a 5-year research plan to support the development of the longer term rules to control microbial pathogens and DBPs. A considerable body of toxicologic data has been developed on DBPs that occur in the drinking water, but the main emphasis has been on THMs. Given the complexity of the problem and the need for additional data to support the drinking water DBP rules, the U.S. EPA, the National Institute of Environmental Health Sciences, and the U.S. Army are working together to develop a comprehensive biologic and mechanistic DBP database. Selected DBPs will be tested using 2-year toxicity and carcinogenicity studies in standard rodent models; transgenic mouse models and small fish models; in vitro mechanistic and toxicokinetic studies; and reproductive, immunotoxicity, and developmental studies. The goal is to create a toxicity database that reflects a wide range of DBPs resulting from different disinfection practices. This paper describes the approach developed by these agencies to provide the information needed to make scientifically based regulatory decisions.

References

    1. Toxicol Pathol. 1998 Sep-Oct;26(5):587-94
    1. Cancer Lett. 1995 May 25;92(1):67-76
    1. Environ Health Perspect. 1995 Jun;103(6):592-6
    1. Cancer Causes Control. 1997 Mar;8(2):192-200
    1. J Natl Cancer Inst. 1983 Nov;71(5):965-72
    1. Environ Health Perspect. 1996 Oct;104(10):1056-61
    1. Jpn J Cancer Res. 1991 Feb;82(2):165-9
    1. Cancer Res. 1987 Oct 1;47(19):5189-93
    1. Toxicol Pathol. 1997 Mar-Apr;25(2):202-10
    1. Epidemiology. 1998 Jan;9(1):29-35
    1. Am J Public Health. 1997 Jul;87(7):1168-76
    1. J Environ Pathol Toxicol Oncol. 1992 Sep-Oct;11(5-6):287-92
    1. Carcinogenesis. 1987 Oct;8(10):1491-9
    1. Environ Health Perspect. 1995 Oct;103(10):942-50
    1. Am J Epidemiol. 1995 May 1;141(9):850-62
    1. J Appl Toxicol. 1985 Aug;5(4):261-4
    1. Carcinogenesis. 1995 Mar;16(3):593-7
    1. Fundam Appl Toxicol. 1992 Aug;19(2):186-96
    1. Cancer Res. 1997 Feb 1;57(3):355-61
    1. Toxicol Appl Pharmacol. 1998 Jan;148(1):137-47
    1. Toxicol Pathol. 1998 Jan-Feb;26(1):104-12
    1. Science. 1995 Apr 21;268(5209):356-7
    1. Fundam Appl Toxicol. 1985 Dec;5(6 Pt 1):1065-74
    1. Environ Mutagen. 1986;8 Suppl 7:1-119
    1. Fundam Appl Toxicol. 1985 Dec;5(6 Pt 1):1128-36
    1. Carcinogenesis. 1997 Apr;18(4):777-81
    1. Fundam Appl Toxicol. 1986 Apr;6(3):447-53
    1. Fundam Appl Toxicol. 1994 Jan;22(1):90-102
    1. Cancer Res. 1981 Dec;41(12 Pt 1):4997-5003
    1. Fundam Appl Toxicol. 1995 Dec;28(2):155-66
    1. Fundam Appl Toxicol. 1991 Feb;16(2):337-47
    1. Environ Health Perspect. 1993 Apr;100:249-57
    1. Toxicology. 1995 Mar 31;97(1-3):59-69
    1. Fundam Appl Toxicol. 1985 Aug;5(4):760-9
    1. Am J Epidemiol. 1993 Oct 1;138(7):492-501
    1. Cancer Causes Control. 1996 Nov;7(6):596-604
    1. Environ Health Perspect. 1994 Jun;102(6-7):586-8
    1. J Natl Cancer Inst. 1993 May 19;85(10):817-22
    1. J Natl Cancer Inst. 1997 Jun 18;89(12):848-56
    1. Epidemiology. 1998 Jan;9(1):21-8
    1. Fundam Appl Toxicol. 1992 Aug;19(2):159-68
    1. Fundam Appl Toxicol. 1996 May;31(1):77-82
    1. Toxicology. 1989 May 31;56(1):79-86
    1. Cancer Res. 1995 Sep 1;55(17):3702-5
    1. Am J Public Health. 1992 Jul;82(7):955-63
    1. J Appl Toxicol. 1985 Aug;5(4):255-60
    1. Carcinogenesis. 1995 Mar;16(3):495-500
    1. Toxicol Ind Health. 1991 Sep-Nov;7(5-6):423-32
    1. J Natl Cancer Inst. 1975 Oct;55(4):909-16
    1. Mutat Res. 1995 Feb;341(4):289-302
    1. Toxicology. 1990 Sep;63(3):341-59
    1. Epidemiology. 1998 Sep;9(5):484-9
    1. Toxicology. 1996 Dec 18;114(3):207-21
    1. Food Chem Toxicol. 1989 Feb;27(2):77-87
    1. Epidemiology. 1992 Sep;3(5):407-13
    1. Environ Health Perspect. 1995 Nov;103 Suppl 8:225-31
    1. Eur J Cancer. 1995 Jul-Aug;31A(7-8):1061-4
    1. Toxicol Pathol. 1997 Nov-Dec;25(6):541-8
    1. Toxicol Appl Pharmacol. 1987 Sep 15;90(2):183-9
    1. Cancer Res. 1990 Sep 1;50(17):5504-14
    1. Carcinogenesis. 1987 Dec;8(12):1959-61
    1. J Toxicol Environ Health. 1997 Dec 12;52(5):425-45
    1. Carcinogenesis. 1995 Feb;16(2):335-42
    1. Ecotoxicol Environ Saf. 1995 Nov;32(2):103-30
    1. Epidemiology. 1998 Mar;9(2):134-40

Source: PubMed

3
Subscribe