LC-MS based metabolomic profiling for renal cell carcinoma histologic subtypes

Lun Jing, Jean-Marie Guigonis, Delphine Borchiellini, Matthieu Durand, Thierry Pourcher, Damien Ambrosetti, Lun Jing, Jean-Marie Guigonis, Delphine Borchiellini, Matthieu Durand, Thierry Pourcher, Damien Ambrosetti

Abstract

Renal cell carcinomas (RCC) are classified according to their histological features. Accurate classification of RCC and comprehensive understanding of their metabolic dysregulation are of critical importance. Here we investigate the use of metabolomic analyses to classify the main RCC subtypes and to describe the metabolic variation for each subtype. To this end, we performed metabolomic profiling of 65 RCC frozen samples (40 clear cell, 14 papillary and 11 chromophobe) using liquid chromatography-mass spectrometry. OPLS-DA multivariate analysis based on metabolomic data showed clear discrimination of all three main subtypes of RCC (R2 = 75.0%, Q2 = 59.7%). The prognostic performance was evaluated using an independent cohort and showed an AUROC of 0.924, 0.991 and 1 for clear cell, papillary and chromophobe RCC, respectively. Further pathway analysis using the 21 top metabolites showed significant differences in amino acid and fatty acid metabolism between three RCC subtypes. In conclusion, this study shows that metabolomic profiling could serve as a tool that is complementary to histology for RCC subtype classification. An overview of metabolic dysregulation in RCC subtypes was established giving new insights into the understanding of their clinical behaviour and for the development of targeted therapeutic strategies.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Renal cell carcinoma subtype classification based on untargeted metabolomics data. (a) OPLS-DA model of RCC subtype classification (N = 37). The model is composed of 2 predictive components and 1 orthogonal component and presents an R2X(cum) of 44.2%, a goodness-of-fit R2 of 75.0%, a goodness-of-prediction Q2 of 59.7% and a CV-ANOVA p-value of 7.516 × 10−8. (b) Validation plot obtained from 100 permutation tests. (c) ROC (Receiver Operating Characteristic) curves obtained from an independent cohort (N = 28) showing the ability of OPLS-DA model to predict RCC subtypes. (d) Loading plot showing the most discriminative metabolites. The metabolites with VIP (Variable Importance for the Projection) >3 are highlighted with red circles; with VIP >2 are highlighted with orange circles. Variables with VIP >3 are used for further pathway analysis.
Figure 2
Figure 2
Pathway analysis of altered metabolites in RCC subtypes. (a) Metabolite set enrichment analysis using SMPDB (Small Molecule Pathway Database). (b) Metabolomic pathway analysis using the KEGG database.
Figure 3
Figure 3
Example of metabolic profiling in tumour heterogeneity. (a) Macroscopic observation. (b) Metabolic profiling. Dendrogram of hierarchical clustering analysis (HCA). (c) Predicted scores of the 7 in-tumour heterogeneity samples in the OPLS-DA RCC subtype classification model. All 7 samples (black stars) were correctly predicted according to their subtype, ccRCC.
Figure 4
Figure 4
Main metabolic dysregulation among clear cell (cc), papillary (pap) and chromophobe (chro) RCC. Data were shown as the mean ± SEM. p-values were calculated using a Mann-Whitney test. The level of significance was set at *for p 

References

    1. Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev. 2008;34:193–205. doi: 10.1016/j.ctrv.2007.12.001.
    1. Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373:1119–1132. doi: 10.1016/S0140-6736(09)60229-4.
    1. Ferlay J, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–386. doi: 10.1002/ijc.29210.
    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: a cancer journal for clinicians. 2018;68:7–30. doi: 10.3322/caac.21442.
    1. Eble, J. N., Sauter, G., Epstein, J. I. & Sesterhenn, I. A. Vol. International Agency for Research on Cancer (IARC) (ed. World Health Organization Classification of Tumours) (2004).
    1. Amin MB, et al. Prognostic impact of histologic subtyping of adult renal epithelial neoplasms: an experience of 405 cases. The American journal of surgical pathology. 2002;26:281–291. doi: 10.1097/00000478-200203000-00001.
    1. Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. The American journal of surgical pathology. 2003;27:612–624. doi: 10.1097/00000478-200305000-00005.
    1. Shuch B, et al. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. European urology. 2015;67:85–97. doi: 10.1016/j.eururo.2014.04.029.
    1. Choueiri TK, Motzer RJ. Systemic Therapy for Metastatic Renal-Cell Carcinoma. N Engl J Med. 2017;376:354–366. doi: 10.1056/NEJMra1601333.
    1. Wettersten HI, Aboud OA, Lara PN, Jr., Weiss RH. Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol. 2017;13:410–419. doi: 10.1038/nrneph.2017.59.
    1. Linehan WM, Srinivasan R, Garcia JA. Non-clear cell renal cancer: disease-based management and opportunities for targeted therapeutic approaches. Seminars in oncology. 2013;40:511–520. doi: 10.1053/j.seminoncol.2013.05.009.
    1. Jacob M, Lopata AL, Dasouki M, Abdel Rahman AM. Metabolomics toward personalized medicine. Mass Spectrom Rev. 2019;38:221–238. doi: 10.1002/mas.21548.
    1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013.
    1. Alfaro CM, et al. Ambient ionization mass spectrometric analysis of human surgical specimens to distinguish renal cell carcinoma from healthy renal tissue. Anal Bioanal Chem. 2016;408:5407–5414. doi: 10.1007/s00216-016-9627-4.
    1. Cifkova E, et al. Lipidomic differentiation between human kidney tumors and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1000:14–21. doi: 10.1016/j.jchromb.2015.07.011.
    1. Ganti S, et al. Kidney tumor biomarkers revealed by simultaneous multiple matrix metabolomics analysis. Cancer Res. 2012;72:3471–3479. doi: 10.1158/0008-5472.CAN-11-3105.
    1. Niziol J, et al. Metabolomic study of human tissue and urine in clear cell renal carcinoma by LC-HRMS and PLS-DA. Anal Bioanal Chem. 2018;410:3859–3869. doi: 10.1007/s00216-018-1059-x.
    1. Catchpole G, et al. Metabolic profiling reveals key metabolic features of renal cell carcinoma. J Cell Mol Med. 2011;15:109–118. doi: 10.1111/j.1582-4934.2009.00939.x.
    1. Leuthold P, et al. Comprehensive Metabolomic and Lipidomic Profiling of Human Kidney Tissue: A Platform Comparison. J Proteome Res. 2017;16:933–944. doi: 10.1021/acs.jproteome.6b00875.
    1. Kim K, et al. Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Mol Cell Proteomics. 2009;8:558–570. doi: 10.1074/mcp.M800165-MCP200.
    1. Ganti S, et al. Urinary acylcarnitines are altered in human kidney cancer. Int J Cancer. 2012;130:2791–2800. doi: 10.1002/ijc.26274.
    1. Monteiro M, et al. GC-MS metabolomics-based approach for the identification of a potential VOC-biomarker panel in the urine of renal cell carcinoma patients. J Cell Mol Med. 2017;21:2092–2105. doi: 10.1111/jcmm.13132.
    1. Lin L, et al. LC-MS based serum metabonomic analysis for renal cell carcinoma diagnosis, staging, and biomarker discovery. J Proteome Res. 2011;10:1396–1405. doi: 10.1021/pr101161u.
    1. Falegan Oluyemi, Ball Mark, Shaykhutdinov Rustem, Pieroraio Phillip, Farshidfar Farshad, Vogel Hans, Allaf Mohamad, Hyndman Matthew. Urine and Serum Metabolomics Analyses May Distinguish between Stages of Renal Cell Carcinoma. Metabolites. 2017;7(1):6. doi: 10.3390/metabo7010006.
    1. Rodrigues D, et al. Renal cell carcinoma: a critical analysis of metabolomic biomarkers emerging from current model systems. Translational research: the journal of laboratory and clinical medicine. 2017;180:1–11. doi: 10.1016/j.trsl.2016.07.018.
    1. Schaeffeler Elke, Büttner Florian, Reustle Anna, Klumpp Verena, Winter Stefan, Rausch Steffen, Fisel Pascale, Hennenlotter Jörg, Kruck Stephan, Stenzl Arnulf, Wahrheit Judith, Sonntag Denise, Scharpf Marcus, Fend Falko, Agaimy Abbas, Hartmann Arndt, Bedke Jens, Schwab Matthias. Metabolic and Lipidomic Reprogramming in Renal Cell Carcinoma Subtypes Reflects Regions of Tumor Origin. European Urology Focus. 2019;5(4):608–618. doi: 10.1016/j.euf.2018.01.016.
    1. Xiao, Y. et al. Metabolic reprogramming and elevation of glutathione in chromophobe renal cell carcinomas. bioRxiv, 649046, 10.1101/649046 (2019).
    1. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142. doi: 10.1186/1471-2164-7-142.
    1. Bylesjö Max, Rantalainen Mattias, Cloarec Olivier, Nicholson Jeremy K., Holmes Elaine, Trygg Johan. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics. 2006;20(8-10):341–351. doi: 10.1002/cem.1006.
    1. Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS) J. Chemom. 2002;16:119–128. doi: 10.1002/cem.695.
    1. Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Res. 2015;43:W251–257. doi: 10.1093/nar/gkv380.
    1. Xia J, Wishart DS. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Current protocols in bioinformatics. 2016;55:14 10 11–14 10 91. doi: 10.1002/cpbi.11.
    1. Lopez-Beltran A, et al. Unclassified renal cell carcinoma: a report of 56 cases. BJU international. 2012;110:786–793. doi: 10.1111/j.1464-410X.2012.10934.x.
    1. Hsieh JJ, Le V, Cao D, Cheng EH, Creighton CJ. Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidney cancer care with pan-omics precision. J Pathol. 2018;244:525–537. doi: 10.1002/path.5022.
    1. Hakimi AA, et al. An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma. Cancer Cell. 2016;29:104–116. doi: 10.1016/j.ccell.2015.12.004.
    1. Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016;23:27–47. doi: 10.1016/j.cmet.2015.12.006.
    1. Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2016;73:377–392. doi: 10.1007/s00018-015-2070-4.
    1. Gebhard RL, et al. Abnormal cholesterol metabolism in renal clear cell carcinoma. J Lipid Res. 1987;28:1177–1184.
    1. Routy JP, Routy B, Graziani GM, Mehraj V. The Kynurenine Pathway Is a Double-Edged Sword in Immune-Privileged Sites and in Cancer: Implications for Immunotherapy. International journal of tryptophan research: IJTR. 2016;9:67–77. doi: 10.4137/IJTR.S38355.
    1. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. European urology. 2016;70:93–105. doi: 10.1016/j.eururo.2016.02.029.
    1. Moch, H., Humphrey, P. A., Ulbright, T. M. & Reuter, V. E. In World Health Organization Classification of Tumours (IARC Press: Lyon 2016, 2016).
    1. Holman JD, Tabb DL, Mallick P. Employing ProteoWizard to Convert Raw Mass Spectrometry Data. Current protocols in bioinformatics. 2014;46:13 24 11–19. doi: 10.1002/0471250953.bi1324s46.
    1. Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:395. doi: 10.1186/1471-2105-11-395.
    1. Wishart DS, et al. HMDB 3.0–The Human Metabolome Database in 2013. Nucleic Acids Res. 2013;41:D801–807. doi: 10.1093/nar/gks1065.
    1. Eriksson, L., Johansson, E. & Kettapeh-Wold, S. Introduction to Multi- and Megavariate Data Analysis Using Projection Methods (PCA & PLS). pp. 213–225 (Umetrics, 1999).
    1. Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometrics and Intelligent Laboratory Systems. 1987;2:37–52. doi: 10.1016/0169-7439(87)80084-9.
    1. Ward JH. Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association. 1963;58:236–244. doi: 10.1080/01621459.1963.10500845.
    1. Metz CE. Basic principles of ROC analysis. Semin Nucl Med. 1978;8:283–298. doi: 10.1016/S0001-2998(78)80014-2.

Source: PubMed

3
Subscribe