Amateur Athlete with Sinus Arrest and Severe Bradycardia Diagnosed through a Heart Rate Monitor: A Six-Year Observation-The Necessity of Shared Decision-Making in Heart Rhythm Therapy Management

Robert Gajda, Beat Knechtle, Anita Gębska-Kuczerowska, Jacek Gajda, Sebastian Stec, Michalina Krych, Magdalena Kwaśniewska, Wojciech Drygas, Robert Gajda, Beat Knechtle, Anita Gębska-Kuczerowska, Jacek Gajda, Sebastian Stec, Michalina Krych, Magdalena Kwaśniewska, Wojciech Drygas

Abstract

Heart rate monitors (HRMs) are used by millions of athletes worldwide to monitor exercise intensity and heart rate (HR) during training. This case report presents a 34-year-old male amateur soccer player with severe bradycardia who accidentally identified numerous pauses of over 4 s (maximum length: 7.3 s) during sleep on his own HRM with a heart rate variability (HRV) function. Simultaneous HRM and Holter ECG recordings were performed in an outpatient clinic, finding consistent 6.3 s sinus arrests (SA) with bradycardia of 33 beats/min. During the patient's hospitalization for a transient ischemic attack, the longest pauses on the Holter ECG were recorded, and he was suggested to undergo pacemaker implantation. He then reduced the volume/intensity of exercise for 4 years. Afterward, he spent 2 years without any regular training due to depression. After these 6 years, another Holter ECG test was performed in our center, not confirming the aforementioned disturbances and showing a tendency to tachycardia. The significant SA was resolved after a period of detraining. The case indicates that considering invasive therapy was unreasonable, and patient-centered care and shared decision-making play a key role in cardiac pacing therapy. In addition, some sports HRM with an HRV function can help diagnose bradyarrhythmia, both in professional and amateur athletes.

Keywords: athlete’s heart; block S-A; bradyarrhythmia; cardioneuroablation; deconditioning; heart rate monitors; heart rate variability; leisure time activity; pacing therapy; shared decision-making.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
An example of a 30 s HRV printout recorded on an HRM that was compared with the ECG Holter recordings. The R-R interval (column 2) was evaluated while considering the recording time, here given in s after the start of the recording (column 1). The longest interval is 6.118 s, marked in red. The second longest interval is 3.749 s, marked in blue. R-R interval, interval between consecutive beats (i.e., the interval between two R-waves of QRS complexes in ECG); FFT, the fast Fourier transform; PSD, power spectral density; AR, autoregressive.
Figure 2
Figure 2
Holter ECG printout (A) and the corresponding printout from the HRV function of the HRM (B) showing the longest pause recorded on both devices. Red color-the longest pause.
Figure 3
Figure 3
Longest pause recorded exclusively on the HRM through its HRV function, of 7.3 s. (red).
Figure 4
Figure 4
ECG of the examined athlete.
Figure 5
Figure 5
Intrinsic and extrinsic causes of bradycardia [16].
Figure 6
Figure 6
The HRV analysis capabilities of the Polar 800V HRM. The red arrow shows a pause of 6.118 s and the blue arrow shows a pause of 3.749 s between the R-R waves marked in the same color in Figure 1. The abbreviations in the figure are be defined because they are irrelevant to the purposes of this article.

References

    1. Northcote R.J., Canning G.P., Ballantyne D. Electrocardiographic findings in male veteran endurance athletes. Br. Heart J. 1989;61:155–160. doi: 10.1136/hrt.61.2.155.
    1. Hawks M.K., Paul M.L.B., Malu O.O. Sinus Node Dysfunction. Am. Fam. Physician. 2021;104:179–185.
    1. Baldesberger S., Bauersfeld U., Candinas R., Seifert B., Zuber M., Ritter M., Jenni R., Oechslin E., Luthi P., Scharf C., et al. Sinus node disease and arrhythmias in the long-term follow-up of former professional cyclists. Eur. Heart J. 2008;29:71–78. doi: 10.1093/eurheartj/ehm555.
    1. Hughes D.C., Ellefsen S., Baar K. Adaptations to Endurance and Strength Training. Cold Spring Harb. Perspect. Med. 2018;8:a029769. doi: 10.1101/cshperspect.a029769.
    1. Białek B. Statistical Description of Arrival Sequences in Amateur Long-Distance Races. Phys. Act. Rev. 2017;5:44–53. doi: 10.16926/par.2017.05.07.
    1. Podrigalo O., Borisova O., Podrigalo L., Iermakov S., Romanenko V., Bodrenkova I. The analysis of psychophysiological features of football players and water sports athletes. Phys. Act. Rev. 2020;8:64–73. doi: 10.16926/par.2020.08.08.
    1. Levine B.D., Baggish A.L., Kovacs R.J., Link M.S., Maron M.S., Mitchell J.H., American Heart Association Electrocardiography and Arrhythmias Committee of Council on Clinical Cardiology, Council on Cardiovascular Disease in Young, Council on Cardiovascular and Stroke Nursing, Council on Functional Genomics and Translational Biology, and American College of Cardiology Eligibility and Disqualification Recommendations for Competitive Athletes with Cardiovascular Abnormalities: Task Force 1: Classification of Sports: Dynamic, Static, and Impact. Circulation. 2015;132:e262–e266. doi: 10.1161/CIR.0000000000000237.
    1. Pelliccia A., Zipes D.P., Maron B.J. Bethesda Conference #36 and the European Society of Cardiology Consensus Recommendations Revisited: A Comparison of U.S. and European Criteria for Eligibility and Disqualification of Competitive Athletes with Cardiovascular Abnormalities. J. Am. Coll. Cardiol. 2008;52:1990–1996. doi: 10.1016/j.jacc.2008.08.055.
    1. Link M.S., Homoud M.K., Wang P.J., Estes N.M. Cardiac Arrhythmias in the Athlete. Cardiol. Rev. 2001;9:21–30. doi: 10.1097/00045415-200101000-00006.
    1. Doyen B., Matelot D., Carré F. Asymptomatic bradycardia amongst endurance athletes. Physician Sportsmed. 2019;47:249–252. doi: 10.1080/00913847.2019.1568769.
    1. Gajda R., Klisiewicz A., Matsibora V., Piotrowska-Kownacka D., Biernacka E.K. Heart of the World’s Top Ultramarathon Runner—Not Necessarily Much Different from Normal. Diagnostics. 2020;10:73. doi: 10.3390/diagnostics10020073.
    1. Avram R., Tison G.H., Aschbacher K., Kuhar P., Vittinghoff E., Butzner M., Runge R., Wu N., Pletcher M.J., Marcus G.M., et al. Real-world heart rate norms in the Health eHeart study. Npj Digit. Med. 2019;2:58. doi: 10.1038/s41746-019-0134-9.
    1. Mubarik A., Iqbal A.M. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2022. [(accessed on 20 February 2022)]. Holter Monitor. Available online: .
    1. Gajda R., Gajda J., Czuba M., Gębska-Kuczorowska A., Knechtle B. Heart Rate Monitors Used by Athletes-from Gadget to Medical Equipment. A Decade of Own Observations. Med. Res. J. 2021;6:64–70. doi: 10.5603/MRJ.a2021.0010.
    1. Jabbour F., Kanmanthareddy A. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2022. [(accessed on 20 February 2022)]. Sinus Node Dysfunction. Available online: .
    1. Glikson M., Nielsen J.C., Kronborg M.B., Michowitz Y., Auricchio A., Barbash I.M., Barrabés J.A., Boriani G., Braunschweig F., Brignole M., et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur. Heart J. 2022;42:3427–3520. doi: 10.1093/eurheartj/ehab364.
    1. Zipes D.P., Ackerman M.J., Estes N.A.M., Grant A.O., Myerburg R.J., Van Hare G. Task Force 7: Arrhythmias. J. Am. Coll. Cardiol. 2005;45:1354–1363. doi: 10.1016/j.jacc.2005.02.014.
    1. Lentner C. Physical Chemistry, Composition of Blood, Hematology, Somatometric Data 1968. 38th ed. NJ CIBA-GEIGY Co.; West Caldwell, NJ, USA:
    1. Rubenstein J.J., Schulman C.L., Yurchak P.M., Desanctis R.W. Clinical Spectrum of the Sick Sinus Syndrome. Circulation. 1972;46:5–13. doi: 10.1161/01.CIR.46.1.5.
    1. Estes N.M., Link M.S., Cannom D., Naccarelli G.V., Prystowsky E.N., Maron B.J., Olshansky B. Expert Consensus Conference on Arrhythmias in the Athlete of the North American Society of Pacing and Electrophysiology. Report of the NASPE policy conference on arrhythmias and the athlete. J. Cardiovasc. Electrophysiol. 2001;12:1208–1219. doi: 10.1046/j.1540-8167.2001.01208.x.
    1. Aubert A.E., Seps B., Beckers F. Heart Rate Variability in Athletes. Sports Med. 2003;33:889–919. doi: 10.2165/00007256-200333120-00003.
    1. Monfredi O., Lyashkov A.E., Johnsen A.-B., Inada S., Schneider H., Wang R., Nirmalan M., Wisloff U., Maltsev V.A., Lakatta E.G., et al. Biophysical Characterization of the Underappreciated and Important Relationship Between Heart Rate Variability and Heart Rate. Hypertension. 2014;64:1334–1343. doi: 10.1161/HYPERTENSIONAHA.114.03782.
    1. D’Souza A., Sharma S., Boyett M.R. CrossTalk opposing view: Bradycardia in the trained athlete is attributable to a downregulation of a pacemaker channel in the sinus node. J. Physiol. 2015;593:1749–1751. doi: 10.1113/jphysiol.2014.284356.
    1. Boyett M.R., D’Souza A., Zhang H., Morris G., Dobrzynski H., Monfredi O. Viewpoint: Is the resting bradycardia in athletes the result of remodeling of the sinoatrial node rather than high vagal tone? J. Appl. Physiol. 2013;114:1351–1355. doi: 10.1152/japplphysiol.01126.2012.
    1. Katona P.G., McLean M., Dighton D.H., Guz A. Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J. Appl. Physiol. 1982;52:1652–1657. doi: 10.1152/jappl.1982.52.6.1652.
    1. Milanesi R., Baruscotti M., Gnecchi-Ruscone T., DiFrancesco D. Familial Sinus Bradycardia Associated with a Mutation in the Cardiac Pacemaker Channel. N. Engl. J. Med. 2006;354:151–157. doi: 10.1056/NEJMoa052475.
    1. El Khoury N., Mathieu S., Marger L., Ross J., El Gebeily G., Ethier N., Fiset C. Upregulation of the Hyperpolarization-Activated Current Increases Pacemaker Activity of the Sinoatrial Node and Heart Rate During Pregnancy in Mice. Circulation. 2013;127:2009–2020. doi: 10.1161/CIRCULATIONAHA.113.001689.
    1. Epstein A.E., DiMarco J.P., Ellenbogen K.A., Estes N.A.M., III, Freedman R.A., Gettes L.S., Gillinov A.M., Gregoratos G., Hammill S.C., Hayes D.L., et al. ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 2008;51:e1–e62. doi: 10.1016/j.jacc.2008.02.032.
    1. Tracy C.M., Epstein A.E., Darbar D., DiMarco J.P., Dunbar S.B., Estes N.M., Ferguson T.B., Hammill S.C., Karasik P.E., Link M.S., et al. 2012 ACCF/AHA/HRS Focused Update of the 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities. J. Am. Coll. Cardiol. 2012;60:1297–1313. doi: 10.1016/j.jacc.2012.07.009.
    1. Heidbuchel H. The athlete’s heart is a proarrhythmic heart, and what that means for clinical decision making. Europace. 2017;20:1401–1411. doi: 10.1093/europace/eux294.
    1. Pachon J.C., Pachon E.I., Lobo T.J., Pachon M.Z., Vargas R.N., Jatene A.D. Cardioneuroablation—New treatment for neurocardiogenic syncope, functional AV block and sinus dysfunction using catheter RF-ablation. Europace. 2005;7:1–13. doi: 10.1016/j.eupc.2004.10.003.
    1. Lakkireddy D. Cardioneuroablation in the Management of Vasovagal Syncope, Sinus Node Dysfunction and Functional Atrioventricular Block: Patient Selection Based on Supporting Evidence. J. Atr. Fibrillation. 2020;13:2396. doi: 10.4022/jafib.2396.
    1. Chung M.K., Fagerlin A., Wang P.J., Ajayi T.B., Allen L.A., Baykaner T., Benjamin E.J., Branda M., Cavanaugh K.L., Chen L.Y., et al. Shared Decision Making in Cardiac Electrophysiology Procedures and Arrhythmia Management. Circ. Arrhythmia Electrophysiol. 2021;14:e007958. doi: 10.1161/CIRCEP.121.007958.
    1. Stacey D., Légaré F., Lewis K., Barry M.J., Bennett C.L., Eden K.B., Holmes-Rovner M., Llewellyn-Thomas H., Lyddiatt A., Thomson R., et al. Decision aids for people facing health treatment or screening decisions. Cochrane Database Syst. Rev. 2017;2017:CD001431. doi: 10.1002/14651858.CD001431.pub5.
    1. Gajda R. Is Continuous ECG Recording on Heart Rate Monitors the Most Expected Function by Endurance Athletes, Coaches, and Doctors? Diagnostics. 2020;10:867. doi: 10.3390/diagnostics10110867.
    1. Gajda R. Heart Rate Monitor Instead of Ablation? Atrioventricular Nodal Re-Entrant Tachycardia in a Leisure-Time Triathlete: 6-Year Follow-Up. Diagnostics. 2020;10:391. doi: 10.3390/diagnostics10060391.
    1. Gajda R., Biernacka E.K., Drygas W. Are heart rate monitors valuable tools for diagnosing arrhythmias in endurance athletes? Scand. J. Med. Sci. Sports. 2018;28:496–516. doi: 10.1111/sms.12917.
    1. Gajda R. Extreme Bradycardia and Bradyarrhythmias at Athletes. What will Technology Development Bring as a Help to Diagnosis Them? Res. Investig. Sports Med. 2019;5:704–731. doi: 10.31031/RISM.2019.05.000617.
    1. Gajda R., Biernacka E.K., Drygas W. The Problem of Arrhythmias in Endurance Athletes: Are Heart Rate Monitors Valuable Tools for Diagnosing Arrhythmias? In: Bennington H.B., editor. Horizons in World Cardiovascular Research. Volume 15. Nova Science Publishers; New York, NY, USA: 2009. pp. 1–64.
    1. Gajda R., Kowalik E., Rybka S., Rębowska E., Śmigielski W., Nowak M., Kwaśniewska M., Hoffman P., Drygas W. Evaluation of the Heart Function of Swimmers Subjected to Exhaustive Repetitive Endurance Efforts During a 500-km Relay. Front. Physiol. 2019;10:296. doi: 10.3389/fphys.2019.00296.
    1. Jagodzińska M., Szperl M., Ponińska J., Kosiec A., Gajda R., Kukla P., Biernacka E.K. Coexistence of Andersen-Tawil Syndrome with Polymorphisms inhERG1Gene (K897T) andSCN5AGene (H558R) in One Family. Ann. Noninvasive Electrocardiol. 2015;21:189–195. doi: 10.1111/anec.12283.
    1. Krych M., Biernacka E.K., Ponińska J., Kukla P., Filipecki A., Gajda R., Hasdemir C., Antzelevitch C., Kosiec A., Szperl M., et al. Andersen-Tawil syndrome: Clinical presentation and predictors of symptomatic arrhythmias—Possible role of polymorphisms K897T in KCNH2 and H558R in SCN5A gene. J. Cardiol. 2017;70:504–510. doi: 10.1016/j.jjcc.2017.01.009.
    1. Szczepańska-Gieracha J., Jóźwik S., Cieślik B., Mazurek J., Gajda R. Immersive Virtual Reality Therapy as a Support for Cardiac Rehabilitation: A Pilot Randomized-Controlled Trial. Cyberpsycholg. Behav. Soc. Netw. 2021;24:543–549. doi: 10.1089/cyber.2020.0297.
    1. Gajda R. Relationship Between Arrhythmias and Level Activity of Athlete’s-Role of HRMs. Examines Phys. Med. Rehabil. 2019;2:44–45. doi: 10.31031/EPMR.2019.02.000548.
    1. Senturk T., Xu H., Puppala K., Krishnan B., Sakaguchi S., Chen L.Y., Karim R., Dickinson O., Benditt D.G. Cardiac pauses in competitive athletes: A systematic review examining the basis of current practice recommendations. Europace. 2016;18:1873–1879. doi: 10.1093/europace/euv373.
    1. Bodin A., Bisson A., Gaborit C., Herbert J., Clementy N., Babuty D., Lip G.Y., Fauchier L. Ischemic Stroke in Patients with Sinus Node Disease, Atrial Fibrillation, and Other Cardiac Conditions. Stroke. 2020;51:1674–1681. doi: 10.1161/STROKEAHA.120.029048.
    1. Kaur S., Alsheikhtaha Z., Mehra R. A 48-Year-Old Athletic Man with Bradycardia During Sleep. Chest. 2018;154:e139–e142. doi: 10.1016/j.chest.2018.05.008.
    1. Svennberg E., Tjong F., Goette A., Akoum N., Di Biase L., Bordachar P., Boriani G., Burri H., Conte G., Deharo J.C., et al. How to use digital devices to detect and manage arrhythmias: An EHRA practical guide. Europace. 2022;24:euac038. doi: 10.1093/europace/euac038.

Source: PubMed

3
Subscribe