Prefrontal-Temporal Pathway Mediates the Cross-Modal and Cognitive Reorganization in Sensorineural Hearing Loss With or Without Tinnitus: A Multimodal MRI Study

Ying Luan, Congxiao Wang, Yun Jiao, Tianyu Tang, Jian Zhang, Gao-Jun Teng, Ying Luan, Congxiao Wang, Yun Jiao, Tianyu Tang, Jian Zhang, Gao-Jun Teng

Abstract

Objective: Hearing loss, one main risk factor of tinnitus and hyperacusis, is believed to involve significant central functional abnormalities. The recruitment of the auditory cortex in non-auditory sensory and higher-order cognitive processing has been demonstrated in the hearing-deprived brain. The dorsolateral prefrontal cortex (dlPFC), which has dense anatomical connections with the auditory pathway, is known to play a crucial role in multi-sensory integration, auditory regulation, and cognitive processing. This study aimed to verify the role of the dlPFC in the cross-modal reorganization and cognitive participation of the auditory cortex in long-term sensorineural hearing loss (SNHL) by combining functional and structural measurements. Methods: Thirty five patients with long-term bilateral SNHL and 35 matched healthy controls underwent structural imaging, resting-state functional magnetic resonance imaging (rs-fMRI), diffusion tensor imaging (DTI), and neuropsychological assessments. Ten SNHL patients were with subjective tinnitus. Results: No differences in gray matter volume, spontaneous neural activity, or diffusion characteristics in the dlPFC were found between the SNHL and control groups. The functional connectivity (FC) between the dlPFC and the auditory cortex and visual areas, such as the cuneus, fusiform, lingual cortex, and calcarine sulcus was increased in patients with SNHL. ANOVA and post hoc tests revealed similar FC alterations in the SNHL patients with and without tinnitus when compared with the normal hearing controls, and SNHL patients with and without tinnitus showed no difference in the dlPFC FC. The FC in the auditory cortex was associated with the symbol digit modality test (SDMT) scores in the SNHL patients, which reflect attentional function, processing speed, and visual working memory. Hearing-related FC with the dlPFC was found in the lingual cortex. A tract-based spatial statistics (TBSS) analysis revealed decreased fractional anisotropy (FA) values, mainly in the temporal inferior fronto-occipital fasciculus (IFOF), which showed remarkable negative correlations with the mean hearing thresholds in SNHL. Conclusion: Higher functional coupling between the dlPFC and auditory and visual areas, accompanied by decreased FA along the IFOF connecting the frontal cortex and the occipito-temporal area, might mediate cross-modal plasticity via top-down regulation and facilitate the involvement of the auditory cortex in higher-order cognitive processing following long-term SNHL.

Keywords: cognition; cross-modal reorganization; dorsolateral prefrontal cortex; multimodal MRI; resting-state functional connectivity; sensorineural hearing loss; tinnitus; tract-based spatial statistics.

Figures

FIGURE 1
FIGURE 1
The hearing thresholds of (A) right side and (B) left side at 250, 500, 1000, 2000, 4000, and 8000 Hz in the control and SNHL groups. (C) No side differences in mean hearing thresholds are shown for either group. The mean hearing thresholds for each side in patients with SNHL are significantly higher than in healthy controls. The data are shown as mean ± standard deviation. ∗∗∗∗p < 0.0001.
FIGURE 2
FIGURE 2
(A) The between-group difference distribution map of FC with the seed set to the left and right dlPFC independent of age, sex, or education (p < 0.05, corrected by FDR). Significantly increased FC is present in the red-yellow heat scales. The color bar below shows the t-scores obtained from the between-group comparisons. The SDMT scores are positively correlated with the left dlPFC-seeded FC in the right cuneus (B), left dlPFC-seeded FC in the right STG (C), and the right dlPFC-seeded FC in the right STG (D) in patients with SNHL, after controlling for age, sex, and education. FC, functional connectivity; dlPFC, dorsolateral prefrontal cortex; FDR, false discovery rate; SDMT, Symbol Digit Modalities Test; STG, superior temporal gyrus; ROI, region of interest; L, left; R, right.
FIGURE 3
FIGURE 3
Receiver operating characteristic curves for differentiating patients with SNHL and healthy controls based on the significant FC with the left dlPFC (A) and right dlPFC (B). AUC, area under the receiver operating characteristic curve.
FIGURE 4
FIGURE 4
The between-group difference distribution map of FC with the seed set to the left and right dlPFC among the SNHL without tinnitus, SNHL with tinnitus, and healthy controls, independent of age, sex, or education (p < 0.05/3, corrected by FDR). Significantly increased FC is present in the red-yellow heat scales. The color bars show the t scores obtained from the between-group comparisons.
FIGURE 5
FIGURE 5
(A) Voxel-wise hearing-related FC patterns with the left and right dlPFC in patients with SNHL, independent of age, sex, and education. Significant positive correlations are presented in the red-yellow heat scales. The color bar below shows the z-scores. The scatterplots show the correlations in the patients with SNHL between the binaural mean hearing thresholds with the mean left dlPFC-seeded FC in the left lingual gyrus (B) and the mean right dlPFC-seeded FC in the right lingual gyrus (C), which were shown to be significant by the voxel-wise correlation analysis, after controlling for the effects of age, sex, and education.
FIGURE 6
FIGURE 6
(A) Distribution map of the FA value that was significantly lower in the SNHL group compared with the control group based on the TBSS analysis. The mean FA skeleton (green) is overlaid with the blue clusters denoting significantly decreased FA values in patients with SNHL. The color bar on the left presents the p-value. The mean FA values in the significant cluster of the right temporal lobe are positively correlated with the binaural mean hearing thresholds in patients with SNHL, after controlling for the effects of the age, sex, and education (B). FA, fractional anisotropy; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior longitudinal fasciculus.

References

    1. Akbar N., Banwell B., Sled J. G., Binns M. A., Doesburg S. M., Rypma B., et al. (2016). Brain activation patterns and cognitive processing speed in patients with pediatric-onset multiple sclerosis. J. Clin. Exp. Neuropsychol. 38 393–403. 10.1080/13803395.2015.1119255
    1. Bedny M. (2017). Evidence from blindness for a cognitively pluripotent cortex. Trends Cogn. Sci. 21 637–648. 10.1016/j.tics.2017.06.003
    1. Beer A. L., Plank T., Greenlee M. W. (2011). Diffusion tensor imaging shows white matter tracts between human auditory and visual cortex. Exp. Brain Res. 213 299–308. 10.1007/s00221-011-2715-y
    1. Buckley K., Tobey E. (2011). Cross-modal plasticity and speech perception in pre- and postlingually deaf cochlear implant users. Ear Hear. 32 2–15. 10.1097/AUD.0b013e3181e8534c
    1. Cardon G., Sharma A. (2018). Somatosensory cross-modal reorganization in adults with age-related, early-stage hearing loss. Front. Hum. Neurosci. 12:172. 10.3389/fnhum.2018.00172
    1. Catani M., Howard R. J., Pajevic S., Jones D. K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17 77–94. 10.1006/nimg.2002.1136
    1. Dawes P., Emsley R., Cruickshanks K., Moore D., Fortnum H., Edmondson-Jones M., et al. (2015). Hearing loss and cognition: the role of hearing AIDS, social isolation and depression. PLoS One 10:e0119616. 10.1371/journal.pone.0119616
    1. De Ridder D., Vanneste S., Freeman W. (2014). The Bayesian brain: phantom percepts resolve sensory uncertainty. Neurosci. Biobehav. Rev. 44 4–15. 10.1016/j.neubiorev.2012.04.001
    1. Demerens C., Stankoff B., Logak M., Anglade P., Allinquant B., Couraud F., et al. (1996). Induction of myelination in the central nervous system by electrical activity. Proc. Natl. Acad. Sci. U.S.A. 93 9887–9892. 10.1073/pnas.93.18.9887
    1. Dewey R., Hartley D. (2015). Cortical cross-modal plasticity following deafness measured using functional near-infrared spectroscopy. Hear. Res. 325 55–63. 10.1016/j.heares.2015.03.007
    1. Ding H., Ming D., Wan B., Li Q., Qin W., Yu C. (2016). Enhanced spontaneous functional connectivity of the superior temporal gyrus in early deafness. Sci. Rep. 6:23239. 10.1038/srep23239
    1. Ding H., Qin W., Liang M., Ming D., Wan B., Li Q., et al. (2015). Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness. Brain 138(Pt 9) 2750–2765. 10.1093/brain/awv165
    1. Dobryakova E., Costa S. L., Wylie G. R., DeLuca J., Genova H. M. (2016). Altered effective connectivity during a processing speed task in individuals with multiple sclerosis. J. Int. Neuropsychol. Soc. 22 216–224. 10.1017/s1355617715001034
    1. Dosenbach N., Visscher K., Palmer E., Miezin F., Wenger K., Kang H., et al. (2006). A core system for the implementation of task sets. Neuron 50 799–812. 10.1016/j.neuron.2006.04.031
    1. Dosenbach N. U., Fair D. A., Cohen A. L., Schlaggar B. L., Petersen S. E. (2008). A dual-networks architecture of top-down control. Trends Cogn. Sci. 12 99–105. 10.1016/j.tics.2008.01.001
    1. Eggermont J. J., Roberts L. E. (2004). The neuroscience of tinnitus. Trends Neurosci. 27 676–682. 10.1016/j.tins.2004.08.010
    1. Forn C., Belloch V., Bustamante J., Garbin G., Parcet-Ibars M., Sanjuan A., et al. (2009). A symbol digit modalities test version suitable for functional MRI studies. Neurosci. Lett. 456 11–14. 10.1016/j.neulet.2009.03.081
    1. Forn C., Ripolles P., Cruz-Gomez A. J., Belenguer A., Gonzalez-Torre J. A., Avila C. (2013). Task-load manipulation in the Symbol Digit Modalities Test: an alternative measure of information processing speed. Brain Cogn. 82 152–160. 10.1016/j.bandc.2013.04.003
    1. Fuster J., Bodner M., Kroger J. (2000). Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405 347–351. 10.1038/35012613
    1. Galea M., Woodward M. (2005). Mini-mental state examination (MMSE). Aust. J. Physiother. 51:198 10.1016/S0004-9514(05)70034-9
    1. Gao E., Suga N. (2000). Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: role of the corticofugal system. Proc. Natl. Acad. Sci. U.S.A. 97 8081–8086. 10.1073/pnas.97.14.8081
    1. Gläscher J., Adolphs R., Damasio H., Bechara A., Rudrauf D., Calamia M., et al. (2012). Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 109 14681–14686. 10.1073/pnas.1206608109
    1. Glick H., Sharma A. (2017). Cross-modal plasticity in developmental and age-related hearing loss: clinical implications. Hear. Res. 343 191–201. 10.1016/j.heares.2016.08.012
    1. Hamilton M. (1960). A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23 56–62. 10.1136/jnnp.23.1.56
    1. Hribar M., Suput D., Carvalho A. A., Battelino S., Vovk A. (2014). Structural alterations of brain grey and white matter in early deaf adults. Hea. Res. 318 1–10. 10.1016/j.heares.2014.09.008
    1. Husain F. T., Medina R. E., Davis C. W., Szymko-Bennett Y., Simonyan K., Pajor N. M., et al. (2011). Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res. 1369 74–88. 10.1016/j.brainres.2010.10.095
    1. Irvine D. R. (2007). Auditory cortical plasticity: Does it provide evidence for cognitive processing in the auditory cortex? Hear. Res. 229 158–170. 10.1016/j.heares.2007.01.006
    1. Jones E., Powell T. (1970). An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93 793–820. 10.1093/brain/93.4.793
    1. Karns C. M., Stevens C., Dow M. W., Schorr E. M., Neville H. J. (2017). Atypical white-matter microstructure in congenitally deaf adults: a region of interest and tractography study using diffusion-tensor imaging. Hear. Res. 343 72–82. 10.1016/j.heares.2016.07.008
    1. Kastner S., De Weerd P., Desimone R., Ungerleider L. (1998). Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282 108–111. 10.1126/science.282.5386.108
    1. Kim D. J., Park S. Y., Kim J., Lee D. H., Park H. J. (2009). Alterations of white matter diffusion anisotropy in early deafness. Neuroreport 20 1032–1036. 10.1097/WNR.0b013e32832e0cdd
    1. Knight R. T., Grabowecky M. F., Scabini D. (1995). Role of human prefrontal cortex in attention control. Adv. Neurol. 66 21–36.
    1. Knight R. T., Hillyard S. A., Woods D. L., Neville H. J. (1981). The effects of frontal cortex lesions on event-related potentials during auditory selective attention. Electroencephalogr. Clin. Neurophysiol. 52 571–582. 10.1016/0013-4694(81)91431-0
    1. Knipper M., Van Dijk P., Nunes I., Ruttiger L., Zimmermann U. (2013). Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Prog. Neurobiol. 111 17–33. 10.1016/j.pneurobio.2013.08.002
    1. Kuchinsky S. E., Vaden K. I., Jr., Ahlstrom J. B., Cute S. L., Humes L. E., Dubno J. R., et al. (2016). Task-related vigilance during word recognition in noise for older adults with hearing loss. Exp. Aging Res. 42 50–66. 10.1080/0361073X.2016.1108712
    1. Lambertz N., Gizewski E. R., de Greiff A., Forsting M. (2005). Cross-modal plasticity in deaf subjects dependent on the extent of hearing loss. Brain Res. Cogn. Brain Res. 25 884–890. 10.1016/j.cogbrainres.2005.09.010
    1. Levin H., Koval M., Everling S. (2007). Top-down control-signal dynamics in anterior cingulate and prefrontal cortex neurons following task switching. Neuron 53 453–462. 10.1016/j.neuron.2006.12.023
    1. Li J., Li W., Xian J., Li Y., Liu Z., Liu S., et al. (2012). Cortical thickness analysis and optimized voxel-based morphometry in children and adolescents with prelingually profound sensorineural hearing loss. Brain Res. 1430 35–42. 10.1016/j.brainres.2011.09.057
    1. Li Y., Booth J. R., Peng D., Zang Y., Li J., Yan C., et al. (2013). Altered intra- and inter-regional synchronization of superior temporal cortex in deaf people. Cereb. Cortex 23 1988–1996. 10.1093/cercor/bhs185
    1. Lin F. R., Ferrucci L., An Y., Goh J. O., Doshi J., Metter E. J., et al. (2014). Association of hearing impairment with brain volume changes in older adults. Neuroimage 90 84–92. 10.1016/j.neuroimage.2013.12.059
    1. Macaluso E., Driver J. (2001). Spatial attention and crossmodal interactions between vision and touch. Neuropsychologia 39 1304–1316. 10.1016/S0028-3932(01)00119-1
    1. Macaluso E., Frith C., Driver J. (2000). Modulation of human visual cortex by crossmodal spatial attention. Science 289 1206–1208. 10.1126/science.289.5482.1206
    1. MacDonald A., Cohen J., Stenger V., Carter C. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288 1835–1838. 10.1126/science.288.5472.1835
    1. MacSweeney M., Woll B., Campbell R., McGuire P. K., David A. S., Williams S. C., et al. (2002). Neural systems underlying British Sign Language and audio-visual English processing in native users. Brain 125 1583–1593. 10.1093/brain/awf153
    1. Moore T., Zirnsak M. (2017). Neural mechanisms of selective visual attention. Annu. Rev. Psychol. 68 47–72. 10.1146/annurev-psych-122414-033400
    1. Morrone M. C. (2010). Brain development: critical periods for cross-sensory plasticity. Curr. Biol. 20 R934–R936. 10.1016/j.cub.2010.09.052
    1. Nagarkar A., Panda N. (2007). Intervention strategies in children with cochlear implants having attention deficit hyperactivity disorder. Int. J. Pediatr. Otorhinolaryngol. 71 985–988. 10.1016/j.ijporl.2007.02.020
    1. Norena A., Cransac H., Chery-Croze S. (1999). Towards an objectification by classification of tinnitus. Clin. Neurophysiol. 110 666–675. 10.1016/S1388-2457(98)00034-0
    1. Olds C., Pollonini L., Abaya H., Larky J., Loy M., Bortfeld H., et al. (2016). Cortical activation patterns correlate with speech understanding after cochlear implantation. Ear Hear. 37:e160. 10.1097/AUD.0000000000000258
    1. O’Reilly R. C. (2010). The What and How of prefrontal cortical organization. Trends Neurosci. 33 355–361. 10.1016/j.tins.2010.05.002
    1. Park S., Ahn M., Min B. (2016). Top-down and bottom-up neurodynamic evidence in patients with tinnitus. Hear. Res. 342 86–100. 10.1016/j.heares.2016.10.002
    1. Pelland M., Orban P., Dansereau C., Lepore F., Bellec P., Collignon O. (2017). State-dependent modulation of functional connectivity in early blind individuals. Neuroimage 147 532–541. 10.1016/j.neuroimage.2016.12.053
    1. Petrides M. (1986). The effect of periarcuate lesions in the monkey on the performance of symmetrically and asymmetrically reinforced visual and auditory go, no-go tasks. J. Neurosci. 6 2054–2063. 10.1523/JNEUROSCI.06-07-02054.1986
    1. Philiastides M., Auksztulewicz R., Heekeren H., Blankenburg F. (2011). Causal role of dorsolateral prefrontal cortex in human perceptual decision making. Curr. Biol. 21 980–983. 10.1016/j.cub.2011.04.034
    1. Que M., Jiang X., Yi C., Gui P., Jiang Y., Zhou Y., et al. (2018). Language and sensory neural plasticity in the superior temporal cortex of the deaf. Neural Plast. 2018:9456891. 10.1155/2018/9456891
    1. Rachakonda T., Shimony J. S., Coalson R. S., Lieu J. E. (2014). Diffusion tensor imaging in children with unilateral hearing loss: a pilot study. Front. Syst. Neurosci. 8:87. 10.3389/fnsys.2014.00087
    1. Romanski L. M., Tian B., Fritz J., Mishkin M., Goldman-Rakic P. S., Rauschecker J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat. Neurosci. 2 1131–1136. 10.1038/16056
    1. Rutherford B. R., Brewster K., Golub J. S., Kim A. H., Roose S. P. (2018). Sensation and psychiatry: linking age-related hearing loss to late-life depression and cognitive decline. Am. J. Psychiatry 175 215–224. 10.1176/appi.ajp.2017.17040423
    1. Sakai K. L., Tatsuno Y., Suzuki K., Kimura H., Ichida Y. (2005). Sign and speech: amodal commonality in left hemisphere dominance for comprehension of sentences. Brain 128 1407–1417. 10.1093/brain/awh465
    1. Schmidt M. (1996). Rey Auditory Verbal Learning Test: A Handbook. Los Angeles, CA: Western Psychological Services.
    1. Schmithorst V. J., Wilke M., Dardzinski B. J., Holland S. K. (2005). Cognitive functions correlate with white matter architecture in a normal pediatric population: a diffusion tensor MRI study. Hum. Brain Mapp. 26 139–147. 10.1002/hbm.20149
    1. Scholz J., Klein M. C., Behrens T. E., Johansen-Berg H. (2009). Training induces changes in white-matter architecture. Nat. Neurosci. 12 1370–1371. 10.1038/nn.2412
    1. Sharma A. (2014). Cross-modal re-organization in adults with early stage hearing loss. PLoS One 9:e90594. 10.1371/journal.pone.0090594
    1. Sharma A. (2017). Cross-modal plasticity in developmental and age-related hearing loss: clinical implications. Hear. Res. 343 191–201. 10.1016/j.heares.2016.08.012
    1. Shiell M. M., Zatorre R. J. (2016). White matter structure in the right planum temporale region correlates with visual motion detection thresholds in deaf people. Hear. Res. 343 64–71. 10.1016/j.heares.2016.06.011
    1. Silton R. L., Heller W., Towers D. N., Engels A. S., Spielberg J. M., Edgar J. C., et al. (2010). The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control. Neuroimage 50 1292–1302. 10.1016/j.neuroimage.2009.12.061
    1. Silva P. H. R., Spedo C. T., Barreira A. A., Leoni R. F. (2018). Symbol digit modalities test adaptation for magnetic resonance imaging environment: a systematic review and meta-analysis. Mult. Scler. Relat. Disord. 20 136–143. 10.1016/j.msard.2018.01.014
    1. Smith A. (1982). Symbol Digit Modalities Test (SDMT): Manual. Los Angeles, CA: Western Psychological Services.
    1. Smith S., Pichora-Fuller M. (2015). Associations between speech understanding and auditory and visual tests of verbal working memory: effects of linguistic complexity, task, age, and hearing loss. Front. Psychol. 6:1394. 10.3389/fpsyg.2015.01394
    1. Song S.-K., Sun S.-W., Ramsbottom M. J., Chang C., Russell J., Cross A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17 1429–1436. 10.1006/nimg.2002.1267
    1. Sporns O., Cammoun L., Gigandet X., Thiran J., Meuli R., Hagmann P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106 2035–2040. 10.1073/pnas.0811168106
    1. Stevens C., Dow M., Schorr E., Neville H. (2017). Atypical white-matter microstructure in congenitally deaf adults: a region of interest and tractography study using diffusion-tensor imaging. Hear. Res. 343 72–82. 10.1016/j.heares.2016.07.008
    1. Supekar K., Menon V., Dougherty R. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19 72–78. 10.1093/cercor/bhn059
    1. Vanneste S., Plazier M., der Loo E., de Heyning P. V., Congedo M., De Ridder D. (2010). The neural correlates of tinnitus-related distress. Neuroimage 52 470–480. 10.1016/j.neuroimage.2010.04.029
    1. Wang L., Li X., Hsiao S., Lenz F., Bodner M., Zhou Y., et al. (2015). Differential roles of delay-period neural activity in the monkey dorsolateral prefrontal cortex in visual-haptic crossmodal working memory. Proc. Natl. Acad. Sci. U.S.A. 112 E214–E219. 10.1073/pnas.1410130112
    1. Wang X., Xu P., Li P., Wang Z., Zhao F., Gao Z., et al. (2016). Alterations in gray matter volume due to unilateral hearing loss. Sci. Rep. 6:25811. 10.1038/srep25811
    1. Wilson B. S., Tucci D. L., Merson M. H., O’Donoghue G. M. (2017). Global hearing health care: new findings and perspectives. Lancet 390 2503–2515. 10.1016/S0140-6736(17)31073-5
    1. Xia S., Song T., Che J., Li Q., Chai C., Zheng M., et al. (2017). Altered brain functional activity in infants with congenital bilateral severe sensorineural hearing loss: a resting-state functional MRI study under sedation. Neural Plast. 2017:8986362. 10.1155/2017/8986362
    1. Yang M., Chen H. J., Liu B., Huang Z. C., Feng Y., Li J., et al. (2014). Brain structural and functional alterations in patients with unilateral hearing loss. Hear. Res. 316 37–43. 10.1016/j.heares.2014.07.006
    1. Yeterian E. H., Pandya D. N., Tomaiuolo F., Petrides M. (2012). The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48 58–81. 10.1016/j.cortex.2011.03.004
    1. Zatorre R. J., Evans A. C., Meyer E., Gjedde A. (1992). Lateralization of phonetic and pitch discrimination in speech processing. Science 256 846–849. 10.1126/science.1589767
    1. Zikopoulos B., Barbas H. (2006). Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. J. Neurosci. 26 7348–7361. 10.1523/JNEUROSCI.5511-05.2006
    1. Zou Q., Miao X., Liu D., Wang D., Zhuo Y., Gao J. (2015). Reliability comparison of spontaneous brain activities between BOLD and CBF contrasts in eyes-open and eyes-closed resting states. Neuroimage 121 91–105. 10.1016/j.neuroimage.2015.07.044
    1. Zung W. W. (1971). A rating instrument for anxiety disorders. Psychosomatics 12 371–379. 10.1016/S0033-3182(71)71479-0

Source: PubMed

3
Subscribe