Consensus Guidelines on Interventional Therapies for Knee Pain (STEP Guidelines) from the American Society of Pain and Neuroscience

Corey W Hunter, Timothy R Deer, Mark R Jones, George C Chang Chien, Ryan S D'Souza, Timothy Davis, Erica R Eldon, Michael F Esposito, Johnathan H Goree, Lissa Hewan-Lowe, Jillian A Maloney, Anthony J Mazzola, John S Michels, Annie Layno-Moses, Shachi Patel, Jeanmarie Tari, Jacqueline S Weisbein, Krista A Goulding, Anikar Chhabra, Jeffrey Hassebrock, Chris Wie, Douglas Beall, Dawood Sayed, Natalie Strand, Corey W Hunter, Timothy R Deer, Mark R Jones, George C Chang Chien, Ryan S D'Souza, Timothy Davis, Erica R Eldon, Michael F Esposito, Johnathan H Goree, Lissa Hewan-Lowe, Jillian A Maloney, Anthony J Mazzola, John S Michels, Annie Layno-Moses, Shachi Patel, Jeanmarie Tari, Jacqueline S Weisbein, Krista A Goulding, Anikar Chhabra, Jeffrey Hassebrock, Chris Wie, Douglas Beall, Dawood Sayed, Natalie Strand

Abstract

Knee pain is second only to the back as the most commonly reported area of pain in the human body. With an overall prevalence of 46.2%, its impact on disability, lost productivity, and cost on healthcare cannot be overlooked. Due to the pervasiveness of knee pain in the general population, there are no shortages of treatment options available for addressing the symptoms. Ranging from physical therapy and pharmacologic agents to interventional pain procedures to surgical options, practitioners have a wide array of options to choose from - unfortunately, there is no consensus on which treatments are "better" and when they should be offered in comparison to others. While it is generally accepted that less invasive treatments should be offered before more invasive ones, there is a lack of agreement on the order in which the less invasive are to be presented. In an effort to standardize the treatment of this extremely prevalent pathology, the authors present an all-encompassing set of guidelines on the treatment of knee pain based on an extensive literature search and data grading for each of the available alternative that will allow practitioners the ability to compare and contrast each option.

Keywords: ablation; dorsal root ganglion; genicular nerve; knee; knee pain; peripheral nerve stimulation; platelet-rich plasma; regenerative medicine.

Conflict of interest statement

CWH is a consultant for Abbott, Averitas, Biotronik, Boston Scientific, Mainstay, Nalu, PainTEQ, Saluda, SKK, Vivex. Funded Research by Abbott, Boston Scientific, Discgenics, Mesoblast, Saluda, TissueGene, Vivex. Grants from Saluda, PainTEQ, and Mainstay, outside the submitted work. TRD is a consultant/Research Investigator for Abbott, Avanos, Medtronic, Boston Scientific, Saluda, Nalu, Cornorloc, PainTEQ, Spinal Simplicity, Mainstay Medical, Ethos, Spinethera, SPR Therapeutic, Tissue Tech and Vertos Medical. Funded Research by Abbott, Boston Scientific, Nalu and PainTEQ. In addition, Dr TDR has a patent Abbott pending to DRG Surgical Leads and stock options from Vertos Medical, SpineThera, Saluda Medical, Nalu Medical, Cornerloc, SPR Therapeutic, PainTEQ and Spinal Simplicity; Common stock in Ethos. TD is a consultant for Abbott and Vivex. Funded Research by Discgenics, Mesoblast, TissueGene, Vivex. Research Support, OA Knee Study from Biostar, Kolon Tissuegene and Xalud, outside the submitted work. MFE is a consultant for Abbott, Boston Scientific, Flowonix, Medtronic, Nevro and Stimwave, outside the submitted work. JHG is a consultant for Abbott and Saluda, reports personal fees from Abbott, Stratus Medical, Research Support from SPR Therapeutics and Mainstay Medical, outside the submitted work. Funded Research for Saluda. SP is a consultant for Abbott. JSW is a consultant for Abbott and reports personal fees from Medtronic, Saluda, Biotronik, and SI Bone, during the conduct of the study. AC reports consultant from Arthrex and Zimmer Biomet, outside the submitted work. DB is a consultant for Discgenics, Mesoblast, Vivex, Medtronic, Spineology, Merit Medical, Johnson and Johnson, IZI, Techlamed, Peterson Enterprises, Medical Metrics, Radius Pharmaceuticals, Avanos, Boston Scientific, Sollis Pharmaceuticals, Simplify Medical, Stryker, Lenoss Medical, Spine BioPharma, Piramal, ReGelTec, Nanofuse, Spinal Simplicity, Pain Theory, Spark Biomedical, Micron Medical Corp, Bronx Medical, Smart Soft, Tissue Tech, Kahtnu Surgical, RayShield, Stayble, Thermaquil, Stratus Medical, Genesys, Abbott, Eliquence, SetBone Medical, Amber Implants, Cerapedics, Neurovasis, outside the submitted work. DS is a consultant for Boston Scientific, Neuralace, Nevro, PainTEQ, and Saluda. Funded Research by Neuralace, Nevro, PainTEQ, and Saluda. NS is a consultant for Abbott, Nimbus, Saluda, and Nevro. The authors report no other conflicts of interest in this work.

© 2022 Hunter et al.

Figures

Figure 1
Figure 1
Illustration of the innervation of the knee.

References

    1. Nguyen USDT, Zhang Y, Zhu Y, Niu J, Zhang B, Felson DT. Increasing prevalence of knee pain and symptomatic knee osteoarthritis: survey and cohort data. Ann Intern Med. 2011;155(11):725–732. doi:10.7326/0003-4819-155-11-201112060-00004
    1. Peat G, McCarney R, Croft P. Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care. Ann Rheum Dis. 2001;60(2):91–97. doi:10.1136/ard.60.2.91
    1. Zeni JA, Axe MJ, Snyder-Mackler L. Clinical predictors of elective total joint replacement in persons with end-stage knee osteoarthritis. BMC Musculoskelet Disord. 2010;11(1):86. doi:10.1186/1471-2474-11-86
    1. Jinks C, Jordan K, Croft P. Measuring the population impact of knee pain and disability with the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Pain. 2002;100(1–2):55–64. doi:10.1016/s0304-3959(02
    1. Gillan B. Top 10 Demographics & Interests Facts About Americans Age 50+. American Association of Retired Persons; 2014. Available from: . Accessed August 20, 2021.
    1. Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine. 2020; 29-30:100587. doi:10.1016/j.eclinm.2020.100587
    1. Wylde V, Beswick A, Bruce J, Blom A, Howells N, Gooberman-Hill R. Chronic pain after total knee arthroplasty. EFORT Open Rev. 2018;3(8):461–470. doi:10.1302/2058-5241.3.180004
    1. Antony AB, Schultheis BC, Jolly SM, Bates D, Hunter CW, Levy RM. Neuromodulation of the Dorsal Root Ganglion for Chronic Postsurgical Pain. Pain Medicine. 2019;20(Suppl 1):S41–S46. doi:10.1093/pm/pnz072
    1. Garstang SV, Stitik TP. Osteoarthritis: epidemiology, risk factors, and pathophysiology. Am J Phys Med Rehabil. 2006;85(11Suppl):S2–11. doi:10.1097/01.phm.0000245568.69434.1a
    1. Lee S, Kim S-J. Prevalence of knee osteoarthritis, risk factors, and quality of life: the Fifth Korean National Health And Nutrition Examination Survey. Int J Rheum Dis. 2017;20(7):809–817. doi:10.1111/1756-185X.12795
    1. Hiligsmann M, Cooper C, Arden N, et al. Health economics in the field of osteoarthritis: an Expert’s consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin Arthritis Rheum. 2013;43(3):303–313. doi:10.1016/j.semarthrit.2013.07.003
    1. Gupta S, Hawker GA, Laporte A, Croxford R, Coyte PC. The economic burden of disabling Hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatology. 2005;44(12):1531–1537. doi:10.1093/rheumatology/kei049
    1. Steiner C, Andrews R, Barrett M, Weiss A HCUP Projections: mobility/Orthopedic Procedures 2003 to 2012. U.S. Agency for Healthcare Research and Quality; 2012. Available from: . Accessed August 17, 2022.
    1. Bedenbaugh AV, Bonafede M, Marchlewicz EH, Lee V, Tambiah J. Real-world health care resource utilization and costs among US patients with knee osteoarthritis compared with controls. Clinicoeconomics Outcomes Res. 2021;13:421–435. doi:10.2147/CEOR.S302289
    1. Laires PA, Canhão H, Rodrigues AM, Eusébio M, Gouveia M, Branco JC. The impact of osteoarthritis on early exit from work: results from a population-based study. BMC Public Health. 2018;18(1):472. doi:10.1186/s12889-018-5381-1
    1. Abbott JH, Usiskin IM, Wilson R, Hansen P, Losina E, Lammi MJ. The quality-of-life burden of knee osteoarthritis in New Zealand adults: a model-based evaluation. PLoS One. 2017;12(10):e0185676. doi:10.1371/journal.pone.0185676
    1. Manchikanti L. Therapeutic opioids: a ten-year perspective on the complexities and complications of the escalating use, abuse, and nonmedical use of opioids. Pain Physician. 2008;2s;11(3;2s):S63–88. doi:10.36076/ppj.2008/11/S63
    1. DeMik DE, Bedard NA, Dowdle SB, Burnett RA, McHugh MA, Callaghan JJ. Are we still prescribing opioids for osteoarthritis? J Arthroplasty. 2017;32(12):3578–3582.e1. doi:10.1016/j.arth.2017.07.030
    1. Ivers N, Dhalla IA, Allan GM. Opioids for osteoarthritis pain: benefits and risks. Can Fam Physician. 2012;58(12):e708.
    1. Nüesch E, Rutjes AW, Husni E, Welch V, Jüni P. Oral or transdermal opioids for osteoarthritis of the knee or Hip. Cochrane Database Syst Rev. 2009;4:CD003115. doi:10.1002/14651858.CD003115.pub3
    1. Shah A, Hayes CJ, Martin BC. Characteristics of initial prescription episodes and likelihood of long-term opioid use - United States, 2006-2015. MMWR Morb Mortal Wkly Rep. 2017;66(10):265–269. doi:10.15585/mmwr.mm6610a1
    1. Overdose Death Rates. National Institute on Drug Abuse; 2021. Available from: . Accessed August 17, 2022.
    1. Force USPST. Guide to Clinical Preventive Services: Report of the U.S. Preventive Services Task Force. U.S. Department of Health and Human Services, Office of Public Health and Science, Office of Disease Prevention and Health Promotion; 1996.
    1. Manchikanti L, Hirsch JA, Cohen SP, et al. Assessment of methodologic quality of randomized trials of interventional techniques: development of an interventional pain management specific instrument. Pain Physician. 2014;17(3):E263–290.
    1. Lucas NP, Macaskill P, Irwig L, Bogduk N. The development of a quality appraisal tool for studies of diagnostic reliability (QAREL). J Clin Epidemiol. 2010;63(8):854–861. doi:10.1016/j.jclinepi.2009.10.002
    1. Furlan AD, Malmivaara A, Chou R, et al. 2015 Updated method guideline for systematic reviews in the Cochrane Back and Neck Group. Spine. 2015;40(21):1660–1673. doi:10.1097/BRS.0000000000001061
    1. Manchikanti L, Falco FJE, Benyamin RM, Kaye AD, Boswell MV, Hirsch JA. A modified approach to grading of evidence. Pain Physician. 2014;17(3):E319–325.
    1. Jue JJ, Cunningham S, Lohr K, et al. Developing and Testing the Agency for Healthcare Research and Quality’s National Guideline Clearinghouse Extent of Adherence to Trustworthy Standards (NEATS) Instrument. Ann Intern Med. 2019;170(7):480–487. doi:10.7326/M18-2950
    1. Examination and Special Tests Of The Knee — . Available from: . Accessed September 7, 2021.
    1. Rossi R, Dettoni F, Bruzzone M, Cottino U, D’Elicio DG, Bonasia DE. Clinical examination of the knee: know your tools for diagnosis of knee injuries. Sports Med Arthroscopy Rehabilitation Therapy Technol. 2011;3:25. doi:10.1186/1758-2555-3-25
    1. Physical Exam and History for Osteoarthritis. Available from: . Accessed September 7, 2021
    1. Fox MG, Chang EY, Amini B, et al. ACR Appropriateness Criteria(®) Chronic Knee Pain. J Am Coll Radiol. 2018;15(11S):S302–S312. doi:10.1016/j.jacr.2018.09.016
    1. Hayashi D, Roemer FW, Guermazi A. Imaging for osteoarthritis. Ann Phys Rehabil Med. 2016;59(3):161–169. doi:10.1016/j.rehab.2015.12.003
    1. Krasnokutsky S, Belitskaya-Lévy I, Bencardino J, et al. Quantitative magnetic resonance imaging evidence of synovial proliferation is associated with radiographic severity of knee osteoarthritis. Arthritis Rheum. 2011;63(10):2983–2991. doi:10.1002/art.30471
    1. Grando H, Chang EY, Chen KC, Chung CB. MR imaging of extrasynovial inflammation and impingement about the knee. Magn Reson Imaging Clin N Am. 2014;22(4):725–741. doi:10.1016/j.mric.2014.07.011
    1. Wick MC, Kastlunger M, Weiss RJ. Clinical imaging assessments of knee osteoarthritis in the elderly: a mini-review. Gerontology. 2014;60(5):386–394. doi:10.1159/000357756
    1. Keen HI, Hensor EMA, Wakefield RJ, Mease PJ. Bingham CO 3rd, Conaghan PG. Ultrasound assessment of response to intra-articular therapy in osteoarthritis of the knee. Rheumatology. 2015;54(8):1385–1391. doi:10.1093/rheumatology/keu529
    1. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502. doi:10.1136/ard.16.4.494
    1. Kohn MD, Sassoon AA, Fernando ND. Classifications in brief: Kellgren-Lawrence classification of osteoarthritis. Clin Orthop Relat Res. 2016;474(8):1886–1893. doi:10.1007/s11999-016-4732-4
    1. Kaeding CC, Léger-St-Jean B, Magnussen RA. Epidemiology and diagnosis of anterior cruciate ligament injuries. Clin Sports Med. 2017;36(1):1–8. doi:10.1016/j.csm.2016.08.001
    1. Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501. doi:10.1177/0363546504269591
    1. Verhulst FV, MacDonald P. Diagnosing PCL injuries: history, physical examination, imaging studies, arthroscopic evaluation. Sports Med Arthrosc Rev. 2020;28(1):2–7. doi:10.1097/JSA.0000000000000251
    1. Edson CJ. Conservative and postoperative rehabilitation of isolated and combined injuries of the medial collateral ligament. Sports Med Arthrosc. 2006;14(2):105–110. doi:10.1097/01.jsa.0000212308.32076.f2
    1. Grawe B, Schroeder AJ, Kakazu R, Messer MS. Lateral collateral ligament injury about the knee: anatomy, evaluation, and management. J Am Acad Orthop Surg. 2018;26(6):e120–e127. doi:10.5435/JAAOS-D-16-00028
    1. Kopf S, Beaufils P, Hirschmann MT, et al. Management of traumatic meniscus tears: the 2019 ESSKA meniscus consensus. Knee Surg Sports Traumatol. 2020;28(4):1177–1194. doi:10.1007/s00167-020-05847-3
    1. Beaufils P, Pujol N. Management of traumatic meniscal tear and degenerative meniscal lesions. Save the meniscus. Orthopaedics Traumatology Surgery Res. 2017;103(8S):S237–S244. doi:10.1016/j.otsr.2017.08.003
    1. Cardoso TB, Pizzari T, Kinsella R, Hope D, Cook JL. Current trends in tendinopathy management. Best Pract Res Clin Rheumatol. 2019;33(1):122–140. doi:10.1016/j.berh.2019.02.001
    1. Hodgson RJ, O’Connor PJ, Grainger AJ. Tendon and ligament imaging. Br J Radiol. 2012;85(1016):1157–1172. doi:10.1259/bjr/34786470
    1. Schwartz A, Watson JN, Hutchinson MR. Patellar tendinopathy. Sports Health. 2015;7(5):415–420. doi:10.1177/1941738114568775
    1. Neph A, Onishi K, Wang JHC. Myths and facts of in-office regenerative procedures for tendinopathy. Am J Phys Med Rehabil. 2019;98(6):500–511. doi:10.1097/PHM.0000000000001097
    1. Jiménez Díaz F, Gitto S, Sconfienza LM, Draghi F. Ultrasound of iliotibial band syndrome. J Ultrasound. 2020;23(3):379–385. doi:10.1007/s40477-020-00478-3
    1. Frederico TN, Peng P editors. Ultrasound-Guided Knee Intervention. Ultrasound for Interventional Pain Management: An Illustrated Procedural Guide. 1st. Springer International Publishing; 2020. 283–300. .
    1. Brown OS, Smith TO, Parsons T, Benjamin M, Hing CB. Management of septic and aseptic prepatellar bursitis: a systematic review. Arch Orthop Trauma Surg. 2021. doi:10.1007/s00402-021-03853-9
    1. Baumbach SF, Lobo CM, Badyine I, Mutschler W, Kanz KG. Prepatellar and olecranon bursitis: literature review and development of a treatment algorithm. Arch Orthop Trauma Surg. 2014;134(3):359–370. doi:10.1007/s00402-013-1882-7
    1. OA as a Serious Disease; 2016. Available from: . Accessed August 20, 2021.
    1. Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA. 2021;325(6):568–578. doi:10.1001/jama.2020.22171
    1. Sharma L. Osteoarthritis of the knee. N Engl J Med. 2021;384(1):51–59. doi:10.1056/NEJMcp1903768
    1. da Costa BR, Reichenbach S, Keller N, et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. Lancet. 2017;390(10090):e21–e33. doi:10.1016/S0140-6736(17
    1. Wolff DG, Christophersen C, Brown SM, Mulcahey MK. Topical nonsteroidal anti-inflammatory drugs in the treatment of knee osteoarthritis: a systematic review and meta-analysis. Phys Sportsmed. 2021;1:1–11. doi:10.1080/00913847.2021.1886573
    1. Osani MC, Lohmander LS, Bannuru RR. Is there any role for opioids in the management of knee and hip osteoarthritis? A systematic review and meta-analysis. Arthritis Care Res. 2015;1:54. doi:10.1002/acr.24363
    1. Richards MM, Maxwell JS, Weng L, Angelos MG, Golzarian J. Intra-articular treatment of knee osteoarthritis: from anti-inflammatories to products of regenerative medicine. Phys Sportsmed. 2016;44(2):101–108. doi:10.1080/00913847.2016.1168272
    1. Shim H, Rose J, Halle S, Shekane P. Complex regional pain syndrome: a narrative review for the practising clinician. Br J Anaesth. 2019;123(2):e424–e433. doi:10.1016/j.bja.2019.03.030
    1. Harden RN, Bruehl S, Perez RSGM, et al. Validation of proposed diagnostic criteria (the “Budapest Criteria”) for Complex Regional Pain Syndrome. Pain. 2010;150(2):268–274. doi:10.1016/j.pain.2010.04.030
    1. Kessler A, Yoo M, Calisoff R. Complex regional pain syndrome: an updated comprehensive review. NeuroRehabilitation. 2020;47(3):253–264. doi:10.3233/NRE-208001
    1. Neumeister MW, Romanelli MR. Complex regional pain syndrome. Clin Plast Surg. 2020;47(2):305–310. doi:10.1016/j.cps.2019.12.009
    1. Yucel I, Demiraran Y, Ozturan K, Degirmenci E. Complex regional pain syndrome type I: efficacy of stellate ganglion blockade. J Orthopaedics Traumatol. 2009;10(4):179–183. doi:10.1007/s10195-009-0071-5
    1. Urits I, Shen AH, Jones MR, Viswanath O, Kaye AD. Complex regional pain syndrome, current concepts and treatment options. Curr Pain Headache Rep. 2018;22(2):10. doi:10.1007/s11916-018-0667-7
    1. Macmull S, Jaiswal PK, Bentley G, Skinner JA, Carrington RWJ, Briggs TWR. The role of autologous chondrocyte implantation in the treatment of symptomatic chondromalacia patellae. Int Orthop. 2012;36(7):1371–1377. doi:10.1007/s00264-011-1465-6
    1. Hong E, Kraft MC. Evaluating anterior knee pain. Med Clin North Am. 2014;98(4):697–717. doi:10.1016/j.mcna.2014.03.001
    1. Aksahin E, Aktekin CN, Kocadal O, et al. Sagittal plane tilting deformity of the patellofemoral joint: a new concept in patients with chondromalacia patella. Knee Surg Sports Traumatol Arthrosc. 2017;25(10):3038–3045. doi:10.1007/s00167-016-4083-4
    1. Tuna BK, Semiz-Oysu A, Pekar B, Bukte Y, Hayirlioglu A. The association of patellofemoral joint morphology with chondromalacia patella: a quantitative MRI analysis. Clin Imaging. 2014;38(4):495–498. doi:10.1016/j.clinimag.2014.01.012
    1. Lack S, Barton C, Vicenzino B, Morrissey D. Outcome predictors for conservative patellofemoral pain management: a systematic review and meta-analysis. Sports Med. 2014;44(12):1703–1716. doi:10.1007/s40279-014-0231-5
    1. von Keudell A, Han R, Bryant T, Minas T. Autologous chondrocyte implantation to isolated patella cartilage defects. Cartilage. 2017;8(2):146–154. doi:10.1177/1947603516654944
    1. Winter AR, Collins JE, Katz JN. The likelihood of total knee arthroplasty following arthroscopic surgery for osteoarthritis: a systematic review. BMC Musculoskelet Disord. 2017;18(1):408. doi:10.1186/s12891-017-1765-0
    1. Chawla H, van der List JP, Christ AB, Sobrero MR, Zuiderbaan HA, Pearle AD. Annual revision rates of partial versus total knee arthroplasty: a comparative meta-analysis. The Knee. 2017;24(2):179–190. doi:10.1016/j.knee.2016.11.006
    1. Flierl MA, Sobh AH, Culp BM, Baker EA, Sporer SM. Evaluation of the painful total knee arthroplasty. JAAOS. 2019;27(20):743–751. doi:10.5435/JAAOS-D-18-00083
    1. Lewis GN, Rice DA, McNair PJ, Kluger M. Predictors of persistent pain after total knee arthroplasty: a systematic review and meta-analysis. BJA. 2015;114(4):551–561. doi:10.1093/bja/aeu441
    1. Li J, Ma Y, Xiao L. Postoperative pain management in total knee arthroplasty. Orthop Surg. 2019;11(5):755–761. doi:10.1111/os.12535
    1. Yu S, Dundon J, Solovyova O, Bosco J, Iorio R. Can multimodal pain management in TKA eliminate patient-controlled analgesia and femoral nerve blocks? Clin Orthop Relat Res. 2018;476(1):101–109. doi:10.1007/s11999.0000000000000018
    1. Koh IJ, Kim MS, Sohn S, Song KY, Choi NY, In Y. Duloxetine reduces pain and improves quality of recovery following total knee arthroplasty in centrally sensitized patients: a prospective, randomized controlled study. JBJS. 2019;101(1):64–73. doi:10.2106/JBJS.18.00347
    1. Rakel BA, Zimmerman BM, Geasland K, et al. Transcutaneous electrical nerve stimulation for the control of pain during rehabilitation after total knee arthroplasty: a randomized, blinded, placebo-controlled trial. Pain. 2014;155(12):2599–2611. doi:10.1016/j.pain.2014.09.025
    1. Balanescu AR, Feist E, Wolfram G, et al. Efficacy and safety of tanezumab added on to diclofenac sustained release in patients with knee or Hip osteoarthritis: a double-blind, placebo-controlled, parallel-group, multicentre phase III randomised clinical trial. Ann Rheum Dis. 2014;73(9):1665–1672. doi:10.1136/annrheumdis-2012-203164
    1. Clegg DO, Reda DJ, Harris CL, et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med. 2006;354(8):795–808. doi:10.1056/NEJMoa052771
    1. Schnitzer TJ, Ekman EF, Spierings ELH, et al. Efficacy and safety of tanezumab monotherapy or combined with non-steroidal anti-inflammatory drugs in the treatment of knee or Hip osteoarthritis pain. Ann Rheum Dis. 2015;74(6):1202–1211. doi:10.1136/annrheumdis-2013-204905
    1. Ekman EF, Gimbel JS, Bello AE, et al. Efficacy and safety of intravenous tanezumab for the symptomatic treatment of osteoarthritis: 2 randomized controlled trials versus naproxen. J Rheumatol. 2014;41(11):2249–2259. doi:10.3899/jrheum.131294
    1. Ohtori S, Inoue G, Orita S, et al. Efficacy of combination of meloxicam and pregabalin for pain in knee osteoarthritis. Yonsei Med J. 2013;54(5):1253–1258. doi:10.3349/ymj.2013.54.5.1253
    1. Simon LS, Grierson LM, Naseer Z, Bookman AAM, Shainhouse ZJ. Efficacy and safety of topical diclofenac containing dimethyl sulfoxide (DMSO) compared with those of topical placebo, DMSO vehicle and oral diclofenac for knee osteoarthritis. Pain. 2009;143(3):238–245. doi:10.1016/j.pain.2009.03.008
    1. Yoo WH, Yoo HG, Park SH, et al. Efficacy and safety of PG201 (Layla(®)) and celecoxib in the treatment of symptomatic knee osteoarthritis: a double-blinded, randomized, multi-center, active drug comparative, parallel-group, non-inferiority, phase III study. Rheumatol Int. 2014;34(10):1369–1378. doi:10.1007/s00296-014-2964-8
    1. DeLemos BP, Xiang J, Benson C, et al. Tramadol hydrochloride extended-release once-daily in the treatment of osteoarthritis of the knee and/or Hip: a double-blind, randomized, dose-ranging trial. Am J Ther. 2011;18(3):216–226. doi:10.1097/MJT.0b013e3181cec307
    1. Levy R, Khokhlov A, Kopenkin S, et al. Efficacy and safety of flavocoxid compared with naproxen in subjects with osteoarthritis of the knee- a subset analysis. Adv Ther. 2010;27(12):953–962. doi:10.1007/s12325-010-0083-9
    1. Pareek A, Chandurkar N, Gupta A, et al. Efficacy and safety of aceclofenac-cr and aceclofenac in the treatment of knee osteoarthritis: a 6-week, comparative, randomized, multicentric, double-blind study. J Pain. 2011;12(5):546–553. doi:10.1016/j.jpain.2010.10.013
    1. Chiranthanut N, Hanprasertpong N, Teekachunhatean S. Thai massage, and Thai herbal compress versus oral ibuprofen in symptomatic treatment of osteoarthritis of the knee: a randomized controlled trial. Biomed Res Int. 2014;2014:490512. doi:10.1155/2014/490512
    1. Bianchi M, Broggini M, Balzarini P, Franchi S, Sacerdote P. Effects of nimesulide on pain and on synovial fluid concentrations of substance P, interleukin-6 and interleukin-8 in patients with knee osteoarthritis: comparison with celecoxib. Int J Clin Pract. 2007;61(8):1270–1277. doi:10.1111/j.1742-1241.2007.01453.x
    1. Meunier A, Lisander B, Good L. Effects of celecoxib on blood loss, pain, and recovery of function after total knee replacement: a randomized placebo-controlled trial. Acta Orthop. 2007;78(5):661–667. doi:10.1080/17453670710014365
    1. Zhou TJ, Tang J, White PF. Propacetamol versus ketorolac for treatment of acute postoperative pain after total Hip or knee replacement. Anesth Analg. 2001;92(6):1569–1575. doi:10.1097/00000539-200106000-00044
    1. Munteanu AM, Cionac Florescu S, Anastase DM, Stoica CI. Is there any analgesic benefit from preoperative vs. postoperative administration of etoricoxib in total knee arthroplasty under spinal anaesthesia?: a randomised double-blind placebo-controlled trial. Eur J Anaesthesiol. 2016;33(11):840–845. doi:10.1097/EJA.0000000000000521
    1. Gong L, Dong JY, Li ZR. Effects of combined application of muscle relaxants and celecoxib administration after total knee arthroplasty (TKA) on early recovery: a randomized, double-blind, controlled study. J Arthroplasty. 2013;28(8):1301–1305. doi:10.1016/j.arth.2012.10.002
    1. Alexander R, El-Moalem HE, Gan TJ. Comparison of the morphine-sparing effects of diclofenac sodium and ketorolac tromethamine after major orthopedic surgery. J Clin Anesth. 2002;14(3):187–192. doi:10.1016/s0952-8180(01
    1. Reynolds LW, Hoo RK, Brill RJ, North J, Recker DP, Verburg KM. The COX-2 specific inhibitor, valdecoxib, is an effective, opioid-sparing analgesic in patients undergoing total knee arthroplasty. J Pain Symptom Manage. 2003;25(2):133–141. doi:10.1016/s0885-3924(02)00637-1
    1. Schroer WC, Diesfeld PJ, LeMarr AR, Reedy ME. Benefits of prolonged postoperative cyclooxygenase-2 inhibitor administration on total knee arthroplasty recovery: a double-blind, placebo-controlled study. J Arthroplasty. 2011;26(6):2–7. doi:10.1016/j.arth.2011.04.007
    1. Zhuang Q, Tao L, Lin J, et al. Postoperative intravenous parecoxib sodium followed by oral celecoxib post total knee arthroplasty in osteoarthritis patients (PIPFORCE): a multicentre, double-blind, randomised, placebo-controlled trial. BMJ Open. 2020;10(1):e030501. doi:10.1136/bmjopen-2019-030501
    1. Suter E, Herzog W, Souza K, Bray R. Inhibition of the quadriceps muscles in patients with anterior knee pain. J Appl Biomech. 1998;14(4):360–373. doi:10.1123/JAB.14.4.360
    1. Underwood M, Ashby D, Carnes D, et al. Topical or oral ibuprofen for chronic knee pain in older people. The TOIB study. Health Technol Assess. 2008;12(22):iii–iv, ix-155. doi:10.3310/hta12220
    1. Baraf HSB, Gloth FM, Barthel HR, Gold MS, Altman RD. Safety and efficacy of topical diclofenac sodium gel for knee osteoarthritis in elderly and younger patients: pooled data from three randomized, double-blind, parallel-group, placebo-controlled, multicentre trials. Drugs Aging. 2011;28(1):27–40. doi:10.2165/11584880-000000000-00000
    1. Roth SH, Shainhouse JZ. Efficacy and safety of a topical diclofenac solution (Pennsaid) in the treatment of primary osteoarthritis of the knee: a randomized, double-blind, vehicle-controlled clinical trial. Arch Intern Med. 2004;164(18):2017–2023. doi:10.1001/archinte.164.18.2017
    1. Niethard FU, Gold MS, Solomon GS, et al. Efficacy of topical diclofenac diethylamine gel in osteoarthritis of the knee. J Rheumatol. 2005;32(12):2384–2392.
    1. Bookman AAM. Effect of a topical diclofenac solution for relieving symptoms of primary osteoarthritis of the knee: a randomized controlled trial. CMAJ. 2004;171(4):333–338. doi:10.1503/cmaj.1031793
    1. Barthel HR, Haselwood D, Longley S, Gold MS, Altman RD. Randomized controlled trial of diclofenac sodium gel in knee osteoarthritis. Semin Arthritis Rheum. 2009;39(3):203–212. doi:10.1016/j.semarthrit.2009.09.002
    1. Conaghan PG, Dickson J, Bolten W, Cevc G, Rother M. A multicentre, randomized, placebo- and active-controlled trial comparing the efficacy and safety of topical ketoprofen in Transfersome gel (IDEA-033) with ketoprofen-free vehicle (TDT 064) and oral celecoxib for knee pain associated with osteoarthritis. Rheumatology. 2013;52(7):1303–1312. doi:10.1093/rheumatology/ket133
    1. Rother M, Lavins BJ, Kneer W, Lehnhardt K, Seidel EJ, Mazgareanu S. Efficacy and safety of epicutaneous ketoprofen in Transfersome (IDEA-033) versus oral celecoxib and placebo in osteoarthritis of the knee: multicentre randomised controlled trial. Ann Rheum Dis. 2007;66(9):1178–1183. doi:10.1136/ard.2006.065128
    1. Brühlmann P, Michel BA. Topical diclofenac patch in patients with knee osteoarthritis: a randomized, double-blind, controlled clinical trial. Clin Exp Rheumatol. 2003;21(2):193–198.
    1. Yataba I, Otsuka N, Matsushita I, Matsumoto H, Hoshino Y. Efficacy of S-flurbiprofen plaster in knee osteoarthritis treatment: results from a phase III, randomized, active-controlled, adequate, and well-controlled trial. Mod Rheumatol. 2017;27(1):130–136. doi:10.1080/14397595.2016.1176624
    1. Baer PA, Thomas LM, Shainhouse Z. Treatment of osteoarthritis of the knee with a topical diclofenac solution: a randomised controlled, 6-week trial [ISRCTN53366886]. BMC Musculoskelet Disord. 2005;6(1):44. doi:10.1186/1471-2474-6-44
    1. Kneer W, Rother M, Mazgareanu S, Seidel EJ. A 12-week randomized study of topical therapy with three dosages of ketoprofen in Transfersome® gel (IDEA-033) compared with the ketoprofen-free vehicle (TDT 064), in patients with osteoarthritis of the knee. J Pain Res. 2013;6:743–753. doi:10.2147/JPR.S51054
    1. Varadi G. Randomized clinical trial evaluating transdermal ibuprofen for moderate to severe knee osteoarthritis. Pain Physician. 2013;6;16(6;11):E749–762. doi:10.36076/ppj.2013/16/E749
    1. Wadsworth LT, Kent JD, Holt RJ. Efficacy and safety of diclofenac sodium 2% topical solution for osteoarthritis of the knee: a randomized, double-blind, vehicle-controlled, 4 week study. Curr Med Res Opin. 2016;32(2):241–250. doi:10.1185/03007995.2015.1113400
    1. Baraf HSB, Gold MS, Clark MB, Altman RD. Safety and efficacy of topical diclofenac sodium 1% gel in knee osteoarthritis: a randomized controlled trial. Phys Sportsmed. 2010;38(2):19–28. doi:10.3810/psm.2010.06.1779
    1. Tiso RL, Tong-Ngork S, Fredlund KL. Oral versus topical Ibuprofen for chronic knee pain: a prospective randomized pilot study. Pain Physician. 2010;13(5):457–467.
    1. Rother M, Conaghan PG. A randomized, double-blind, phase III trial in moderate osteoarthritis knee pain comparing topical ketoprofen gel with ketoprofen-free gel. J Rheumatol. 2013;40(10):1742–1748. doi:10.3899/jrheum.130192
    1. Welsch P, Petzke F, Klose P, Häuser W. Opioids for chronic osteoarthritis pain: an updated systematic review and meta-analysis of efficacy, tolerability and safety in randomized placebo-controlled studies of at least 4 weeks double-blind duration. Eur J Pain. 2020;24(4):685–703. doi:10.1002/ejp.1522
    1. Krebs EE, Gravely A, Nugent S, et al. Effect of opioid vs nonopioid medications on pain-related function in patients with chronic back pain or hip or knee osteoarthritis pain: the SPACE randomized clinical trial. JAMA. 2018;319(9):872–882. doi:10.1001/jama.2018.0899
    1. Catchpool M, Knight J, Young JT, et al. Opioid use prior to elective surgery is strongly associated with persistent use following surgery: an analysis of 14 354 Medicare patients. ANZ J Surg. 2019;89(11):1410–1416. doi:10.1111/ans.15492
    1. Goesling J, Moser SE, Zaidi B, et al. Trends and predictors of opioid use after total knee and total Hip arthroplasty. Pain. 2016;157(6):1259–1265. doi:10.1097/j.pain.0000000000000516
    1. Busse JW, Wang L, Kamaleldin M, et al. Opioids for chronic noncancer pain: a systematic review and meta-analysis. JAMA. 2018;320(23):2448–2460. doi:10.1001/jama.2018.18472
    1. Vergne-Salle P. Management of neuropathic pain after knee surgery. Joint Bone Spine. 2016;83(6):657–663. doi:10.1016/j.jbspin.2016.06.001
    1. Hudson B, Williman JA, Stamp LK, et al. Nortriptyline for pain in knee osteoarthritis: a double-blind randomised controlled trial in New Zealand general practice. Br J Gen Pract. 2021;71(708):e538–e546. doi:10.3399/BJGP.2020.0797
    1. Kerrick JM, Fine PG, Lipman AG, Love G. Low-dose amitriptyline as an adjunct to opioids for postoperative orthopedic pain: a placebo-controlled trial. Pain. 1993;52(3):325–330. doi:10.1016/0304-3959(93)90166-M
    1. Hahm TS, Ko JS, Choi SJ, Gwak MS. Comparison of the prophylactic anti-emetic efficacy of ramosetron and ondansetron in patients at high-risk for postoperative nausea and vomiting after total knee replacement. Anaesthesia. 2010;65(5):500–504. doi:10.1111/j.1365-2044.2010.06310.x
    1. Cho C-H, Song K-S, Min B-W, et al. Multimodal approach to postoperative pain control in patients undergoing rotator cuff repair. Knee Surg Sports Traumatol Arthrosc. 2011;19(10):1744–1748. doi:10.1007/s00167-010-1294-y
    1. Wluka AE, Urquhart DM, Teichtahl AJ, et al. Effect of low-dose amitriptyline on reducing pain in clinical knee osteoarthritis compared to benztropine: study protocol of a randomised, double blind, placebo-controlled trial. BMC Musculoskelet Disord. 2021;22(1):826. doi:10.1186/s12891-021-04690-y
    1. Zhou L, Kwoh CK, Ran D, Ashbeck EL, Lo-Ciganic W-H. Lack of evidence that beta blocker use reduces knee pain, areas of joint pain, or analgesic use among individuals with symptomatic knee osteoarthritis. Osteoarthritis Cartilage. 2020;28(1):53–61. doi:10.1016/j.joca.2019.08.008
    1. Li M, Zeng Y, Nie Y, et al. The effects of different antihypertensive drugs on pain and joint space width of knee osteoarthritis – a comparative study with data from Osteoarthritis Initiative. J Clin Hypertens. 2021;23(11):2009–2015. doi:10.1111/jch.14362
    1. Phillips BB, Muller BA. Severe neuromuscular complications possibly associated with amlodipine. Ann Pharmacother. 1998;32(11):1165–1167. doi:10.1345/aph.18082
    1. Smith KM. Arthralgia associated with calcium-channel blockers. Am J Health Syst Pharm. 2000;57(1):55–57. doi:10.1093/ajhp/57.1.55
    1. Kaplan N, Yilmaz I, Karaarslan N, Kaya YE, Sirin DY, Ozbek H. Does nimodipine, a selective calcium channel blocker, impair chondrocyte proliferation or damage extracellular matrix structures? Curr Pharm Biotechnol. 2019;20(6):517–524. doi:10.2174/1389201020666190506124548
    1. Juhl C, Christensen R, Roos EM, Zhang W, Lund H. Impact of exercise type and dose on pain and disability in knee osteoarthritis: a systematic review and meta-regression analysis of randomized controlled trials. Arthritis Rheumatol. 2014;66(3):622–636. doi:10.1002/art.38290
    1. Smart KM, Wand BM, O’Connell NE. Physiotherapy for pain and disability in adults with complex regional pain syndrome (CRPS) types I and II. Cochrane Pain, Palliative and Supportive Care Group editor. Cochrane Database of Systematic Reviews. 2016;1:86. doi:10.1002/14651858.CD010853.pub2
    1. Brown CK, Southerst D, Côté P, et al. The effectiveness of exercise on recovery and clinical outcomes in patients with soft tissue injuries of the hip, thigh, or knee: a systematic review by the Ontario Protocol for Traffic Injury Management (OPTIMa) collaboration. J Manipulative Physiol Ther. 2016;39(2):110–120.e1. doi:10.1016/j.jmpt.2016.01.003
    1. Baron R, Backonja MM, Eldridge P, et al. Refractory Chronic Pain Screening Tool (RCPST): a feasibility study to assess practicality and validity of identifying potential neurostimulation candidates. Pain Medicine. 2014;15(2):281–291. doi:10.1111/pme.12272
    1. Choosing the right knee brace. BetterBraces. Available from: . Accessed April 16, 2021.
    1. Gueugnon M, Fournel I, Soilly A-L, et al. Effectiveness, safety, and cost–utility of a knee brace in medial knee osteoarthritis: the ERGONOMIE randomized controlled trial. Osteoarthritis Cartilage. 2021;29(4):491–501. doi:10.1016/j.joca.2020.11.009
    1. van Egmond N, van Grinsven S, van Loon CJ. Is there a difference in outcome between two types of valgus unloading braces? A randomized controlled trial. Acta Orthop Belg. 2017;83(4):690–699.
    1. Duivenvoorden T, Brouwer RW, van Raaij TM, Verhagen AP, Verhaar JAN, Bierma-Zeinstra SMA. Braces and orthoses for treating osteoarthritis of the knee. Cochrane Database Sys Rev. 2015;3:CD004020. doi:10.1002/14651858.CD004020.pub3
    1. Robert‐Lachaine X, Dessery Y, Belzile ÉL, Turmel S, Corbeil P. Three-month efficacy of three knee braces in the treatment of medial knee osteoarthritis in a randomized crossover trial. J Orthop Res. 2020;38(10):2262–2271. doi:10.1002/jor.24634
    1. Yu SP, Williams M, Eyles JP, Chen JS, Makovey J, Hunter DJ. Effectiveness of knee bracing in osteoarthritis: pragmatic trial in a multidisciplinary clinic. Int J Rheum Dis. 2016;19(3):279–286. doi:10.1111/1756-185X.12796
    1. Petersen W, Ellermann A, Henning J, et al. Non-operative treatment of unicompartmental osteoarthritis of the knee: a prospective randomized trial with two different braces—ankle–foot orthosis versus knee unloader brace. Arch Orthop Trauma Surg. 2019;139(2):155–166. doi:10.1007/s00402-018-3040-8
    1. Cudejko T, van der Esch M, Schrijvers J, et al. The immediate effect of a soft knee brace on dynamic knee instability in persons with knee osteoarthritis. Rheumatology. 2018;57(10):1735–1742. doi:10.1093/rheumatology/key162
    1. Cudejko T, van der Esch M, van den Noort JC, et al. Decreased pain and improved dynamic knee instability mediate the beneficial effect of wearing a soft knee brace on activity limitations in patients with knee osteoarthritis. Arthritis Care Res. 2019;71(8):1036–1043. doi:10.1002/acr.23722
    1. Yang X-G, Feng J-T, He X, Wang F, Hu Y-C. The effect of knee bracing on the knee function and stability following anterior cruciate ligament reconstruction: a systematic review and meta-analysis of randomized controlled trials. Orthop Traumatol Surg Res. 2019;105(6):1107–1114. doi:10.1016/j.otsr.2019.04.015
    1. Kölle T, Alt W, Wagner D. Immediate effects of an elastic patellar brace on pain, neuromuscular activity and knee kinematics in subjects with patellofemoral pain. Arch Orthop Trauma Surg. 2020;140(7):905–912. doi:10.1007/s00402-020-03378-7
    1. Added MAN, Added C, Kasawara KT, Rotta VP, de Freitas DG. Effects of a knee brace with a patellar hole versus without a patellar hole in patients with knee osteoarthritis: a double-blind, randomized controlled trial. Eval Health Prof. 2018;41(4):512–523. doi:10.1177/0163278717714307
    1. Priore LB, Lack S, Garcia C, Azevedo FM, De oliveira silva D. Two weeks of wearing a knee brace compared with minimal intervention on kinesiophobia at 2 and 6 weeks in people with patellofemoral pain: a randomized controlled trial. Arch Phys Med Rehabil. 2020;101(4):613–623. doi:10.1016/j.apmr.2019.10.190
    1. Luque-Suarez A, Martinez-Calderon J, Falla D. Role of kinesiophobia on pain, disability and quality of life in people suffering from chronic musculoskeletal pain: a systematic review. Br J Sports Med. 2019;53(9):554–559. doi:10.1136/bjsports-2017-098673
    1. Hewlett J, Kenney J. Innovations in functional and rehabilitative knee bracing. Ann Transl Med. 2019;7(Suppl S7):S248. doi:10.21037/atm.2019.03.34
    1. Parkes MJ, Maricar N, Lunt M, et al. Lateral wedge insoles as a conservative treatment for pain in patients with medial knee osteoarthritis: a meta-analysis. JAMA. 2013;310(7):722–730. doi:10.1001/jama.2013.243229
    1. Lu Z, Li X, Chen R, Guo C. Kinesio taping improves pain and function in patients with knee osteoarthritis: a meta-analysis of randomized controlled trials. Int J Surg. 2018;59:27–35. doi:10.1016/j.ijsu.2018.09.015
    1. Jones A, Silva PG, Silva AC, et al. Impact of cane use on pain, function, general health and energy expenditure during gait in patients with knee osteoarthritis: a randomised controlled trial. Ann Rheum Dis. 2012;71(2):172–179. doi:10.1136/ard.2010.140178
    1. Van Ginckel A, Hinman RS, Wrigley TV, et al. Impact of cane use on bone marrow lesion volume in people with medial knee osteoarthritis (Cuba Trial). Phys Ther. 2017;97(5):537–549. doi:10.1093/ptj/pzx015
    1. Hollander JL. Intra-articular hydrocortisone in arthritis and allied conditions; a summary of two years’ clinical experience. J Bone Joint Surg Am. 1953;35(4):983–990. doi:10.2106/00004623-195335040-00017
    1. Miller JH, White J, Norton TH. The value of intra-articular injections in osteoarthritis of the knee. J Bone Joint Surg Br. 1958;40-B(4):636–643. doi:10.1302/0301-620X.40B4.636
    1. Jüni P, Hari R, Rutjes AWS, et al. Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst Rev. 2015;(10):CD005328. doi:10.1002/14651858.CD005328.pub3
    1. Saltychev M, Mattie R, McCormick Z, Laimi K. The magnitude and duration of the effect of intra-articular corticosteroid injections on pain severity in knee osteoarthritis: a systematic review and meta-analysis. Am J Phys Med Rehabil. 2020;99(7):617–625. doi:10.1097/PHM.0000000000001384
    1. Dai W-L, Lin Z-M, Guo D-H, Shi Z-J, Wang J. Efficacy and safety of hylan versus hyaluronic acid in the treatment of knee osteoarthritis. The Journal of Knee Surgery. 2019;32(3):259–268. doi:10.1055/s-0038-1641142
    1. Ran J, Yang X, Ren Z, Wang J, Dong H. Comparison of intra-articular hyaluronic acid and methylprednisolone for pain management in knee osteoarthritis: a meta-analysis of randomized controlled trials. Int J Surgery. 2018;53:103–110. doi:10.1016/j.ijsu.2018.02.065
    1. Lo GH, LaValley M, McAlindon T, Felson DT. Intra-articular hyaluronic acid in treatment of knee osteoarthritis: a meta-analysis. JAMA. 2003;290(23):3115–3121. doi:10.1001/jama.290.23.3115
    1. Miller LE, Fredericson M, Altman RD. Hyaluronic acid injections or oral nonsteroidal anti-inflammatory drugs for knee osteoarthritis: systematic review and meta-analysis of randomized trials. Orthop JSports Med. 2020;8(1):2325967119897909. doi:10.1177/2325967119897909
    1. Vincent P. Intra-articular hyaluronic acid in the symptomatic treatment of knee osteoarthritis: a meta-analysis of single-injection products. Curr Ther Res Clin Exp. 2019;90:39–51. doi:10.1016/j.curtheres.2019.02.003
    1. McElheny K, Toresdahl B, Ling D, Mages K, Asif I. Comparative effectiveness of alternative dosing regimens of hyaluronic acid injections for knee osteoarthritis: a systematic review. Sports Health. 2019;11(5):461–466. doi:10.1177/1941738119861545
    1. Bronstone A, Neary JT, Lambert TH, Dasa V. Supartz (sodium hyaluronate) for the treatment of knee osteoarthritis: a review of efficacy and safety. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders. 2019;12:1179544119835221. doi:10.1177/1179544119835221
    1. Sarı S, Aydın ON, Turan Y, Özlülerden P, Efe U, Kurt Ömürlü İ. Which one is more effective for the clinical treatment of chronic pain in knee osteoarthritis: radiofrequency neurotomy of the genicular nerves or intra-articular injection? Int J Rheum Dis. 2018;21(10):1772–1778. doi:10.1111/1756-185X.12925
    1. Santana Pineda MM, Vanlinthout LE, Moreno Martín A, van Zundert J, Rodriguez Huertas F, Novalbos Ruiz JP. Analgesic effect and functional improvement caused by radiofrequency treatment of genicular nerves in patients with advanced osteoarthritis of the knee until 1 year following treatment. Reg Anesth Pain Med. 2017;42(1):62–68. doi:10.1097/AAP.0000000000000510
    1. Kirdemir P, Çatav S, Alkaya Solmaz F. The genicular nerve: radiofrequency lesion application for chronic knee pain. Turkish J Med Sci. 2017;47(1):268–272. doi:10.3906/sag-1601-171
    1. Gupta A. Comparative effectiveness review of cooled versus pulsed radiofrequency ablation for the treatment of knee osteoarthritis: a systematic review. Pain Physician. 2017;3(20;3):155–171. doi:10.36076/ppj.2017.171
    1. Davis T, Loudermilk E, DePalma M, et al. Prospective, multicenter, randomized, crossover clinical trial comparing the safety and effectiveness of cooled radiofrequency ablation with corticosteroid injection in the management of knee pain from osteoarthritis. Reg Anesth Pain Med. 2018;43(1):84–91. doi:10.1097/AAP.0000000000000690
    1. Jamison DE, Cohen SP. Radiofrequency techniques to treat chronic knee pain: a comprehensive review of anatomy, effectiveness, treatment parameters, and patient selection. J Pain Res. 2018;11:1879–1888. doi:10.2147/JPR.S144633
    1. Alcidi L, Beneforti E, Maresca M, Santosuosso U, Zoppi M. Low power radiofrequency electromagnetic radiation for the treatment of pain due to osteoarthritis of the knee. Reumatismo. 2007;59(2):140–145. doi:10.4081/reumatismo.2007.140
    1. Choi W-J, Hwang S-J, Song J-G, et al. Radiofrequency treatment relieves chronic knee osteoarthritis pain: a double-blind randomized controlled trial. PAIN. 2011;152(3):481–487. doi:10.1016/j.pain.2010.09.029
    1. El-Hakeim EH, Elawamy A, Kamel EZ, et al. Fluoroscopic guided radiofrequency of genicular nerves for pain alleviation in chronic knee osteoarthritis: a single-blind randomized controlled trial. Pain Physician. 2018;21(2):169–177.
    1. Qudsi-Sinclair S, Borrás-Rubio E, Abellan-Guillén JF, Padilla Del Rey ML, Ruiz-Merino G. A comparison of genicular nerve treatment using either radiofrequency or analgesic block with corticosteroid for pain after a total knee arthroplasty: a double-blind, randomized clinical study. Pain Practice. 2017;17(5):578–588. doi:10.1111/papr.12481
    1. Hunter C, Davis T, Loudermilk E, Kapural L, DePalma M. Cooled radiofrequency ablation treatment of the genicular nerves in the treatment of osteoarthritic knee pain: 18- and 24-month results. Pain Practice. 2020;20(3):238–246. doi:10.1111/papr.12844
    1. Ikeuchi M, Ushida T, Izumi M, Tani T. Percutaneous radiofrequency treatment for refractory anteromedial pain of osteoarthritic knees. Pain Med. 2011;12(4):546–551. doi:10.1111/j.1526-4637.2011.01086.x
    1. Gulec E. Bipolar versus unipolar intraarticular pulsed radiofrequency thermocoagulation in chronic knee pain treatment: a prospective randomized trial. Pain Physician. 2017;3(20;3):197–206. doi:10.36076/ppj.2017.206
    1. Nikolidakis D, Jansen JA. The biology of platelet-rich plasma and its application in oral surgery: literature review. Tissue Eng Part B Rev. 2008;14(3):249–258. doi:10.1089/ten.teb.2008.0062
    1. Hannink M, Donoghue DJ. Structure and function of platelet-derived growth factor (PDGF) and related proteins. Biochim Biophys Acta. 1989;989(1):1–10. doi:10.1016/0304-419x(89)90031-0
    1. Chen CPC, Cheng C-H, Hsu -C-C, Lin H-C, Tsai Y-R, Chen J-L. The influence of platelet rich plasma on synovial fluid volumes, protein concentrations, and severity of pain in patients with knee osteoarthritis. Exp Gerontol. 2017;93:68–72. doi:10.1016/j.exger.2017.04.004
    1. McAlindon TE, LaValley MP, Harvey WF, et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial. JAMA. 2017;317(19):1967–1975. doi:10.1001/jama.2017.5283
    1. Zeng C, Lane NE, Hunter DJ, et al. Intra-articular corticosteroids and the risk of knee osteoarthritis progression: results from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2019;27(6):855–862. doi:10.1016/j.joca.2019.01.007
    1. Trams E, Kulinski K, Kozar-Kaminska K, Pomianowski S, Kaminski R. The clinical use of platelet-rich plasma in knee disorders and surgery—a systematic review and meta-analysis. Life. 2020;10(6):94. doi:10.3390/life10060094
    1. Dai W-L, Zhou A-G, Zhang H, Zhang J. Efficacy of platelet-rich plasma in the treatment of knee osteoarthritis: a meta-analysis of randomized controlled trials. Arthroscopy. 2017;33(3):659–670.e1. doi:10.1016/j.arthro.2016.09.024
    1. Chen Z, Wang C, You D, Zhao S, Zhu Z, Xu M. Platelet-rich plasma versus hyaluronic acid in the treatment of knee osteoarthritis: a meta-analysis. Medicine. 2020;99(11):e19388. doi:10.1097/MD.0000000000019388
    1. Han Y, Huang H, Pan J, et al. Meta-analysis comparing platelet-rich plasma vs hyaluronic acid injection in patients with knee osteoarthritis. Pain Med. 2019;20(7):1418–1429. doi:10.1093/pm/pnz011
    1. Hohmann E, Tetsworth K, Glatt V. Is platelet-rich plasma effective for the treatment of knee osteoarthritis? A systematic review and meta-analysis of level 1 and 2 randomized controlled trials. Eur J Orthop Surg Traumatol. 2020;30(6):955–967. doi:10.1007/s00590-020-02623-4
    1. Joshi Jubert N, Rodríguez L, Reverté-Vinaixa MM, Navarro A. Platelet-rich plasma injections for advanced knee osteoarthritis: a prospective, randomized, double-blinded clinical trial. Orthop J Sports Med. 2017;5(2):2325967116689386. doi:10.1177/2325967116689386
    1. Uslu Güvendi E, Aşkin A, Güvendi G, Koçyiğit H. Comparison of efficiency between corticosteroid and platelet rich plasma injection therapies in patients with knee osteoarthritis. Arch Rheumatol. 2018;33(3):273–281. doi:10.5606/ArchRheumatol.2018.6608
    1. Bennell KL, Paterson KL, Metcalf BR, et al. Effect of intra-articular platelet-rich plasma vs placebo injection on pain and medial tibial cartilage volume in patients with knee osteoarthritis: the RESTORE randomized clinical trial. JAMA. 2021;326(20):2021–2030. doi:10.1001/jama.2021.19415
    1. Chu J, Duan W, Yu Z, et al. Intra-articular injections of platelet-rich plasma decrease pain and improve functional outcomes than sham saline in patients with knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2022. doi:10.1007/s00167-022-06887-7
    1. Vilchez-Cavazos F, Millán-Alanís JM, Blázquez-Saldaña J, et al. Comparison of the clinical effectiveness of single versus multiple injections of platelet-rich plasma in the treatment of knee osteoarthritis: a systematic review and meta-analysis. Orthopaedic J Sports Med. 2019;7(12):2325967119887116. doi:10.1177/2325967119887116
    1. Su K, Bai Y, Wang J, Zhang H, Liu H, Ma S. Comparison of hyaluronic acid and PRP intra-articular injection with combined intra-articular and intraosseous PRP injections to treat patients with knee osteoarthritis. Clin Rheumatol. 2018;37(5):1341–1350. doi:10.1007/s10067-018-3985-6
    1. Sánchez M, Delgado D, Sánchez P, et al. Combination of intra-articular and intraosseous injections of platelet rich plasma for severe knee osteoarthritis: a pilot study. Biomed Res Int. 2016;2016:4868613. doi:10.1155/2016/4868613
    1. Sánchez M, Delgado D, Pompei O, et al. Treating severe knee osteoarthritis with combination of intra-osseous and intra-articular infiltrations of platelet-rich plasma: an observational study. Cartilage. 2019;10(2):245–253. doi:10.1177/1947603518756462
    1. Dragoo JL, Wasterlain AS, Braun HJ, Nead KT. Platelet-rich plasma as a treatment for patellar tendinopathy: a double-blind, randomized controlled trial. Am J Sports Med. 2014;42(3):610–618. doi:10.1177/0363546513518416
    1. Zayni R, Thaunat M, Fayard JM, et al. Platelet-rich plasma as a treatment for chronic patellar tendinopathy: comparison of a single versus two consecutive injections. Muscles Ligaments Tendons J. 2015;5(2):92–98.
    1. Rowicki K, Płomiński J, Bachta A. Evaluation of the effectiveness of platelet rich plasma in treatment of chronic pes anserinus pain syndrome. Ortop Traumatol Rehabil. 2014;16(3):307–318. doi:10.5604/15093492.1112532
    1. Sharaki F, Esfahani MP, Sajjadi MM, Salehi S, Yekta AA, Hasabi M. Determination of Effect of platelet rich plasma injection on improving pain and function in young healthy athletes with isolated grade 2 or 3 knee medial collateral ligament sprains. Novelty Biomed. 2019;7(3):147–157. doi:10.22037/nbm.v7i3.23862
    1. Urzen JM, Fullerton BD. Nonsurgical resolution of a bucket handle meniscal tear: a case report. j Injury Function Rehabilitation. 2016;8(11):1115–1118. doi:10.1016/j.pmrj.2016.05.011
    1. Orozco L, Munar A, Soler R, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013;95(12):1535–1541. doi:10.1097/TP.0b013e318291a2da
    1. Prodromos C, Finkle S, Rumschlag T, Lotus J. Autologous mesenchymal stem cell treatment is consistently effective for the treatment of knee osteoarthritis: the results of a systematic review of treatment and comparison to a placebo group. Medicines. 2020;7(8):42. doi:10.3390/medicines7080042
    1. Migliorini F, Rath B, Colarossi G, et al. Improved outcomes after mesenchymal stem cells injections for knee osteoarthritis: results at 12-months follow-up: a systematic review of the literature. Arch Orthop Trauma Surg. 2020;140(7):853–868. doi:10.1007/s00402-019-03267-8
    1. Tan SHS, Kwan YT, Neo WJ, et al. Intra-articular injections of mesenchymal stem cells without adjuvant therapies for knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med. 2021:363546520981704. doi:10.1177/0363546520981704
    1. Dai W, Leng X, Wang J, et al. Intra-articular mesenchymal stromal cell injections are no different from placebo in the treatment of knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Arthroscopy. 2021;37(1):340–358. doi:10.1016/j.arthro.2020.10.016
    1. Kim SH, Ha CW, Park YB, Nam E, Lee JE, Lee HJ. Intra-articular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: a meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg. 2019;139(7):971–980. doi:10.1007/s00402-019-03140-8
    1. Ha CW, Park YB, Kim SH, Lee HJ. Intra-articular mesenchymal stem cells in osteoarthritis of the knee: a systematic review of clinical outcomes and evidence of cartilage repair. Arthroscopy. 2019;35(1):277–288.e2. doi:10.1016/j.arthro.2018.07.028
    1. Jaibaji M, Jaibaji R, Volpin A. Mesenchymal stem cells in the treatment of cartilage defects of the knee: a systematic review of the clinical outcomes. Am J Sports Med. 2021;363546520986812. doi:10.1177/0363546520986812
    1. Ma W, Liu C, Wang S, Xu H, Sun H, Fan X. Efficacy and safety of intra-articular injection of mesenchymal stem cells in the treatment of knee osteoarthritis. Medicine. 2020;99(49):e23343. doi:10.1097/MD.0000000000023343
    1. Vines JB, Aliprantis AO, Gomoll AH, Farr J. Cryopreserved amniotic suspension for the treatment of knee osteoarthritis. J Knee Surg. 2016;29(06):443–450. doi:10.1055/s-0035-1569481
    1. Castellanos R, Tighe S. Injectable amniotic membrane/umbilical cord particulate for knee osteoarthritis: a prospective, single-center pilot study. Pain Med. 2019;20(11):2283–2291. doi:10.1093/pm/pnz143
    1. Mead OG, Mead LP. Intra-articular injection of amniotic membrane and umbilical cord particulate for the management of moderate to severe knee osteoarthritis. Orthop Res Rev. 2020;12:161–170. doi:10.2147/ORR.S272980
    1. Farr J, Gomoll AH, Yanke AB, Strauss EJ, Mowry KC, Group AS. A randomized controlled single-blind study demonstrating superiority of amniotic suspension allograft injection over hyaluronic acid and saline control for modification of knee osteoarthritis symptoms. J Knee Surg. 2019;32(11):1143–1154. doi:10.1055/s-0039-1696672
    1. Barolat G. Techniques for subcutaneous peripheral nerve field stimulation for intractable pain. In: Neuromodulation. 1st ed. Academic Press; 2009:1017–1019.
    1. Deer TR, Pope JE, McRoberts WP, Verrills P, Bowman R. Peripheral Nerve Stimulation for the Treatment of Knee Pain. In: Deer TR, Pope JE editors. Atlas of Implantable Therapies for Pain Management. Springer; 2016:185–190. doi:10.1007/978-1-4939-2110-2_27.
    1. Deer T, Pope J, Benyamin R, et al. Prospective, multicenter, randomized, double-blinded, partial crossover study to assess the safety and efficacy of the novel neuromodulation system in the treatment of patients with chronic pain of peripheral nerve origin. Neuromodulation. 2016;19(1):91–100. doi:10.1111/ner.12381
    1. Ilfeld BM, Gilmore CA, Grant SA, et al. Ultrasound-guided percutaneous peripheral nerve stimulation for analgesia following total knee arthroplasty: a prospective feasibility study. J Orthop Surg Res. 2017;12(1):4. doi:10.1186/s13018-016-0506-7
    1. Lin CP, Chang KV, Wu WT, Özçakar L. Ultrasound-guided peripheral nerve stimulation for knee pain: a mini-review of the neuroanatomy and the evidence from clinical studies. Pain Med. 2020;21(Supplement_1):S56–S63. doi:10.1093/pm/pnz318
    1. Tran J, Peng PWH, Lam K, Baig E, Agur AMR, Gofeld M. Anatomical study of the innervation of anterior knee joint capsule: implication for image-guided intervention. Reg Anesth Pain Med. 2018;43(4):407–414. doi:10.1097/AAP.0000000000000778
    1. Tran J, Peng PWH, Gofeld M, Chan V, Agur AMR. Anatomical study of the innervation of posterior knee joint capsule: implication for image-guided intervention. Reg Anesth Pain Med. 2019;44(2):234–238. doi:10.1136/rapm-2018-000015
    1. Harrison C, Epton S, Bojanic S, Green AL, FitzGerald JJ. The efficacy and safety of dorsal root ganglion stimulation as a treatment for neuropathic pain: a literature review. Neuromodulation. 2018;21(3):225–233. doi:10.1111/ner.12685
    1. Martin SC, Macey AR, Raghu A, et al. Dorsal root ganglion stimulation for the treatment of chronic neuropathic knee pain. World Neurosurg. 2020;143:e303–e308. doi:10.1016/j.wneu.2020.07.102
    1. Hunter CW, Sayed D, Lubenow T, et al. DRG FOCUS: a multicenter study evaluating dorsal root ganglion stimulation and predictors for trial success. Neuromodulation. 2019;22(1):61–79. doi:10.1111/ner.12796
    1. Morgalla MH, Fortunato M, Lepski G, Chander BS. Dorsal root ganglion stimulation (DRGS) for the treatment of chronic neuropathic pain: a single-center study with long-term prospective results in 62 cases. Pain Physician. 2018;21(4):E377–E387.
    1. Hunter CW, Yang A, Davis T. Selective radiofrequency stimulation of the dorsal root ganglion (DRG) as a method for predicting targets for neuromodulation in patients with post amputation pain: a case series. Neuromodulation. 2017;20(7):708–718. doi:10.1111/ner.12595
    1. Zuidema X, Breel J, Wille F. Paresthesia mapping: a practical workup for successful implantation of the dorsal root ganglion stimulator in refractory groin pain. Neuromodulation. 2014;17(7):665–669. doi:10.1111/ner.12113
    1. Deer TR, Pope JE, Lamer TJ, et al. The neuromodulation appropriateness consensus committee on best practices for dorsal root ganglion stimulation. Neuromodulation. 2019;22(1):1–35. doi:10.1111/ner.12845
    1. Jackson RW. A history of arthroscopy. Arthroscopy. 2010;26(1):91–103. doi:10.1016/j.arthro.2009.10.005
    1. Kieser CW, Jackson RW. Severin Nordentoft: the first arthroscopist. Arthroscopy. 2001;17(5):532–535. doi:10.1053/jars.2001.24058
    1. Jackson RW. The introduction of arthroscopy to North America. Clin Orthopaedics Related Res. 2000;374:183–186.
    1. THE ROLE OF ARTHROSCOPY IN THE MANAGEMENT OF DISORDERS OF THE KNEE. . Accessed October 2, 2021.
    1. Treuting R. Minimally invasive orthopedic surgery: arthroscopy. Ochsner J. 2000;2(3):158–163.
    1. Jameson SS, Dowen D, James P, Serrano-Pedraza I, Reed MR, Deehan DJ. The burden of arthroscopy of the knee. J Bone Joint Surg Br. 2011;93-B(10):1327–1333. doi:10.1302/0301-620X.93B10.27078
    1. Brignardello-Petersen R, Guyatt GH, Buchbinder R, et al. Knee arthroscopy versus conservative management in patients with degenerative knee disease: a systematic review. BMJ Open. 2017;7(5):e016114. doi:10.1136/bmjopen-2017-016114
    1. Thorlund JB, Juhl CB, Roos EM, Lohmander LS. Arthroscopic surgery for degenerative knee: systematic review and meta-analysis of benefits and harms. BMJ. 2015;350:h2747. doi:10.1136/bmj.h2747
    1. Müller-Rath R, Ingenhoven E, Mumme T, Schumacher M, Miltner O. [Perioperative management in outpatient arthroscopy of the knee joint]. Z Orthop Unfall. 2010;148(3):282–287. doi:10.1055/s-0029-1240784
    1. Brattwall M, Jacobson E, Forssblad M, Jakobsson J. Knee arthroscopy routines and practice. Knee Surg Sports Traumatol Arthrosc. 2010;18(12):1656–1660. doi:10.1007/s00167-010-1266-2
    1. Sun Y, Chen D, Xu Z, et al. Deep venous thrombosis after knee arthroscopy: a systematic review and meta-analysis. Arthroscopy. 2014;30(3):406–412. doi:10.1016/j.arthro.2013.12.021
    1. Ilahi OA, Reddy J, Ahmad I. Deep venous thrombosis after knee arthroscopy: a meta-analysis. Arthroscopy. 2005;21(6):727–730. doi:10.1016/j.arthro.2005.03.007
    1. Krych AJ, Sousa PL, Morgan JA, Levy BA, Stuart MJ, Dahm DL. Incidence and risk factor analysis of symptomatic venous thromboembolism after knee arthroscopy. Arthroscopy. 2015;31(11):2112–2118. doi:10.1016/j.arthro.2015.04.091
    1. Perrotta C, Chahla J, Badariotti G, Ramos J. Interventions for preventing venous thromboembolism in adults undergoing knee arthroscopy. Cochrane Database Sys Rev. 2020;(5). doi:10.1002/14651858.CD005259.pub4
    1. Carney J, Heckmann N, Mayer EN, et al. Should antibiotics be administered before arthroscopic knee surgery? A systematic review of the literature. World J Orthop. 2018;9(11):262–270. doi:10.5312/wjo.v9.i11.262
    1. Qi Y, Yang X, Pan Z, Wang H, Chen L. Value of antibiotic prophylaxis in routine knee arthroscopy. Orthopäde. 2018;47(3):246–253. doi:10.1007/s00132-017-3486-3
    1. Azim DN. Comparison among spinal, epidural, and general anesthesia for knee arthroscopy: a study in a tertiary care hospital, Chattogram, Bangladesh. J Med. 2021;5.
    1. Padwal JA, Burton BN, Fiallo AA, Swisher MW, Gabriel RA. The association of neuraxial versus general anesthesia with inpatient admission following arthroscopic knee surgery. J Clin Anesth. 2019;56:145–150. doi:10.1016/j.jclinane.2019.01.045
    1. Sehmbi H, Brull R, Shah UJ, et al. Evidence basis for regional anesthesia in ambulatory arthroscopic knee surgery and anterior cruciate ligament reconstruction: part II: adductor canal nerve block—a systematic review and meta-analysis. Anesth Analg. 2019;128(2):223–238. doi:10.1213/ANE.0000000000002570
    1. Jacobson E, Forssblad M, Rosenberg J, Westman L, Weidenhielm L. Can local anesthesia be recommended for routine use in elective knee arthroscopy? a comparison between local, spinal, and general anesthesia. Arthroscopy. 2000;16(2):183–190. doi:10.1016/S0749-8063(00
    1. Trieshmann HW. Knee arthroscopy: a cost analysis of general and local anesthesia. Arthroscopy. 1996;12(1):60–63. doi:10.1016/S0749-8063(96
    1. Møiniche S, Mikkelsen S, Wetterslev J, Dahl JB. A systematic review of intra-articular local anesthesia for postoperative pain relief after arthroscopic knee surgery. Reg Anesth Pain Med. 1999;24(5):430–437. doi:10.1016/S1098-7339(99
    1. Dahl MR, Dasta JF, Zuelzer W, McSweeney TD. Lidocaine local anesthesia for arthroscopic knee surgery. Anesth Analg. 1990;71(6):670–674. doi:10.1213/00000539-199012000-00016
    1. Law BKY, Yung PSH, Ho EPY, et al. Review of knee arthroscopy performed under local anesthesia. BMC Sports Sci Med Rehabil. 2009;1(1):3. doi:10.1186/1758-2555-1-3
    1. Smith TO, Hing CB. A meta-analysis of tourniquet assisted arthroscopic knee surgery. The Knee. 2009;16(5):317–321. doi:10.1016/j.knee.2009.01.004
    1. Wang J, Xu W, Is LJ. It better to routinely use tourniquet for knee arthroscopic surgery: a systematic review and meta-analysis. J Knee Surg. 2020;33(9):866–874. doi:10.1055/s-0039-1688555
    1. Belk JW, McCarty EC, Houck DA, Dragoo JL, Savoie FH, Thon SG. Tranexamic acid use in knee and shoulder arthroscopy leads to improved outcomes and fewer hemarthrosis-related complications: a systematic review of Level I and II studies. Arthroscopy. 2021;37(4):1323–1333. doi:10.1016/j.arthro.2020.11.051
    1. Henry DA, Carless PA, Moxey AJ, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Sys Rev. 2011;(1). doi:10.1002/14651858.CD001886.pub3
    1. McLean M, McCall K, Smith IDM, et al. Tranexamic acid toxicity in human periarticular tissues. Bone Joint Res. 2019;8(1):11–18. doi:10.1302/2046-3758.81.BJR-2018-0181.R1
    1. Ma R, Wu M, Li Y, et al. The comparative efficacies of intravenous administration and intra-articular injection of tranexamic acid during anterior cruciate ligament reconstruction for reducing postoperative hemarthrosis: a prospective randomized study. BMC Musculoskelet Disord. 2021;22(1):114. doi:10.1186/s12891-021-03990-7
    1. Salzler MJ, Lin A, Miller CD, Herold S, Irrgang JJ, Harner CD. Complications after arthroscopic knee surgery. Am J Sports Med. 2014;42(2):292–296. doi:10.1177/0363546513510677
    1. Heyer JH, Perim DA, Amdur RL, Pandarinath R. Impact of smoking on outcomes following knee and shoulder arthroscopy. Eur J Orthop Surg Traumatol. 2020;30(2):329–336. doi:10.1007/s00590-019-02577-2
    1. Lubowitz JH, Ayala M, Appleby D. Return to activity after knee arthroscopy. Arthroscopy. 2008;24(1):58–61.e4. doi:10.1016/j.arthro.2007.07.026
    1. Dias JM, Mazuquin BF, Mostagi FQRC, et al. The effectiveness of postoperative physical therapy treatment in patients who have undergone arthroscopic partial meniscectomy: systematic review with meta-analysis. J Orthop Sports Phys Ther. 2013;43(8):560–576. doi:10.2519/jospt.2013.4255
    1. Goodwin PC, Morrissey MC, Omar RZ, Brown M, Southall K, McAuliffe TB. Effectiveness of supervised physical therapy in the early period after arthroscopic partial meniscectomy. Phys Ther. 2003;83(6):520–535. doi:10.1093/ptj/83.6.520
    1. Raynor MC, Pietrobon R, Guller U, Higgins LD. Cryotherapy after ACL reconstruction –a meta-analysis. J Knee Surg. 2005;18(2):123–129. doi:10.1055/s-0030-1248169
    1. Martimbianco ALC. Effectiveness and safety of cryotherapy after arthroscopic anterior cruciate ligament reconstruction. A systematic review of the literature. Physical Therapy Sport. 2014;15(4):261–268. doi:10.1016/j.ptsp.2014.02.008
    1. Gazendam A, Ekhtiari S, Horner NS, Nucci N, Dookie J, Ayeni OR. Perioperative nonopioid analgesia reduces postoperative opioid consumption in knee arthroscopy: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2021;29(6):1887–1903. doi:10.1007/s00167-020-06256-2
    1. Zhao X, Shah D, Gandhi K, et al. Clinical, humanistic, and economic burden of osteoarthritis among noninstitutionalized adults in the United States. Osteoarthritis Cartilage. 2019;27(11):1618–1626. doi:10.1016/j.joca.2019.07.002
    1. Safiri S, Kolahi AA, Smith E, et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis. 2020;79(6):819–828. doi:10.1136/annrheumdis-2019-216515
    1. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461–468. doi:10.1177/1941738109350438
    1. York PJ, Wydra FB, Belton ME, Vidal AF. Joint preservation techniques in orthopaedic surgery. Sports Health. 2017;9(6):545–554. doi:10.1177/1941738117712203
    1. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1000 knee arthroscopies. Arthroscopy. 2002;18(7):730–734. doi:10.1053/jars.2002.32839
    1. Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. The Knee. 2007;14(3):177–182. doi:10.1016/j.knee.2007.02.001
    1. Gracitelli GC, Moraes VY, Franciozi CE, Luzo MV, Belloti JC. Surgical interventions (microfracture, drilling, mosaicplasty, and allograft transplantation) for treating isolated cartilage defects of the knee in adults. Cochrane Database Sys Rev. 2016;9:548.
    1. Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthopaedics Related Research. 2001;391:S362–S369.
    1. Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature. Knee Surg Sports Traumatol Arthrosc. 2020;28(3):670–706. doi:10.1007/s00167-019-05359-9
    1. Mithoefer K, Williams RJI, Warren RF, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee: a prospective cohort study. JBJS. 2005;87(9):1911–1920. doi:10.2106/JBJS.D.02846
    1. Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–2063. doi:10.1177/0363546508328414
    1. Frenkel SR, Toolan B, Menche D, Pitman MI, Pachence JM. Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J Bone Joint Surg Br. 1997;79(5):831–836.
    1. Krill M, Early N, Everhart JS, Flanigan DC. Autologous chondrocyte implantation (ACI) for knee cartilage defects: a review of indications, technique, and outcomes. JBJS Reviews. 2018;6(2):e5. doi:10.2106/JBJS.RVW.17.00078
    1. Demange MK, Minas T, Gomoll AH. Autologous Chondrocyte Implantation After Previous Treatment with Marrow Stimulation Techniques. In: Emans PJ, Peterson L editors. Developing Insights in Cartilage Repair. Springer; 2014:213–225. doi:10.1007/978-1-4471-5385-6_12.
    1. Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med. 2009;37(5):902–908. doi:10.1177/0363546508330137
    1. Long-term Results of Autologous Chondrocyte Implantation in the Knee for Chronic Chondral and Osteochondral Defects. Available from: . Accessed October 3, 2021.
    1. Minas T. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin Orthop Relat Res. 2001;24(391 Suppl):S349–361. doi:10.1097/00003086-200110001-00032
    1. Kizaki K, El-Khechen HA, Yamashita F, et al. Arthroscopic versus open osteochondral autograft transplantation (mosaicplasty) for cartilage damage of the knee: a systematic review. J Knee Surg. 2021;34(1):94–107. doi:10.1055/s-0039-1692999
    1. Ajaadmin2016. The Mosaicplasty/OAT procedure: technique, Pearls and Pitfalls. Asian Journal of Arthroscopy; 2019. Available from: . Accessed October 3, 2021.
    1. Solheim E, Hegna J, Strand T, Harlem T, Inderhaug E. Randomized study of long-term (15-17 years) outcome after microfracture versus mosaicplasty in knee articular cartilage defects. Am J Sports Med. 2018;46(4):826–831. doi:10.1177/0363546517745281
    1. Andrade R, Vasta S, Pereira R, et al. Knee donor-site morbidity after mosaicplasty – a systematic review. J EXP ORTOP. 2016;3(1):31. doi:10.1186/s40634-016-0066-0
    1. Matricali G, Dereymaeker G, Luyten F. Donor site morbidity after articular cartilage repair procedures: a review. Acta Orthop Belg. 2010;76:669–674.
    1. Pallante AL, Bae WC, Chen AC, Görtz S, Bugbee WD, Sah RL. Chondrocyte viability is higher after prolonged storage at 37°C than at 4 C for osteochondral grafts. Am J Sports Med. 2009;37(1_suppl):24–32. doi:10.1177/0363546509351496
    1. Ball ST, Amiel D, Williams SK, et al. The effects of storage on fresh human osteochondral allografts. Clin Orthopaedics Related Research. 2004;418:246–252.
    1. Bugbee WD, Pallante-Kichura AL, Görtz S, Amiel D, Sah R. Osteochondral allograft transplantation in cartilage repair: graft storage paradigm, translational models, and clinical applications. J Orthopaedic Res. 2016;34(1):31–38. doi:10.1002/jor.22998
    1. Morag G, Kulidjian A, Zalzal P, Shasha N, Gross AE, Backstein D. Total knee replacement in previous recipients of fresh osteochondral allograft transplants. JBJS. 2006;88(3):541–546. doi:10.2106/JBJS.D.02816
    1. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure–function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32(30):7411–7431. doi:10.1016/j.biomaterials.2011.06.037
    1. Cavendish A. Meniscal allograft transplantation: a review of indications, techniques, and outcomes. Knee Surg Sports Traumatol Arthrosc. 2020;28(11):3539–3550. doi:10.1007/s00167-020-06058-6
    1. Rosso F, Bisicchia S, Bonasia DE, Amendola A. Meniscal allograft transplantation: a systematic review. Am J Sports Med. 2015;43(4):998–1007. doi:10.1177/0363546514536021
    1. van der Wal RJP, Thomassen BJW, van Arkel ERA. Long-term clinical outcome of open meniscal allograft transplantation. Am J Sports Med. 2009;37(11):2134–2139. doi:10.1177/0363546509336725
    1. Kahlenberg CA, Nwachukwu BU, Hamid KS, Steinhaus ME, Williams RJ. Analysis of outcomes for high tibial osteotomies performed with cartilage restoration techniques. Arthroscopy. 2017;33(2):486–492. doi:10.1016/j.arthro.2016.08.010
    1. Amendola A, Bonasia DE. Results of high tibial osteotomy: review of the literature. International Orthopaedics. 2010;34(2):155–160. doi:10.1007/s00264-009-0889-8
    1. Bode G, Schmal H, Pestka JM, Ogon P, Südkamp NP, Niemeyer P. A non-randomized controlled clinical trial on autologous chondrocyte implantation (ACI) in cartilage defects of the medial femoral condyle with or without high tibial osteotomy in patients with varus deformity of less than 5. Arch Orthop Trauma Surg. 2013;133(1):43–49. doi:10.1007/s00402-012-1637-x
    1. Mitchell JJ, Dean CS, Chahla J, Moatshe G, Cram TR, LaPrade RF. Varus-producing lateral distal femoral opening-wedge osteotomy. Arthroscopy Techniques. 2016;5(4):e799–e807. doi:10.1016/j.eats.2016.03.009
    1. Song SJ, Bae DK, Kim KI, Lee CH. Conversion Total knee arthroplasty after failed high tibial osteotomy. Knee Surg Relat Res. 2016;28(2):89–98. doi:10.5792/ksrr.2016.28.2.89
    1. Fokter S. Recent Advances in Hip and Knee Arthroplasty. BoD – Books on Demand; 2012.
    1. Papas PV, Cushner FD, Scuderi GR. The history of total knee arthroplasty. Techniques Orthopaedics. 2018;33(1):2–6. doi:10.1097/BTO.0000000000000286
    1. Ranawat CS. History of total knee replacement. J South Orthop Assoc. 2002;11(4):218–226.
    1. Ranawat AS, Ranawat CS. The history of total knee arthroplasty. In: Bonnin M, Amendola A, Bellemans J, MacDonald S, Ménétrey J editors. The Knee Joint: Surgical Techniques and Strategies. Springer; 2012:699–707. doi:10.1007/978-2-287-99353-4_63.
    1. Kinov P. Arthroplasty: Update. BoD – Books on Demand; 2013.
    1. Hsu H, Siwiec RM Knee Arthroplasty. StatPearls Publishing; 2021. Available from: . Accessed October 17, 2021.
    1. Adie S, Harris I, Chuan A, Lewis P, Naylor JM. Selecting and optimising patients for total knee arthroplasty. Med J Aust. 2019;210(3):135–141. doi:10.5694/mja2.12109
    1. Bernstein DN, Liu TC, Winegar AL, et al. Evaluation of a preoperative optimization protocol for primary hip and knee arthroplasty patients. J Arthroplasty. 2018;33(12):3642–3648. doi:10.1016/j.arth.2018.08.018
    1. Edwards PK, Mears SC, Stambough JB, Foster SE, Barnes CL. Choices, compromises, and controversies in total knee and total hip arthroplasty modifiable risk factors: what you need to know. J Arthroplasty. 2018;33(10):3101–3106. doi:10.1016/j.arth.2018.02.066
    1. Vasarhelyi EM, MacDonald SJ. Obesity and total joint arthroplasty. Semin Arthroplasty. 2012;23(1):10–12. doi:10.1053/j.sart.2011.12.002
    1. Tarabichi M, Shohat N, Kheir MM, et al. Determining the threshold for HbA1c as a predictor for adverse outcomes after total joint arthroplasty: a multicenter, retrospective study. J Arthroplasty. 2017;32(9, Supplement):S263–S267.e1. doi:10.1016/j.arth.2017.04.065
    1. Singh JA. Smoking and outcomes after knee and hip arthroplasty: a systematic review. J Rheumatol. 2011;38(9):1824–1834. doi:10.3899/jrheum.101221
    1. Sahota S, Lovecchio F, Harold RE, Beal MD, Manning DW. The effect of smoking on thirty-day postoperative complications after total joint arthroplasty: a propensity score-matched analysis. J Arthroplasty. 2018;33(1):30–35. doi:10.1016/j.arth.2017.07.037
    1. Møller AM, Villebro N, Pedersen T, Tønnesen H. Effect of preoperative smoking intervention on postoperative complications: a randomised clinical trial. Lancet. 2002;359(9301):114–117. doi:10.1016/S0140-6736(02
    1. Namba RS, Inacio MCS, Pratt NL, Graves SE, Roughead EE, Paxton EW. Persistent opioid use following total knee arthroplasty: a signal for close surveillance. J Arthroplasty. 2018;33(2):331–336. doi:10.1016/j.arth.2017.09.001
    1. Rozell JC, Courtney PM, Dattilo JR, Wu CH, Lee GC. Preoperative opiate use independently predicts narcotic consumption and complications after total joint arthroplasty. J Arthroplasty. 2017;32(9):2658–2662. doi:10.1016/j.arth.2017.04.002
    1. Sollecito TP, Abt E, Lockhart PB, et al. The use of prophylactic antibiotics prior to dental procedures in patients with prosthetic joints: evidence-based clinical practice guideline for dental practitioners—a report of the American Dental Association Council on Scientific Affairs. J Am Dental Association. 2015;146(1):11–16.e8. doi:10.1016/j.adaj.2014.11.012
    1. Greenky M, Gandhi K, Pulido L, Restrepo C, Parvizi J. Preoperative anemia in total joint arthroplasty: is it associated with periprosthetic joint infection? Clin Orthopaedics Related Research. 2012;470(10):2695–2701. doi:10.1007/s11999-012-2435-z
    1. Liu D, Dan M, Adivi N. Blood conservation strategies in total hip and knee arthroplasty. Reconstructive Rev. 2014;4(4):39. doi:10.15438/rr.4.4.85
    1. Kee JR, Mears SC, Edwards PK, Barnes CL. Modifiable risk factors are common in early revision hip and knee arthroplasty. J Arthroplasty. 2017;32(12):3689–3692. doi:10.1016/j.arth.2017.07.005
    1. Nussenbaum FD, Rodriguez-Quintana D, Fish SM, Green DM, Cahill CW. Implementation of preoperative screening criteria lowers infection and complication rates following elective total hip arthroplasty and total knee arthroplasty in a veteran population. J Arthroplasty. 2018;33(1):10–13. doi:10.1016/j.arth.2017.07.031
    1. Barrack RL, Smith P, Munn B, Engh G, Rorabeck C. Comparison of surgical approaches in total knee arthroplasty. Clin Orthopaedics Related Res. 1998;356:16–21.
    1. Dalury DF, Jiranek WA. A comparison of the midvastus and paramedian approaches for total knee arthroplasty. J Arthroplasty. 1999;14(1):33–37. doi:10.1016/S0883-5403(99
    1. Bonutti PM, Zywiel MG, Ulrich SD, Stroh DA, Seyler TM, Mont MA. A comparison of subvastus and midvastus approaches in minimally invasive total knee arthroplasty. JBJS. 2010;92(3):575–582. doi:10.2106/JBJS.I.00268
    1. Innocenti M, Carulli C, Matassi F, Carossino AM, Brandi ML, Civinini R. Total knee arthroplasty in patients with hypersensitivity to metals. International Orthopaedics. 2014;38(2):329–333. doi:10.1007/s00264-013-2229-2
    1. Hallab N, Merritt K, Jacobs JJ. Metal sensitivity in patients with orthopaedic implants. JBJS. 2001;83(3):428.
    1. Merritt K, Rodrigo JJ. Immune response to synthetic materials: sensitization of patients receiving orthopaedic implants. Clin Orthopaedics Related Res. 1996;326:71–79.
    1. Morgan H, Battista V, Leopold SS. Constraint in primary total knee arthroplasty. JAAOS. 2005;13(8):515–524.
    1. Clark CR, Rorabeck CH, MacDonald S, MacDonald D, Swafford J, Cleland D. Posterior-stabilized and cruciate-retaining total knee replacement: a randomized study. Clin Orthop Relat Res. 2001;392:208–212. doi:10.1097/00003086-200111000-00025
    1. Forster MC. Survival analysis of primary cemented total knee arthroplasty: which designs last? J Arthroplasty. 2003;18(3):265–270. doi:10.1054/arth.2003.50051
    1. Rassir R, Nolte PA, van der Lugt JCT, Nelissen RGHH, Sierevelt IN, Verra WC. No differences in cost-effectiveness and short-term functional outcomes between cemented and uncemented total knee arthroplasty. BMC Musculoskelet Disord. 2020;21(1):448. doi:10.1186/s12891-020-03477-x
    1. Brown TE, Harper BL, Bjorgul K. Comparison of cemented and uncemented fixation in total knee arthroplasty. Orthopedics. 2013;36(5):380–387. doi:10.3928/01477447-20130426-10
    1. Dodd CA, Hungerford DS, Krackow KA. Total knee arthroplasty fixation. Comparison of the early results of paired cemented versus uncemented porous coated anatomic knee prostheses. Clin Orthop Relat Res. 1990; 260:66–70.
    1. Manoli A, Markel JF, Pizzimenti NM, Markel DC. Early results of a modern uncemented total knee arthroplasty system. Orthopedics. 2019;42(6):355–360. doi:10.3928/01477447-20190906-04
    1. Cram P, Lu X, Kates SL, Singh JA, Li Y, Wolf BR. Total knee arthroplasty volume, utilization, and outcomes among medicare beneficiaries, 1991-2010. JAMA. 2012;308(12):1227–1236. doi:10.1001/2012.jama.11153
    1. Greidanus NV, Peterson RC, Masri BA, Garbuz DS. Quality of life outcomes in revision versus primary total knee arthroplasty. J Arthroplasty. 2011;26(4):615–620. doi:10.1016/j.arth.2010.04.026
    1. Kreder HJ, Grosso P, Williams JI, et al. Provider volume and other predictors of outcome after total knee arthroplasty: a population study in Ontario. Can J Surg. 2003;46(1):15–22.
    1. Birdsall PD, Hayes JH, Cleary R, Pinder IM, Moran CG, Sher JL. Health outcome after total knee replacement in the very elderly. J Bone Joint Surg Br. 1999;81-B(4):660–662. doi:10.1302/0301-620X.81B4.0810660
    1. Rosso F, Cottino U, Dettoni F, Bruzzone M, Bonasia DE, Rossi R. Revision total knee arthroplasty (TKA): mid-term outcomes and bone loss/quality evaluation and treatment. J Orthop Surg Res. 2019;14(1):280. doi:10.1186/s13018-019-1328-1
    1. Adatia A, Rainsford KD, Kean WF. Osteoarthritis of the knee and Hip. Part II: therapy with ibuprofen and a review of clinical trials. J Pharm Pharmacol. 2012;64(5):626–636. doi:10.1111/j.2042-7158.2012.01456.x
    1. Smith SR, Deshpande BR, Collins JE, Katz JN, Losina E. Comparative pain reduction of oral non-steroidal anti-inflammatory drugs and opioids for knee osteoarthritis: systematic analytic review. Osteoarthritis Cartilage. 2016;24(6):962–972. doi:10.1016/j.joca.2016.01.135
    1. Arroll B, Goodyear-Smith F. Corticosteroid injections for osteoarthritis of the knee: meta-analysis. BMJ. 2004;328(7444):869. doi:10.1136/bmj.38039.573970.7C
    1. van Middelkoop M, Arden NK, Atchia I, et al. The OA Trial Bank: meta-analysis of individual patient data from knee and Hip osteoarthritis trials show that patients with severe pain exhibit greater benefit from intra-articular glucocorticoids. Osteoarthritis Cartilage. 2016;24(7):1143–1152. doi:10.1016/j.joca.2016.01.983
    1. Concoff A, Sancheti P, Niazi F, Shaw P, Rosen J. The efficacy of multiple versus single hyaluronic acid injections: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2017;18:542. doi:10.1186/s12891-017-1897-2
    1. Richette P, Chevalier X, Ea HK, et al. Hyaluronan for knee osteoarthritis: an updated meta-analysis of trials with low risk of bias. RMD Open. 2015;1(1):e000071. doi:10.1136/rmdopen-2015-000071
    1. Weegen W. No Difference between intra-articular injection of hyaluronic acid and placebo for mild to moderate knee osteoarthritis: a randomized, controlled, double-blind trial. J Arthroplasty. 2015;30(5):754–757. doi:10.1016/j.arth.2014.12.012
    1. Bannuru RR, Natov NS, Obadan IE, Price LL, Schmid CH, McAlindon TE. Therapeutic trajectory of hyaluronic acid versus corticosteroids in the treatment of knee osteoarthritis: a systematic review and meta-analysis. Arthritis Rheum. 2009;61(12):1704–1711. doi:10.1002/art.24925
    1. Yilmaz E. The evaluation of the effectiveness of intra-articular steroid, tenoxicam, and combined steroid-tenoxicam injections in the treatment of patients with knee osteoarthritis. Clin Rheumatol. 2019;38(11):3243‐3252. doi:10.1002/central/CN-01959576
    1. Riis RGC, Henriksen M, Klokker L, et al. The effects of intra-articular glucocorticoids and exercise on pain and synovitis assessed on static and dynamic magnetic resonance imaging in knee osteoarthritis: exploratory outcomes from a randomized controlled trial. Osteoarthritis Cartilage. 2017;25(4):481–491. doi:10.1016/j.joca.2016.10.009
    1. Bodick N, Lufkin J, Willwerth C, et al. An intra-articular, extended-release formulation of triamcinolone acetonide prolongs and amplifies analgesic effect in patients with osteoarthritis of the knee: a randomized clinical trial. J Bone Joint Surg Am. 2015;97(11):877–888. doi:10.2106/JBJS.N.00918
    1. Petrella RJ, DiSilvestro MD, Hildebrand C. Effects of hyaluronate sodium on pain and physical functioning in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled clinical trial. Arch Intern Med. 2002;162(3):292–298. doi:10.1001/archinte.162.3.292
    1. Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2006;1(2):CD005321. doi:10.1002/14651858.CD005321.pub2
    1. Stitik TP, Issac SM, Modi S, Nasir S, Kulinets I. Effectiveness of 3 weekly injections compared with 5 weekly injections of intra-articular sodium hyaluronate on pain relief of knee osteoarthritis or 3 weekly injections of other hyaluronan products: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2017;98(5):1042–1050. doi:10.1016/j.apmr.2017.01.021
    1. Campbell KA, Erickson BJ, Saltzman BM, et al. Is local viscosupplementation injection clinically superior to other therapies in the treatment of osteoarthritis of the knee: a systematic review of overlapping meta-analyses. Arthroscopy. 2015;31(10):2036–2045.e14. doi:10.1016/j.arthro.2015.03.030
    1. Navarro-Sarabia F, Coronel P, Collantes E, et al. A 40-month multicentre, randomised placebo-controlled study to assess the efficacy and carry-over effect of repeated intra-articular injections of hyaluronic acid in knee osteoarthritis: the AMELIA project. Ann Rheum Dis. 2011;70(11):1957–1962. doi:10.1136/ard.2011.152017
    1. Strand V, Baraf HSB, Lavin PT, Lim S, Hosokawa H. A multicenter, randomized controlled trial comparing a single intra-articular injection of Gel-200, a new cross-linked formulation of hyaluronic acid, to phosphate buffered saline for treatment of osteoarthritis of the knee. Osteoarthritis Cartilage. 2012;20(5):350–356. doi:10.1016/j.joca.2012.01.013
    1. Berenbaum F, Grifka J, Cazzaniga S, et al. A randomised, double-blind, controlled trial comparing two intra-articular hyaluronic acid preparations differing by their molecular weight in symptomatic knee osteoarthritis. Ann Rheum Dis. 2012;71(9):1454–1460. doi:10.1136/annrheumdis-2011-200972
    1. Arden NK, Åkermark C, Andersson M, Todman MG, Altman RD. A randomized saline-controlled trial of NASHA hyaluronic acid for knee osteoarthritis. Curr Med Res Opin. 2014;30(2):279–286. doi:10.1185/03007995.2013.855631
    1. Shen WS, Xu XQ, Zhai NN, Zhou ZS, Shao J, Yu YH. Radiofrequency thermocoagulation in relieving refractory pain of knee osteoarthritis. Am J Ther. 2017;24(6):e693–e700. doi:10.1097/MJT.0000000000000393
    1. Takahashi K, Hashimoto S, Kurosaki H, et al. A pilot study comparing the efficacy of radiofrequency and microwave diathermy in combination with intra-articular injection of hyaluronic acid in knee osteoarthritis. J Phys Ther Sci. 2016;28(2):525–529. doi:10.1589/jpts.28.525
    1. McCormick ZL, Reddy R, Korn M, et al. A prospective randomized trial of prognostic genicular nerve blocks to determine the predictive value for the outcome of cooled radiofrequency ablation for chronic knee pain due to osteoarthritis. Pain Medicine. 2018;19(8):1628–1638. doi:10.1093/pm/pnx286
    1. Cerza F, Carnì S, Carcangiu A, et al. Comparison between hyaluronic acid and platelet-rich plasma, intra-articular infiltration in the treatment of gonarthrosis. Am J Sports Med. 2012;40(12):2822–2827. doi:10.1177/0363546512461902
    1. Filardo G, Kon E, Di martino A, et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet Disord. 2012;13:229. doi:10.1186/1471-2474-13-229
    1. Spaková T, Rosocha J, Lacko M, Harvanová D, Gharaibeh A. Treatment of knee joint osteoarthritis with autologous platelet-rich plasma in comparison with hyaluronic acid. Am J Phys Med Rehabil. 2012;91(5):411–417. doi:10.1097/PHM.0b013e3182aab72
    1. Patel S, Dhillon MS, Aggarwal S, Marwaha N, Jain A. Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double-blind, randomized trial. Am J Sports Med. 2013;41(2):356–364. doi:10.1177/0363546512471299
    1. Cole BJ, Karas V, Hussey K, Pilz K, Fortier LA. Hyaluronic acid versus platelet-rich plasma: a prospective, double-blind randomized controlled trial comparing clinical outcomes and effects on intra-articular biology for the treatment of knee osteoarthritis. Am J Sports Med. 2017;45(2):339–346. doi:10.1177/0363546516665809
    1. Filardo G, Di Matteo B, Di martino A, et al. Platelet-rich plasma intra-articular knee injections show no superiority versus viscosupplementation: a randomized controlled trial. Am J Sports Med. 2015;43(7):1575–1582. doi:10.1177/0363546515582027
    1. Raeissadat SA, Rayegani SM, Hassanabadi H, et al. Knee osteoarthritis injection choices: platelet- rich plasma (PRP) versus hyaluronic acid (a one-year randomized clinical trial). Clin Med Insights Arthritis Musculoskelet Disord. 2015;8:1–8. doi:10.4137/CMAMD.S17894
    1. Forogh B, Mianehsaz E, Shoaee S, Ahadi T, Raissi GR, Sajadi S. Effect of single injection of platelet-rich plasma in comparison with corticosteroid on knee osteoarthritis: a double-blind randomized clinical trial. J Sports Med Phys Fitness. 2016;56(7–8):901–908.
    1. Lana JFSD, Weglein A, Sampson SE, et al. Randomized controlled trial comparing hyaluronic acid, platelet-rich plasma and the combination of both in the treatment of mild and moderate osteoarthritis of the knee. J Stem Cells Regen Med. 2016;12(2):69–78.
    1. Montañez-Heredia E, Irízar S, Huertas PJ, et al. Intra-articular injections of platelet-rich plasma versus hyaluronic acid in the treatment of osteoarthritic knee pain: a randomized clinical trial in the context of the spanish national health care system. Int J Mol Sci. 2016;17(7):E1064. doi:10.3390/ijms17071064
    1. Paterson KL, Nicholls M, Bennell KL, Bates D. Intra-articular injection of photo-activated platelet-rich plasma in patients with knee osteoarthritis: a double-blind, randomized controlled pilot study. BMC Musculoskelet Disord. 2016;17:67. doi:10.1186/s12891-016-0920-3
    1. Simental-Mendía M, Vílchez-Cavazos JF, Peña-Martínez VM, Said-Fernández S, Lara-Arias J, Martínez-Rodríguez HG. Leukocyte-poor platelet-rich plasma is more effective than the conventional therapy with Acetaminophen for the treatment of early knee osteoarthritis. Arch Orthop Trauma Surg. 2016;136(12):1723–1732. doi:10.1007/s00402-016-2545-2
    1. Smith PA. Intra-articular autologous conditioned plasma injections provide safe and efficacious treatment for knee osteoarthritis: an FDA-sanctioned, randomized, double-blind, placebo-controlled clinical trial. Am J Sports Med. 2016;44(4):884–891. doi:10.1177/0363546515624678
    1. Duymus TM, Mutlu S, Dernek B, Komur B, Aydogmus S, Kesiktas FN. Choice of intra-articular injection in treatment of knee osteoarthritis: platelet-rich plasma, hyaluronic acid or ozone options. Knee Surg Sports Traumatol Arthrosc. 2017;25(2):485–492. doi:10.1007/s00167-016-4110-5
    1. Görmeli G, Görmeli CA, Ataoglu B, Çolak C, Aslantürk O, Ertem K. Multiple PRP injections are more effective than single injections and hyaluronic acid in knees with early osteoarthritis: a randomized, double-blind, placebo-controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017;25(3):958–965. doi:10.1007/s00167-015-3705-6
    1. Lisi C, Perotti C, Scudeller L, et al. Treatment of knee osteoarthritis: platelet-derived growth factors vs. hyaluronic acid. A randomized controlled trial. Clin Rehabil. 2018;32(3):330–339. doi:10.1177/0269215517724193
    1. Ahmad HS, Farrag SE, Okasha AE, et al. Clinical outcomes are associated with changes in ultrasonographic structural appearance after platelet-rich plasma treatment for knee osteoarthritis. Int J Rheum Dis. 2018;21(5):960–966. doi:10.1111/1756-185X.13315
    1. Angoorani H, Mazaherinezhad A, Marjomaki O, Younespour S. Treatment of knee osteoarthritis with platelet-rich plasma in comparison with transcutaneous electrical nerve stimulation plus exercise: a randomized clinical trial. Med J Islam Repub Iran. 2015;29:223.
    1. Buendía-López D, Medina-Quirós M, Fernández-Villacañas Marín MÁ. Clinical and radiographic comparison of a single LP-PRP injection, a single hyaluronic acid injection and daily NSAID administration with a 52-week follow-up: a randomized controlled trial. J Orthop Traumatol. 2018;19(1):3. doi:10.1186/s10195-018-0501-3
    1. Di Martino A, Di Matteo B, Papio T, et al. Platelet-rich plasma versus hyaluronic acid injections for the treatment of knee osteoarthritis: results at 5 years of a double-blind, randomized controlled trial. Am J Sports Med. 2019;47(2):347–354. doi:10.1177/0363546518814532
    1. Gaballa NM, Mohammed YA, Kamel LM, Mahgoub HM. Therapeutic efficacy of intra-articular injection of platelet–rich plasma and ozone therapy in patients with primary knee osteoarthritis. Egyptian Rheumatologist. 2019;41(3):183–187. doi:10.1016/j.ejr.2018.07.005
    1. Khan AF, Gillani S, Khan A. Role of intra-articular corticosteroid with xylocaine vs plate rich plasma for the treatment of early grade II knee osteoarthritis at Akhtar Saeed Teaching Hospital Lahore: a randomized controlled trial. Int J Med. 2018;12(4):1432–1435.
    1. Lin KY, Yang CC, Hsu CJ, Yeh ML, Renn JH. Intra-articular injection of platelet-rich plasma is superior to hyaluronic acid or saline solution in the treatment of mild to moderate knee osteoarthritis: a randomized, double-blind, triple-parallel, placebo-controlled clinical trial. Arthroscopy. 2019;35(1):106–117. doi:10.1016/j.arthro.2018.06.035
    1. Louis ML, Magalon J, Jouve E, et al. Growth factors levels determine efficacy of platelets rich plasma injection in knee osteoarthritis: a randomized double blind noninferiority trial compared with viscosupplementation. Arthroscopy. 2018;34(5):1530–1540.e2. doi:10.1016/j.arthro.2017.11.035
    1. Bahram NN, Abbas S, Mohsen MK, et al. Comparing the effectiveness of intra-articular platelet-rich plasma and corticosteroid injection under ultrasound guidance on pain control of knee osteoarthritis, Arthroscpy. 2018;20(3):5.
    1. Rahimzadeh P, Imani F, Faiz SHR, Entezary SR, Zamanabadi MN, Alebouyeh MR. The effects of injecting intra-articular platelet-rich plasma or prolotherapy on pain score and function in knee osteoarthritis. Clin Interv Aging. 2018;13:73–79. doi:10.2147/CIA.S147757
    1. Wu J, Zhou J, Liu C, et al. A prospective study comparing platelet-rich plasma and local anesthetic (LA)/corticosteroid in intra-articular injection for the treatment of lumbar facet joint syndrome. Pain Pract. 2017;17(7):914–924. doi:10.1111/papr.12544
    1. Huang Y, Liu X, Xu X, Liu J. Intra-articular injections of platelet-rich plasma, hyaluronic acid or corticosteroids for knee osteoarthritis: a prospective randomized controlled study. Orthopade. 2019;48(3):239–247. doi:10.1007/s00132-018-03659-5
    1. Anz AW, Hubbard R, Rendos NK, Everts PA, Andrews JR, Hackel JG. Bone marrow aspirate concentrate is equivalent to platelet-rich plasma for the treatment of knee osteoarthritis at 1 year: a prospective, randomized trial. Orthop J Sports Med. 2020;8(2):2325967119900958. doi:10.1177/2325967119900958
    1. Elksniņš-Finogejevs A, Vidal L, Peredistijs A. Intra-articular platelet-rich plasma vs corticosteroids in the treatment of moderate knee osteoarthritis: a single-center prospective randomized controlled study with a 1-year follow up. J Orthop Surg Res. 2020;15(1):257. doi:10.1186/s13018-020-01753-z
    1. Kesiktas FN, Dernek B, Sen EI, Albayrak HN, Aydin T, Yildiz M. Comparison of the short-term results of single-dose intra-articular peptide with hyaluronic acid and platelet-rich plasma injections in knee osteoarthritis: a randomized study. Clin Rheumatol. 2020;39(10):3057–3064. doi:10.1007/s10067-020-05121-4
    1. Pishgahi A, Abolhasan R, Shakouri SK, et al. Effect of dextrose prolotherapy, platelet rich plasma and autologous conditioned serum on knee osteoarthritis: a randomized clinical trial. Iran J Allergy Asthma Immunol. 2020:243–252. doi:10.18502/ijaai.v19i3.3452
    1. Raeissadat SA, Gharooee Ahangar A, Rayegani SM, Minator Sajjadi M, Ebrahimpour A, Yavari P. Platelet-rich plasma-derived growth factor vs hyaluronic acid injection in the individuals with knee osteoarthritis: a one year randomized clinical trial. J Pain Res. 2020;13:1699–1711. doi:10.2147/JPR.S210715
    1. Reyes-Sosa R, Lugo-Radillo A, Cruz-Santiago L, Garcia-Cruz CR, Mendoza-Cano O. Clinical comparison of platelet-rich plasma injection and daily celecoxib administration in the treatment of early knee osteoarthritis: a randomized clinical trial. J Appl Biomed. 2020;18(2–3):41–45. doi:10.32725/jab.2020.012

Source: PubMed

3
Subscribe