Seaweeds as Preventive Agents for Cardiovascular Diseases: From Nutrients to Functional Foods

Susana M Cardoso, Olívia R Pereira, Ana M L Seca, Diana C G A Pinto, Artur M S Silva, Susana M Cardoso, Olívia R Pereira, Ana M L Seca, Diana C G A Pinto, Artur M S Silva

Abstract

Being naturally enriched in key nutrients and in various health-promoting compounds, seaweeds represent promising candidates for the design of functional foods. Soluble dietary fibers, peptides, phlorotannins, lipids and minerals are macroalgae's major compounds that can hold potential in high-value food products derived from macroalgae, including those directed to the cardiovascular-health promotion. This manuscript revises available reported data focusing the role of diet supplementation of macroalgae, or extracts enriched in bioactive compounds from macroalgae origin, in targeting modifiable markers of cardiovascular diseases (CVDs), like dyslipidemia, oxidative stress, vascular inflammation, hypertension, hypercoagulability and activation of the sympathetic and renin-angiotensin systems, among others. At last, the review also describes several products that have been formulated with the use of whole macroalgae or extracts, along with their claimed cardiovascular-associated benefits.

Keywords: algae; atherosclerosis; bioactive; functional food; heart; hypertension; macroalgae; minerals; peptides; sulfated polysaccharides.

Figures

Figure 1
Figure 1
Chemical structures of some phlorotannins (phloroglucinol, eckol, phlorofucofuroeckol-A and dieckol) and fucoxanthin.

References

    1. World Health Organization (WHO) Cardiovascular Diseases (CVDs) [(accessed on 15 July 2015)]. Fact Sheet N°317. Updated January 2015. Available online:
    1. World Health Organization (WHO) Cardiovascular Diseases. [(accessed on 15 July 2015)]. Available online:
    1. World Hearth Federation Cardiovascular Disease Risk Factors. [(accessed on 15 July 2015)]. Available online:
    1. Siti H.N., Yusof K., Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review) Vascul. Pharmacol. 2015;71:40–56. doi: 10.1016/j.vph.2015.03.005.
    1. Klop B., Elte J.W.F., Castro Cabezas M. Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients. 2013;5:1218–1240. doi: 10.3390/nu5041218.
    1. Stoner L., Lucero A.A., Palmer B.R., Jones L.M., Young J.M., Faulkner J. Inflammatory biomarkers for predicting cardiovascular disease. Clin. Biochem. 2013;46:1353–1371. doi: 10.1016/j.clinbiochem.2013.05.070.
    1. De Pascual-Teresa S., Moreno D.A., García-Viguera C. Flavanols and anthocyanins in cardiovascular health: A review of current evidence. Int. J. Mol. Sci. 2010;11:1679–1703. doi: 10.3390/ijms11041679.
    1. Word Health Organization (WHO) Diet, Nutrition and the Prevention of Cardiovascular Diseases. Word Health Organization; Geneva, Switzerland: 2003. (WHO Tecnhical Report Series 916).
    1. Winterman D. Future Foods: What Will We Be Eating in 20 Years’ Time? [(accessed on 13 July 2015)]. Available online: .
    1. Lordan S., Ross R.P., Stanton C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar. Drugs. 2011;9:1056–1100. doi: 10.3390/md9061056.
    1. Bocanegra A., Bastida S., Benedí J., Ródenas S., Sánchez-Muniz F.J. Characteristics and nutritional and cardiovascular-health properties of seaweeds. J. Med. Food. 2009;12:236–258. doi: 10.1089/jmf.2008.0151.
    1. Fitzgerald C., Gallagher E., Tasdemir D., Hayes M. Heart health peptides from macroalgae and their potential use in functional foods. J. Agric. Food Chem. 2011;59:6829–6836. doi: 10.1021/jf201114d.
    1. Cardoso S.M., Carvalho L.G., Silva P.J., Rodrigues M.S., Pereira O.R., Pereira L. Bioproducts from seaweeds: A review with special focus on the Iberian Peninsula. Curr. Org. Chem. 2014;18:896–917. doi: 10.2174/138527281807140515154116.
    1. Brownlee I., Fairclough A., Hall A., Paxman J. The potential health benefits of seaweed and seaweed extract. In: Pomin V.H., editor. Seaweed: Ecology, Nutrient Composition and Medicinal Uses. Marine Biology: Earth Sciences in the 21st Century. Nova Science Publishers; Hauppauge, NY, USA: 2012. pp. 119–136.
    1. Shimazu T., Kuriyama S., Hozawa A., Ohmori K., Sato Y., Nakaya N., Nishino Y., Tsubono Y., Tsuji I. Dietary patterns and cardiovascular disease mortality in Japan: A prospective cohort study. Int. J. Epidemiol. 2007;36:600–609. doi: 10.1093/ije/dym005.
    1. Yamori Y., Miura A., Taira K. Implications from and for food cultures for cardiovascular diseases: Japanese food, particularly Okinawan diets. Asia Pac. J. Clin. Nutr. 2001;10:144–145. doi: 10.1046/j.1440-6047.2001.00227.x.
    1. Research and Markets . Functional Food Market: GCC Industry Analysis and Opportunity Assessment 2014–2020. Research and Markets; Dublin, UK: 2014.
    1. Mišurcová L., Škrovánková S., Samek D., Ambrožová J., Machů L. Health benefits of algal polysaccharides in human nutrition. Adv. Food Nutr. Res. 2012;66:75–145.
    1. Holdt S.L., Kraan S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011;23:543–597. doi: 10.1007/s10811-010-9632-5.
    1. Dawczynski C., Schubert R., Jahreis G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007;103:891–899. doi: 10.1016/j.foodchem.2006.09.041.
    1. Jiménez-Escrig A., Sánchez-Muniz F. Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr. Res. 2000;20:585–598. doi: 10.1016/S0271-5317(00)00149-4.
    1. De Jesus Raposo M., de Morais A., de Morais R. Marine Polysaccharides from Algae with Potential Biomedical Applications. Mar. Drugs. 2015;13:2967–3028. doi: 10.3390/md13052967.
    1. Patel S. Therapeutic importance of sulfated polysaccharides from seaweeds: Updating the recent findings. 3 Biotech. 2012;2:171–185. doi: 10.1007/s13205-012-0061-9.
    1. Ale M.T., Mikkelsen J.D., Meyer A.S. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs. 2011;9:2106–2130. doi: 10.3390/md9102106.
    1. Isaza Martínez J.H., Torres Castañeda H.G. Preparation and chromatographic analysis of phlorotannins. J. Chromatogr. Sci. 2013;51:825–838. doi: 10.1093/chromsci/bmt045.
    1. Freile-Pelerguín Y., Robledo D. Bioactive Compounds from Algae. In: Blanca H.-L., Miguel H., editors. Bioactive Compounds from Marine Foods: Plant and Animal Sources. John Wiley & Sons; West Sussex, UK: 2013. pp. 113–130.
    1. Li Y.-X., Wijesekara I., Li Y., Kim S.-K. Phlorotannins as bioactive agents from brown algae. Process Biochem. 2011;46:2219–2224. doi: 10.1016/j.procbio.2011.09.015.
    1. D’Orazio N., Gemello E., Gammone M.A., de Girolamo M., Ficoneri C., Riccioni G. Fucoxantin: A treasure from the sea. Mar. Drugs. 2012;10:604–616. doi: 10.3390/md10030604.
    1. Kim S.K., Wijesekara I. Development and biological activities of marine-derived bioactive peptides: A review. J. Funct. Foods. 2010;2:1–9. doi: 10.1016/j.jff.2010.01.003.
    1. Rupérez P. Mineral content of edible marine seaweeds. Food Chem. 2002;79:23–26. doi: 10.1016/S0308-8146(02)00171-1.
    1. Yeh T.S., Hung N.H., Lin T.C. Analysis of iodine content in seaweed by GC-ECD and estimation of iodine intake. J. Food Drug Anal. 2014;22:189–196. doi: 10.1016/j.jfda.2014.01.014.
    1. Zalesin K.C., Franklin B.A., Miller W.M., Peterson E.D., McCullough P.A. Impact of obesity on cardiovascular disease. Med. Clin. North Am. 2011;95:919–937. doi: 10.1016/j.mcna.2011.06.005.
    1. Sowers J.R., Epstein M., Frohlich E.D. Diabetes, Hypertension, and Cardiovascular Disease An Update. Hypertension. 2001;37:1053–1059. doi: 10.1161/01.HYP.37.4.1053.
    1. Jellinger P.S. American Association of Clinical Endocrinologists’ Guidelines for Management of Dyslipidemia and Prevention of Atherosclerosis. Endocr. Pract. 2012;18:1–78.
    1. Halperin R.O., Sesso H.D., Ma J., Buring J.E., Stampfer M.J., Gaziano J.M. Dyslipidemia and the risk of incident hypertension in men. Hypertension. 2006;47:45–50. doi: 10.1161/01.HYP.0000196306.42418.0e.
    1. Hadi H.A.R., Carr C.S., al Suwaidi J. Endothelial dysfunction: Cardiovascular risk factors, therapy, and outcome. Vasc. Health Risk Manag. 2005;1:183–198.
    1. Lichstein P.R. The Medical Interview. In: Walker H.K., Hall W.D., Hurst J.W., editors. Clinical Methods: The History, Physical, and Laboratory Examinations. Butterworths; Boston, CA, USA: 1990.
    1. Hall J.E., Granger J.P., do Carmo J.M., da Silva A.A., Dubinion J., George E., Hamza S., Speed J., Hall M.E. Hypertension: Physiology and pathophysiology. Compr. Physiol. 2012;2:2393–2442.
    1. Oparil S., Zaman M.A., Calhoun D.A. Review Pathogenesis of Hypertension. Ann. Intern. Med. 2003;139:761–776. doi: 10.7326/0003-4819-139-9-200311040-00011.
    1. Blaustein M.P., Leenen F.H.H., Chen L., Golovina V.A., Hamlyn J.M., Pallone T.L., van Huysse J.W., Zhang J., Wier W.G. How NaCl raises blood pressure: A new paradigm for the pathogenesis of salt-dependent hypertension. Am. J. Physiol. Heart Circ. Physiol. 2012;302:H1031–H1049. doi: 10.1152/ajpheart.00899.2011.
    1. World Health Organization (WHO) Guideline: Potassium Intake for Adults and Children. World Health Organization; Geneva, Switzerland: 2012.
    1. World Health Organization (WHO) Guideline: Sodium Intake for Adults and Children. World Health Organization; Geneva, Switzerland: 2012.
    1. Kass L., Weekes J., Carpenter L. Effect of magnesium supplementation on blood pressure: A meta-analysis. Eur. J. Clin. Nutr. 2012;66:411–418. doi: 10.1038/ejcn.2012.4.
    1. Geiger H., Wanner C. Magnesium in disease. CKJ Clin. Kidney J. 2012;5:i25–i38. doi: 10.1093/ndtplus/sfr165.
    1. Libby P., Ridker P.M., Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–1143. doi: 10.1161/hc0902.104353.
    1. McAreavey D., RoMcAreavbertson J.I. Angiotensin converting enzyme inhibitors and moderate hypertension. Drugs. 1990;40:326–345. doi: 10.2165/00003495-199040030-00002.
    1. Uk J.M., Uk H.D., Poland M.T., Kjekshus J., France P.L., Denmark C.T., Committee E.S.C., Cpg G., Priori S.G., Angeles M., et al. Expert consensus document on angiotensin converting enzyme inhibitors in cardiovascular disease: The Task Force on ACE-inhibitors of the European Society of Cardiology. Eur. Heart J. 2004;25:1454–1470.
    1. Barreras A., Gurk-Turner C. Angiotensin II receptor blockers. Proc. (Bayl. Univ. Med. Cent.) 2003;16:123–126.
    1. Sanoski C.A. Aliskiren: An oral direct renin inhibitor for the treatment of hypertension. Pharmacotherapy. 2009;29:193–212. doi: 10.1592/phco.29.2.193.
    1. Spagnoli L.G., Bonanno E., Sangiorgi G., Mauriello A. Role of inflammation in atherosclerosis. J. Nucl. Med. 2007;48:1800–1815. doi: 10.2967/jnumed.107.038661.
    1. Tousoulis D., Kampoli A.-M., Tentolouris C., Papageorgiou N., Stefanadis C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2012;10:4–18. doi: 10.2174/157016112798829760.
    1. Patrick L., Uzick M. Cardiovascular Disease: C-Reactive Protein and the Inflammatory Disease Paradigm: HMG-CoA Reductase Inhibitors, alpha-Tocopherol, Red Yeast Rice, and Olive Oil Polyphenols. A Review of the Literature. Altern. Med. Rev. 2001;6:248–271.
    1. Cardoso S.M., Catarino M.D., Semião M.S., Pereira O.R. Virgin Olive Oil As a Source of Anti-Inflammatory Agents. In: de Leonardis A., editor. Virgin Olive Oil: Production, Composition, Uses and Benefits for Man. Nova Science Publishers, Inc.; Hauppauge, NY, USA: 2014. pp. 187–209.
    1. Badimon L., Padró T., Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur. Hear. J. Acute Cardiovasc. Care. 2012;1:60–74.
    1. Pahan K. Lipid-lowering drugs. Cell Mol. Life Sci. 2006;63:1165–1178. doi: 10.1007/s00018-005-5406-7.
    1. Chu S.-M., Shih W.-T., Yang Y.-H., Chen P.-C., Chu Y.-H. Use of traditional Chinese medicine in patients with hyperlipidemia: A population-based study in Taiwan. J. Ethnopharmacol. 2015;168:129–135. doi: 10.1016/j.jep.2015.03.047.
    1. Bahmani M., Mirhoseini M., Shirzad H., Sedighi M., Shahinfard N., Rafieian-Kopaei M. A Review on Promising Natural Agents Effective on Hyperlipidemia. J. Evid. Based Complement. Altern. Med. 2015;20:228–238. doi: 10.1177/2156587214568457.
    1. Villanueva M.J., Morcillo M., Tenorio M.D., Mateos-Aparicio I., Andrés V., Redondo-Cuenca A. Health-promoting effects in the gut and influence on lipid metabolism of Himanthalia elongata and Gigartina pistillata in hypercholesterolaemic Wistar rats. Eur. Food Res. Technol. 2014;238:409–416. doi: 10.1007/s00217-013-2116-5.
    1. Kumar S., Magnusson M., Ward L., Paul N., Brown L. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats. Mar. Drugs. 2015;13:788–805. doi: 10.3390/md13020788.
    1. Chan P.T., Matanjun P., Yasir S.M., Tan T.S. Antioxidant and hypolipidaemic properties of red seaweed, Gracilaria changii. J. Appl. Phycol. 2014;26:1–11. doi: 10.1007/s10811-013-0135-z.
    1. Kim M.J., Kim H.K. Insulinotrophic and hypolipidemic effects of Ecklonia cava in streptozotocin-induced diabetic mice. Asian Pac. J. Trop. Med. 2012;5:374–379. doi: 10.1016/S1995-7645(12)60062-5.
    1. Ruqqia K., Sultana V., Ara J., Ehteshamul-Haque S., Athar M. Hypolipidaemic potential of seaweeds in normal, triton-induced and high-fat diet-induced hyperlipidaemic rats. J. Appl. Phycol. 2015;27:571–579. doi: 10.1007/s10811-014-0321-7.
    1. Riaz B., Najam R., Anser H., Ali M.S. Evaluation of Iyengariastellata for its hypolipidemic and hepatoprotective activity. Pak. J. Pharm. Sci. 2014;27:1775–1779.
    1. Dousip A., Matanjun P., Sulaiman M.R., Tan T.S., Ooi Y.B.H., Lim T.P. Effect of seaweed mixture intake on plasma lipid and antioxidant profile of hyperholesterolaemic rats. J. Appl. Phycol. 2014;26:999–1008. doi: 10.1007/s10811-013-0128-y.
    1. Borai I.H., Ezz M.K., Rizk M.Z., Matloub A.A., Aly H.F., El A., Farrag R., Fouad G.I. Hypolipidemic and Anti-atherogenic Effect of Sulphated Polysaccharides from the Green Alga Ulva fasciata. Int. J. Pharm. Sci. Rev. Res. 2015;31:1–12.
    1. Hoang M.H., Kim J.-Y., Lee J.H., You S.G., Lee S.-J. Antioxidative, hypolipidemic, and anti-inflammatory activities of sulfated polysaccharides from Monostroma nitidum. Food Sci. Biotechnol. 2015;24:199–205. doi: 10.1007/s10068-015-0027-x.
    1. Hassan S., El-Twab S.A., Hetta M., Mahmoud B. Improvement of lipid profile and antioxidant of hypercholesterolemic albino rats by polysaccharides extracted from the green alga Ulva lactuca Linnaeus. Saudi J. Biol. Sci. 2011;18:333–340. doi: 10.1016/j.sjbs.2011.01.005.
    1. Cuong H.D., Thuy T.T.T., Huong T.T., Ly B.M., Van T.T.T. Structure and hypolipidaemic activity of fucoidan extracted from brown seaweed Sargassum henslowianum. Nat. Prod. Res. 2015;29:411–415. doi: 10.1080/14786419.2014.948436.
    1. Kim M.J., Jeon J., Lee J.S. Fucoidan prevents high-fat diet-induced obesity in animals by suppression of fat accumulation. Phyther. Res. 2014;28:137–143. doi: 10.1002/ptr.4965.
    1. Sokolova E.V., Bogdanovich L.N., Ivanova T.B., Byankina A.O., Kryzhanovskiy S.P., Yermak I.M. Effect of carrageenan food supplement on patients with cardiovascular disease results in normalization of lipid profile and moderate modulation of immunity system markers. PharmaNutrition. 2014;2:33–37. doi: 10.1016/j.phanu.2014.02.001.
    1. Gammone M.A., Riccioni G., D’Orazio N. Carotenoids: Potential allies of cardiovascular health? Food Nutr. Res. 2015;59:26762. doi: 10.3402/fnr.v59.26762.
    1. Tsukui T., Konno K., Hosokawa M., Maeda H., Sashima T., Miyashita K. Fucoxanthin and fucoxanthinol enhance the amount of docosahexaenoic acid in the liver of KKAy obese/diabetic mice. J. Agric. Food Chem. 2007;55:5025–5029. doi: 10.1021/jf070110q.
    1. Tsukui T., Baba N., Hosokawa M., Sashima T., Miyashita K. Enhancement of hepatic docosahexaenoic acid and arachidonic acid contents in C57BL/6J mice by dietary fucoxanthin. Fish. Sci. 2009;75:261–263. doi: 10.1007/s12562-008-0018-4.
    1. Miyashita K., Narayan B., Tsukui T., Kamogawa H., Abe M., Hosokawa M. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology. John Wiley & Sons; West Sussex, UK: 2011. Brown seaweed lipids as potential source of omega-3 PUFA in biological systems; pp. 329–339.
    1. Aki T., Yamamoto M., Takahashi T., Tomita K., Toyoura R., Iwashita K., Kawamoto S., Hosokawa M., Miyashita K., Ono K. Regulation of polyunsaturated fatty acid biosynthesis by seaweed fucoxanthin and its metabolite in cultured hepatocytes. Lipids. 2014;49:133–141. doi: 10.1007/s11745-013-3856-5.
    1. Riccioni G., D’Orazio N., Franceschelli S., Speranza L. Marine carotenoids and cardiovascular risk markers. Mar. Drugs. 2011;9:1166–1175. doi: 10.3390/md9071166.
    1. Guil-Guerrero J.L. Stearidonic acid (18:4n-3): Metabolism, nutritional importance, medical uses and natural sources. Eur. J. Lipid Sci. Technol. 2007;109:1226–1236. doi: 10.1002/ejlt.200700207.
    1. Pereira H., Barreira L., Figueiredo F., Custódio L., Vizetto-Duarte C., Polo C., Rešek E., Aschwin E., Varela J. Polyunsaturated fatty acids of marine macroalgae: Potential for nutritional and pharmaceutical applications. Mar. Drugs. 2012;10:1920–1935. doi: 10.3390/md10091920.
    1. Rodrigues D., Freitas A.C., Pereira L., Rocha-Santos T.A.P., Vasconcelos M.W., Roriz M., Rodríguez-Alcalá L.M., Gomes A.M.P., Duarte A.C. Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem. 2015;183:197–207. doi: 10.1016/j.foodchem.2015.03.057.
    1. Santos S.A.O., Vilela C., Freire C.S.R., Abreu M.H., Rocha S.M., Silvestre A.J.D. Chlorophyta and Rhodophyta macroalgae: A source of health promoting phytochemicals. Food Chem. 2015;183:122–128. doi: 10.1016/j.foodchem.2015.03.006.
    1. Russo G.L. Dietary n-6 and n-3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 2009;77:937–946. doi: 10.1016/j.bcp.2008.10.020.
    1. Brown E.M., Allsopp P.J., Magee P.J., Gill C.I., Nitecki S., Strain C.R., Mcsorley E.M. Seaweed and human health. Nutr. Rev. 2014;72:205–216. doi: 10.1111/nure.12091.
    1. Airanthi M.K.W.-A., Sasaki N., Iwasaki S., Baba N., Abe M., Hosokawa M., Miyashita K. Effect of brown seaweed lipids on fatty acid composition and lipid hydroperoxide levels of mouse liver. J. Agric. Food Chem. 2011;59:4156–4163. doi: 10.1021/jf104643b.
    1. Beppu F., Hosokawa M., Niwano Y., Miyashita K. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-Ay mice. Lipids Health Dis. 2012;11:112. doi: 10.1186/1476-511X-11-112.
    1. Cha S.-H., Lee K.-W., Jeon Y.-J. Screening of Extracts from Red Algae in Jeju for Potentials Marine Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity. Algae. 2006;21:343–348. doi: 10.4490/ALGAE.2006.21.3.343.
    1. Jung H.A., Hyun S.K., Kim H.R., Choi J.S. Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fish. Sci. 2006;72:1292–1299. doi: 10.1111/j.1444-2906.2006.01288.x.
    1. Wijesinghe W.A., Ko S.C., Jeon Y.J. Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity. Nutr. Res. Pract. 2011;5:93–100. doi: 10.4162/nrp.2011.5.2.93.
    1. Suetsuna K., Maekawa K., Chen J.R. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J. Nutr. Biochem. 2004;15:267–272. doi: 10.1016/j.jnutbio.2003.11.004.
    1. Sivagnanam S., Yin S., Choi J., Park Y., Woo H., Chun B. Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction. Mar. Drugs. 2015;13:3422–3442. doi: 10.3390/md13063422.
    1. Cian R.E., Caballero M.S., Sabbag N., González R.J., Drago S.R. Bio-accessibility of bioactive compounds (ACE inhibitors and antioxidants) from extruded maize products added with a red seaweed Porphyra columbina. LWT—Food Sci. Technol. 2014;55:51–58. doi: 10.1016/j.lwt.2013.08.011.
    1. Qu W., Ma H., Pan Z., Luo L., Wang Z., He R. Preparation and antihypertensive activity of peptides from Porphyra yezoensis. Food Chem. 2010;123:14–20. doi: 10.1016/j.foodchem.2010.03.091.
    1. Fitzgerald C., Mora-Soler L., Gallagher E., O’Connor P., Prieto J., Soler-Vila A., Hayes M. Isolation and characterization of bioactive pro-peptides with in vitro renin inhibitory activities from the macroalga Palmaria palmata. J. Agric. Food Chem. 2012;60:7421–7427. doi: 10.1021/jf301361c.
    1. Bondu S., Bonnet C., Gaubert J., Deslandes É., Turgeon S.L., Beaulieu L. Bioassay-guided fractionation approach for determination of protein precursors of proteolytic bioactive metabolites from macroalgae. J. Appl. Phycol. 2014;27:2059–2074. doi: 10.1007/s10811-014-0425-0.
    1. Lin H.C., Chou S.T., Chuang M.Y., Liao T.Y., Tsai W.S., Chiu T.H. The effects of Caulerpa microphysa enzyme-digested extracts on ACE-inhibitory activity and in vitro anti-tumour properties. Food Chem. 2012;134:2235–2241. doi: 10.1016/j.foodchem.2012.04.105.
    1. Suetsuna K., Nakano T. Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida) J. Nutr. Biochem. 2000;11:450–454. doi: 10.1016/S0955-2863(00)00110-8.
    1. Ramirez-Higuera A., Quevedo-Corona L., Paniagua-Castro N., Chamorro-Ceballos G., Milliar-Garcia A., Jaramillo-Flores M.E. Antioxidant enzymes gene expression and antihypertensive effects of seaweeds Ulva linza and Lessonia trabeculata in rats fed a high-fat and high-sucrose diet. J. Appl. Phycol. 2014;26:597–605. doi: 10.1007/s10811-013-0134-0.
    1. Wada K., Nakamura K., Tamai Y., Tsuji M., Sahashi Y., Watanabe K., Ohtsuchi S., Yamamoto K., Ando K., Nagata C. Seaweed intake and blood pressure levels in healthy pre-school Japanese children. Nutr. J. 2011;10:83. doi: 10.1186/1475-2891-10-83.
    1. Teas J., Baldeón M.E., Chiriboga D.E., Davis J.R., Sarriés A.J., Braverman L.E. Could dietary seaweed reverse the metabolic syndrome? Asia Pac. J. Clin. Nutr. 2009;18:145–154.
    1. Hata Y., Nakaijima K., Uchida J., Hidaka H., Nakano T. Clinical effects of brown seaweed, Undaria pinnatifida (wakame), on blood pressure in hypertensive subjects. J. Clin. Biochem. Nutr. 2001;30:43–53. doi: 10.3164/jcbn.30.43.
    1. Ahmed H.H., Abdalla M.S., Eskander E.F., Al-Khadragy M.F., Massoud M.N. Hypolipidemic influence of Sargassum subrepandum: Mechanism of action. Eur. Rev. Med. Pharmacol. Sci. 2012;16(Suppl. 3):112–120.
    1. Chen Y.Y., Ji W., Du J.R., Yu D.K., He Y., Yu C.X., Li D.S., Zhao C.Y., Qiao K.Y. Preventive effects of low molecular mass potassium alginate extracted from brown algae on DOCA salt-induced hypertension in rats. Biomed. Pharmacother. 2010;64:291–295. doi: 10.1016/j.biopha.2009.09.004.
    1. Ren D., Noda H., Amano H., Nishino T., Nishizawa K. Study on Antihypertensive and Antihyperlipidemic Effects of Marine Algae. Fish. Sci. 1994;60:83–88.
    1. Krotkiewski M., Aurel M., Holm G., Grimby G., Szczepanik J. Effects of a sodium-potassium ion-exchanging seaweed preparation in mild hypertension. Am. J. Hypertens. 1991;4:483–488. doi: 10.1093/ajh/4.6.483.
    1. Fitzgerald C., Aluko R.E., Hossain M., Rai D.K., Hayes M. Potential of a Renin Inhibitory Peptide from the Red Seaweed Palmaria palmata as a Functional Food Ingredient Following Confirmation and Characterization of a Hypotensive Effect in Spontaneously Hypertensive Rats. J. Agric. Food Chem. 2014;62:8352–8356. doi: 10.1021/jf500983n.
    1. Costa-Mugica A., Batista-Gonzalez A.E., Mondejar D., Soto-López Y., Brito-Navarro V., Vázquez A.M., Brömme D., Zaldívar-Muñoz C., Vidal-Novoa A., e Silva A.M.D.O., et al. Inhibition of LDL-oxidation and antioxidant properties related to polyphenol content of hydrophilic fractions from seaweed Halimeda Incrassata (Ellis) Lamouroux. Brazilian J. Pharm. Sci. 2012;48:31–37.
    1. Kim T.H., Ku S.K., Lee T., Bae J.S. Vascular barrier protective effects of phlorotannins on HMGB1-mediated proinflammatory responses in vitro and in vivo. Food Chem. Toxicol. 2012;50:2188–2195. doi: 10.1016/j.fct.2012.03.082.
    1. Lihn A.S., Pedersen S.B., Richelsen B. Adiponectin: Action, regulation and association to insulin sensitivity. Obes. Rev. 2005;6:13–21. doi: 10.1111/j.1467-789X.2005.00159.x.
    1. Preetha S.P., Devaraj H. Role of sulphated polysaccharides from Sargassum Wightii in control of diet-induced hyperlipidemia and associated inflammatiory complications in rats. Eur. J. Inflamm. 2010;8:23–30.
    1. De Jesus Raposo M.F., de Morais R.M.S.C., de Morais A.M.M.B. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar. Drugs. 2013;11:233–252. doi: 10.3390/md11010233.
    1. Wijesekara I., Pangestuti R., Kim S.K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 2011;84:14–21. doi: 10.1016/j.carbpol.2010.10.062.
    1. Jiao G., Yu G., Zhang J., Ewart H.S. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar. Drugs. 2011;9:196–233. doi: 10.3390/md9020196.
    1. Li B., Lu F., Wei X., Zhao R. Fucoidan: Structure and bioactivity. Molecules. 2008;13:1671–1695. doi: 10.3390/molecules13081671.
    1. Lynch M.B., Sweeney T., Callan J.J., O’Sullivan J.T., O’Doherty J.V. The effect of dietary Laminaria-derived laminarin and fucoidan on nutrient digestibility, nitrogen utilisation, intestinal microflora and volatile fatty acid concentration in pigs. J. Sci. Food Agric. 2010;90:430–437. doi: 10.1002/jsfa.3834.
    1. O’Sullivan L., Murphy B., McLoughlin P., Duggan P., Lawlor P.G., Hughes H., Gardiner G.E. Prebiotics from marine macroalgae for human and animal health applications. Mar. Drugs. 2010;8:2038–2064. doi: 10.3390/md8072038.
    1. Plaza M., Cifuentes A., Ibanez E. In the search of new functional food ingredients from algae. Trends Food Sci. Technol. 2008;19:31–39. doi: 10.1016/j.tifs.2007.07.012.
    1. Mendis E., Kim S.K. Present and future prospects of seaweeds in developing functional foods. In: Kim S.-K., editor. Advances in Food and Nutrition Research. Volme 64. Elsevier Inc.; Amsterdam, The Netherlands: 2011. pp. 1–15.
    1. Cofrades S., Serdaroğlu M., Jiménez-Colmenero F. Design of healthier foods and beverages containing whole algae. In: Dominguez H., editor. Functional Ingredients from Algae for Foods and Nutraceuticals. Elsevier Inc.; Amsterdam, The Netherlands: 2013. pp. 609–633.
    1. Cofrades S., López-López I., Jiménez-Colmenero F. Applications of seaweed in meat-based functional foods. In: Kim S.-K., editor. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology. John Wiley & Sons, Ltd.; West Sussex, UK: 2012. pp. 491–499.
    1. Lee D.S., Shin M.K. Functional Meat Sauce Containing Polymann Having Effect of Reducing Neutral Lipids and Cholesterol Without Any Adverse Effect as Main Component. KR-20030045232-A. 2005
    1. Zhang W., Xiao S., Samaraweera H., Lee E.J., Ahn D.U. Improving functional value of meat products. Meat Sci. 2010;86:15–31. doi: 10.1016/j.meatsci.2010.04.018.
    1. Cofrades S., López-López I., Solas M.T., Bravo L., Jiménez-Colmenero F. Influence of different types and proportions of added edible seaweeds on characteristics of low-salt gel/emulsion meat systems. Meat Sci. 2008;79:767–776. doi: 10.1016/j.meatsci.2007.11.010.
    1. López-López I., Bastida S., Ruiz-Capillas C., Bravo L., Larrea M.T., Sánchez-Muniz F., Cofrades S., Jiménez-Colmenero F. Composition and antioxidant capacity of low-salt meat emulsion model systems containing edible seaweeds. Meat Sci. 2009;83:492–498. doi: 10.1016/j.meatsci.2009.06.031.
    1. López-López I., Cofrades S., Ruiz-Capillas C., Jiménez-Colmenero F. Design and nutritional properties of potential functional frankfurters based on lipid formulation, added seaweed and low salt content. Meat Sci. 2009;83:255–262. doi: 10.1016/j.meatsci.2009.05.014.
    1. Jeon M.R., Choi S.H. Quality Characteristics of the Hamburger Patties with Sea Tangle (Laminaria japonica) Powder and/or Cooked Rice. Korean J. Food Sci. Anim. Resour. 2012;32:77–83. doi: 10.5851/kosfa.2012.32.1.71.
    1. Choi Y.S., Choi J.H., Han D.J., Kim H.Y., Kim H.W., Lee M.A., Chung H.J., Kim C.J. Effects of Laminaria japonica on the physico-chemical and sensory characteristics of reduced-fat pork patties. Meat Sci. 2012;91:1–7. doi: 10.1016/j.meatsci.2011.11.011.
    1. Kim H.W., Choi J.H., Choi Y.S., Han D.J., Kim H.Y., Lee M.A., Kim S.Y., Kim C.J. Effects of sea tangle (Lamina japonica) Powder on quality characteristics of breakfast sausages. Korean J. Food Sci. Anim. Resour. 2010;30:55–61. doi: 10.5851/kosfa.2010.30.1.55.
    1. Schultz Moreira A.R., Benedí J., González-Torres L., Olivero-David R., Bastida S., Sánchez-Reus M.I., González-Muñoz M.J., Sánchez-Muniz F.J. Effects of diet enriched with restructured meats, containing Himanthalia elongata, on hypercholesterolaemic induction, CYP7A1 expression and antioxidant enzyme activity and expression in growing rats. Food Chem. 2011;129:1623–1630. doi: 10.1016/j.foodchem.2011.06.019.
    1. Schultz Moreira A.R., Benedi J., Bastida S., Sánchez-Reus I., Sánchez-Muniz F.J. Nori- and sea spaghetti- but not wakame-restructured pork decrease the hypercholesterolemic and liver proapototic short-term effects of high-dietary cholesterol consumption. Nutr. Hosp. 2013;28:1422–1429.
    1. Schultz Moreira A.R., Olivero-David R., Vázquez-Velasco M., González-Torres L., Benedí J., Bastida S., Sánchez-Muniz F.J. Protective Effects of Sea Spaghetti-Enriched Restructured Pork Against Dietary Cholesterol: Effects on Arylesterase and Lipoprotein Profile and Composition of Growing Rats. J. Med. Food. 2014;17:921–928. doi: 10.1089/jmf.2013.0100.
    1. Moreira A.R.S., Garcimartín A., Bastida S., Jiménez-escrig A., Rupérez P., Green B.D., Rafferty E., Sánchez-muniz F.J., Benedí J. Effects of Undaria pinnatifida, Himanthalia elongata and Porphyra umbilicalis extracts on in vitro α-glucosidase activity and glucose diffusion. Nutr. Hosp. 2014;29:1434–1446.
    1. Moreira A.S., González-Torres L., Olivero-David R., Bastida S., Benedi J., Sánchez-Muniz F.J. Wakame and Nori in Restructured Meats Included in Cholesterol-enriched Diets Affect the Antioxidant Enzyme Gene Expressions and Activities in Wistar Rats. Plant Foods Hum. Nutr. 2010;65:290–298. doi: 10.1007/s11130-010-0179-z.
    1. Olivero-David R., Schultz-Moreira A., Vázquez-Velasco M., González-Torres L., Bastida S., Benedí J., Isabel Sanchez-Reus M., José González-Muñoz M., Sánchez-Muniz F.J. Effects of Nori- and Wakame-enriched meats with or without supplementary cholesterol on arylesterase activity, lipaemia and lipoproteinaemia in growing Wistar rats. Br. J. Nutr. 2011;106:1476–1486. doi: 10.1017/S000711451100198X.
    1. Lim H.-S., Kim H.-H. Effects of the sea tangle-added patty on postprandial blood glucose and lipid profiles in borderline-hyperlipidemic adults. FASEB J. 2013;27:1079.22.
    1. Fitzgerald C., Gallagher E., Doran L., Auty M., Prieto J., Hayes M. Increasing the health benefits of bread: Assessment of the physical and sensory qualities of bread formulated using a renin inhibitory Palmaria palmata protein hydrolysate. LWT—Food Sci. Technol. 2014;56:398–405. doi: 10.1016/j.lwt.2013.11.031.
    1. Hall A.C., Fairclough A.C., Mahadevan K., Paxman J.R. Ascophyllum nodosum enriched bread reduces subsequent energy intake with no effect on post-prandial glucose and cholesterol in healthy, overweight males. A pilot study. Appetite. 2012;58:379–386. doi: 10.1016/j.appet.2011.11.002.
    1. Nagai T., Suzuki N., Nagashima T. Angiotensin I-converting enzyme inhibitory activities of beverages made from sea algae and commercially available tea extracts. J. Food Agric. Environ. 2006;4:17–19.
    1. Fu X., Gao Y., Li L., Wang J., Xue C., Xu J., Yang Q. Beverage Containing Water Insoluble Dietary Fiber Useful for Preventing and/or Treating e.g., Cardiovascular Disease, Diabetes and Gallstone, Comprises Algae Dietary Fiber, Citric Acid, Sugar, Fruit Juice, Plant Hardener and Water. CN 101427835 A. 2009 May 13;
    1. Kim K.S. Beverage Composition Using Sea Weed Fusiforme and Onion for the Prevention of Hypertension. WO 2008032958 A1. 2008 Mar 20;
    1. Lee D.S., Shin M.K. Functional Beverage Useful for Cardiovascular Disease and Liver Function Containing Polymann. KR 2005003746 A. 2005
    1. Nagai T., Yukimoto T. Preparation and functional properties of beverages made from sea algae. Food Chem. 2003;81:327–332. doi: 10.1016/S0308-8146(02)00426-0.
    1. Kim Y.M., Byun J.Y., Namgung B., Jo J.H., Do J.R., In J.P. Food and Agriculture Organization of the United Nations; 2007. [(accessed on 6 November 2015)]. Studies on Functional Salt Fortified with Seaweed Components. Available online: .

Source: PubMed

3
Subscribe