Version 3 of the Alzheimer Disease Centers' Neuropsychological Test Battery in the Uniform Data Set (UDS)

Sandra Weintraub, Lilah Besser, Hiroko H Dodge, Merilee Teylan, Steven Ferris, Felicia C Goldstein, Bruno Giordani, Joel Kramer, David Loewenstein, Dan Marson, Dan Mungas, David Salmon, Kathleen Welsh-Bohmer, Xiao-Hua Zhou, Steven D Shirk, Alireza Atri, Walter A Kukull, Creighton Phelps, John C Morris, Sandra Weintraub, Lilah Besser, Hiroko H Dodge, Merilee Teylan, Steven Ferris, Felicia C Goldstein, Bruno Giordani, Joel Kramer, David Loewenstein, Dan Marson, Dan Mungas, David Salmon, Kathleen Welsh-Bohmer, Xiao-Hua Zhou, Steven D Shirk, Alireza Atri, Walter A Kukull, Creighton Phelps, John C Morris

Abstract

Introduction: The neuropsychological battery of the Uniform Data Set (UDSNB) was implemented in 2005 by the National Institute on Aging (NIA) Alzheimer Disease Centers program to measure cognitive performance in dementia and mild cognitive impairment due to Alzheimer Disease. This paper describes a revision, the UDSNB 3.0.

Methods: The Neuropsychology Work Group of the NIA Clinical Task Force recommended revisions through a process of due diligence to address shortcomings of the original battery. The UDSNB 3.0 covers episodic memory, processing speed, executive function, language, and constructional ability. Data from 3602 cognitively normal participants in the National Alzheimer Coordinating Center database were analyzed.

Results: Descriptive statistics are presented. Multivariable linear regression analyses demonstrated score differences by age, sex, and education and were also used to create a normative calculator available online.

Discussion: The UDSNB 3.0 neuropsychological battery provides a valuable non proprietary resource for conducting research on cognitive aging and dementia.

Conflict of interest statement

S.W.: is participating in clinical trials of antidementia drugs from Eli Lilly and Company. K.W.-B.: received honoraria from Merck, Roche,T3D, Diffusion, and Biogen Companies. K.W.-B. is currently receiving funding from Takeda Pharmaceutical Company in her role as the Neuropsychology Lead for the TOMMORROW clinical trial program. D.M.: serves as a consultant for Janssen. Neither J.C.M. nor his family owns stock or has equity interest (outside of mutual funds or other externally directed accounts) in any pharmaceutical or biotechnology company. J.C.M. is currently participating in clinical trials of antidementia drugs from Eli Lilly and Company, Biogen, and Janssen. J.C.M. serves as a consultant for Lilly USA. He receives research support from Eli Lilly/Avid Radiopharmaceuticals and is funded by NIH grants #P50 AG005681; P01AG003991; P01AG026276; and UF01AG032438. The remaining authors declare no conflicts of interest.

Figures

FIGURE 1
FIGURE 1
Histograms showing score distributions for each measure on the UDSNB 3.0. From these graphs, many of the measures have a normal or near normal distribution, with the exception of the MoCA total score, the score for the copy of the Benson complex figure, and the total score for the MINT. Immed. indicates immediate; MINT, multilingual naming test; MoCA, Montreal Cognitive Assessment; Paraph., paraphrase.

References

    1. Beekly DL, Ramos EM, Lee WW, et al. The National Alzheimer’s Coordinating Center (NACC) database: the uniform data set. Alzheimer Dis Assoc Disord. 2007;21:249–258.
    1. Weintraub S, Salmon D, Mercaldo N, et al. The Alzheimer’s Disease Centers' Uniform Data Set (UDS): the neuropsychologic test battery. Alzheimer Dis Assoc Disord. 2009;23:91–101.
    1. Morris JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–2414.
    1. Morris JC, Weintraub S, Chui HC, et al. The uniform data set (UDS): clinical and cognitive variables and descriptive data from Alzheimer Disease Centers. Alzheimer Dis Assoc Disord. 2006;20:210–216.
    1. Beekly DL, Ramos EM, van Belle G, et al. The National Alzheimer’s Coordinating Center (NACC) Database: an Alzheimer disease database. Alzheimer Dis Assoc Disord. 2004;18:270–277.
    1. Shirk SD, Mitchell MB, Shaughnessy LW, et al. A web-based normative calculator for the uniform data set (UDS) neuropsychological test battery. Alzheimers Res Ther. 2011;3:32.
    1. Jack CR, Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–128.
    1. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–292.
    1. Galasko D, Katzman R, Salmon DP, et al. Clinical and neuropathological findings in Lewy body dementias. Brain Cogn. 1996;31:166–175.
    1. Salmon DP, Galasko D, Hansen LA, et al. Neuropsychological deficits associated with diffuse Lewy body disease. Brain Cogn. 1996;31:148–165.
    1. Alladi S, Xuereb J, Bak T, et al. Focal cortical presentations of Alzheimer’s disease. Brain. 2007;130 (pt 10):2636–2645.
    1. Hof PR, Vogt BA, Bouras C, et al. Atypical form of Alzheimer’s disease with prominent posterior cortical atrophy: a review of lesion distribution and circuit disconnection in cortical visual pathways. Vision Res. 1997;37:3609–3625.
    1. Mendez MF, Ghajarania M, Perryman KM. Posterior cortical atrophy: clinical characteristics and differences compared to Alzheimer’s disease. Dement Geriatr Cogn Disord. 2002;14:33–40.
    1. Folstein MF, Folstein SE, McHugh PR. Mini Mental State Examination. Lutz, Florida: Psychological Assessment Resources; 2004.
    1. Monsell SE, Dodge HH, Zhou XH, et al. Results from the NACC Uniform Data Set neuropsychological battery crosswalk study. Alzheimer Dis Assoc Disord. 2016;30:134–139.
    1. Nasreddine ZS, Phillips N, Chertkow H. Normative data for the montreal cognitive assessment (MoCA) in a population-based sample. Neurology. 2012;78:765–766. author reply 766.
    1. Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–699.
    1. Wechsler D. Wechsler Memory Scale-Revised Manual. San Antonio, Texas: The Psychological Corporation; 1987.
    1. Craft S, Newcomer J, Kanne S, et al. Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiol Aging. 1996;17:123–130.
    1. Ivanova I, Salmon DP, Gollan TH. The multilingual naming test in Alzheimer’s disease: clues to the origin of naming impairments. J Int Neuropsychol Soc. 2013;19:272–283.
    1. Larner AJ. Screening utility of the Montreal Cognitive Assessment (MoCA): in place of—or as well as—the MMSE? Int Psychogeriatr. 2012;24:391–396.
    1. Trzepacz PT, Hochstetler H, Wang S, et al. Alzheimer's Disease Neuroimaging I. Relationship between the Montreal Cognitive Assessment and mini-mental state examination for assessment of mild cognitive impairment in older adults. BMC Geriatr. 2015;15:107.
    1. Lam B, Middleton LE, Masellis M, et al. Criterion and convergent validity of the Montreal cognitive assessment with screening and standardized neuropsychological testing. J Am Geriatr Soc. 2013;61:2181–2185.
    1. Goldstein FC, Ashley AV, Miller E, et al. Validity of the montreal cognitive assessment as a screen for mild cognitive impairment and dementia in African Americans. J Geriatr Psychiatry Neurol. 2014;27:199–203.
    1. Rossetti HC, Lacritz LH, Cullum CM, et al. Normative data for the Montreal Cognitive Assessment (MoCA) in a population-based sample. Neurology. 2011;77:1272–1275.
    1. Julayanont P, Tangwongchai S, Hemrungrojn S, et al. The Montreal Cognitive Assessment-basic: a screening tool for mild cognitive impairment in illiterate and low-educated elderly adults. J Am Geriatr Soc. 2015;63:2550–2554.
    1. Luis CA, Keegan AP, Mullan M. Cross validation of the Montreal Cognitive Assessment in community dwelling older adults residing in the Southeastern US. Int J Geriatr Psychiatry. 2009;24:197–201.
    1. Roalf DR, Moberg PJ, Xie SX, et al. Comparative accuracies of two common screening instruments for classification of Alzheimer’s disease, mild cognitive impairment, and healthy aging. Alzheimers Dement. 2013;9:529–537.
    1. Johnson N, Barion A, Rademaker A, et al. The activities of daily living questionnaire: a validation study in patients with dementia. Alzheimer Dis Assoc Disord. 2004;18:223–230.
    1. Durant J, Leger GC, Banks SJ, et al. Relationship between the activities of daily living questionnaire and the montreal cognitive assessment. Alzheimers Demen. 2016;4:43–46.
    1. Julayanont P, Brousseau M, Chertkow H, et al. Montreal Cognitive Assessment memory index score (MoCA-MIS) as a predictor of conversion from mild cognitive impairment to Alzheimer’s disease. J Am Geriatr Soc. 2014;62:679–684.
    1. Conti S, Bonazzi S, Laiacona M, et al. Montreal Cognitive Assessment (MoCA)-Italian version: regression based norms and equivalent scores. Neurol Sci. 2015;36:209–214.
    1. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984;34:939–944.
    1. Craft S, Asthana S, Schellenberg G, et al. Insulin effects on glucose metabolism, memory, and plasma amyloid precursor protein in Alzheimer's disease differ according to apolipoprotein-E genotype. Ann NY Acad Sci. 2000;903:222–228.
    1. Conroy SK, McDonald BC, Ahles TA, et al. Chemotherapy-induced amenorrhea: a prospective study of brain activation changes and neurocognitive correlates. Brain Imaging Behav. 2013;7:491–500.
    1. Conroy SK, McDonald BC, Smith DJ, et al. Alterations in brain structure and function in breast cancer survivors: effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Res Treat. 2013;137:493–502.
    1. Ferguson RJ, Ahles TA, Saykin AJ, et al. Cognitive-behavioral management of chemotherapy-related cognitive change. Psychooncology. 2007;16:772–777.
    1. McDonald BC, Flashman LA, Arciniegas DB, et al. Methylphenidate and memory and attention adaptation training for persistent cognitive symptoms after traumatic brain injury: a randomized, placebo-controlled trial. Neuropsychopharmacology. 2017:1766–1775.
    1. Possin KL, Laluz VR, Alcantar OZ, et al. Distinct neuroanatomical substrates and cognitive mechanisms of figure copy performance in Alzheimer’s disease and behavioral variant frontotemporal dementia. Neuropsychologia. 2011;49:43–48.
    1. Gollan TH, Weissburger G, Runnqvist E, et al. Self-ratings of spoken language dominance: A Multilingual Naming Test (MINT) and preliminary norms for young and aging Spanish–English bilinguals. Biling : Lang Cogn. 2011;13:215–218.
    1. Possin KL. Visual spatial cognition in neurodegenerative disease. Neurocase. 2010;16:466–487.

Source: PubMed

3
Subscribe