Prevention and Treatment of Sarcopenic Obesity in Women

Maria L Petroni, Maria T Caletti, Riccardo Dalle Grave, Alberto Bazzocchi, Maria P Aparisi Gómez, Giulio Marchesini, Maria L Petroni, Maria T Caletti, Riccardo Dalle Grave, Alberto Bazzocchi, Maria P Aparisi Gómez, Giulio Marchesini

Abstract

Sarcopenic obesity (SO) is referred to as the combination of obesity with low skeletal muscle mass and function. However, its definition and diagnosis is debated. SO represents a sizable risk factor for the development of disability, possibly with a worse prognosis in women. The present narrative review summarizes the current evidence on pharmacological, nutrition and exercise strategies on the prevention and/or treatment of SO in middle-aged and older-aged women. A literature search was carried out in Medline and Google Scholar between 29th January and 14th March 2019. Only controlled intervention studies on mid-age and older women whose focus was on the prevention and/or treatment of sarcopenia associated with obesity were included. Resistance training (RT) appears effective in the prevention of all components of SO in women, resulting in significant improvements in muscular mass, strength, and functional capacity plus loss of fat mass, especially when coupled with hypocaloric diets containing at least 0.8 g/kg body weight protein. Correction of vitamin D deficit has a favorable effect on muscle mass. Treatment of SO already established is yet unsatisfactory, although intense and prolonged RT, diets with higher (1.2 g/kg body weight) protein content, and soy isoflavones all look promising. However, further confirmatory research and trials combining different approaches are required.

Keywords: aging; body composition; exercise; hormone replacement treatment; nutrition; physical therapy; phytoestrogens; sarcopenic obesity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overview of interventions for the prevention and/or treatment of sarcopenic obesity in women based on a non-systematic review of 24 papers including 1820 women. The three layers of intervention are superimposed to show that they are not mutually exclusive. Resistance training is the most effective strategy with effects directly related to its frequency and duration; when coupled with hypocaloric diets with normal-to-high protein content the effects on both prevention and treatment are amplified. Vitamin D deficit should be corrected whenever present. Evidence on HRT and phytoestrogens needs confirmation by future research.

References

    1. Peralta M., Ramos M., Lipert A., Martins J., Marques A. Prevalence and trends of overweight and obesity in older adults from 10 European countries from 2005 to 2013. Scand. J. Public Health. 2018;46:522–529. doi: 10.1177/1403494818764810.
    1. Samper-Ternent R., Al Snih S. Obesity in Older Adults: Epidemiology and implications for Disability and Disease. Rev. Clin. Gerontol. 2012;22:10–34. doi: 10.1017/S0959259811000190.
    1. Zamboni M., Mazzali G., Fantin F., Rossi A., Di Francesco V. Sarcopenic obesity: A new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 2008;18:388–395. doi: 10.1016/j.numecd.2007.10.002.
    1. El Ghoch M., Calugi S., Dalle Grave R. Sarcopenic obesity: Definition, health consequences and clinical management. Open Nutr. J. 2018;12:70–73. doi: 10.2174/1874288201812010070.
    1. Martínez-Amat A., Aibar-Almazán A., Fábrega-Cuadros R., Cruz-Díaz D., Jiménez-García J.D., Pérez-López F.R., Achalandabaso A., Barranco-Zafra R., Hita-Contreras F. Exercise alone or combined with dietary supplements for sarcopenic obesity in community-dwelling older people: A systematic review of randomized controlled trials. Maturitas. 2018;110:92–103. doi: 10.1016/j.maturitas.2018.02.005.
    1. Trouwborst I., Verreijen A., Memelink R., Massanet P., Boirie Y., Weijs P., Tieland M. Exercise and Nutrition Strategies to Counteract Sarcopenic Obesity. Nutrients. 2018;10:605. doi: 10.3390/nu10050605.
    1. Chumlea W.C., Guo S.S., Kuczmarski R.J., Flegal K.M., Johnson C.L., Heymsfield S.B., Lukaski H.C., Friedl K., Hubbard V.S. Body composition estimates from NHANES III bioelectrical impedance data. Int. J. Obes. Relat. Metab. Disord. 2002;26:1596–1609. doi: 10.1038/sj.ijo.0802167.
    1. Welch G.W., Sowers M.R. The interrelationship between body topology and body composition varies with age among women. J. Nutr. 2000;130:2371–2377. doi: 10.1093/jn/130.9.2371.
    1. Tian S., Morio B., Denis J.-B., Mioche L. Age-related changes in segmental body composition by ethnicity and history of weight change across the adult lifespan. Int. J. Environ. Res. Public Health. 2016;13:821. doi: 10.3390/ijerph13080821.
    1. Baumgartner R.N., Wayne S.J., Waters D.L., Janssen I., Gallagher D., Morley J.E. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes. Res. 2004;12:1995–2004. doi: 10.1038/oby.2004.250.
    1. Burd N.A., Gorissen S.H., van Loon L.J.C. Anabolic resistance of muscle protein synthesis with aging. Exerc. Sport Sci. Rev. 2013;41:169–173. doi: 10.1097/JES.0b013e318292f3d5.
    1. Barazzoni R., Bischoff S., Boirie Y., Busetto L., Cederholm T., Dicker D., Toplak H., Van Gossum A., Yumuk V., Vettor R. Sarcopenic obesity: Time to meet the challenge. Obes. Facts. 2018;11:294–305. doi: 10.1159/000490361.
    1. Tallis J., James R.S., Seebacher F. The effects of obesity on skeletal muscle contractile function. Pt 13J. Exp. Biol. 2018;221 doi: 10.1242/jeb.163840.
    1. Hulens M., Vansant G., Lysens R., Claessens A.L., Muls E. Assessment of isokinetic muscle strength in women who are obese. J. Orthop. Sports Phys. Ther. 2002;32:347–356. doi: 10.2519/jospt.2002.32.7.347.
    1. Tomlinson D.J., Erskine R.M., Winwood K., Morse C.I., Onambélé G.L. The impact of obesity on skeletal muscle architecture in untrained young vs. old women. J. Anat. 2014;225:675–684. doi: 10.1111/joa.12248.
    1. Rastelli F., Capodaglio P., Orgiu S., Santovito C., Caramenti M., Cadioli M., Falini A., Rizzo G., Lafortuna C.L. Effects of muscle composition and architecture on specific strength in obese older women. Exp. Physiol. 2015;100:1159–1167. doi: 10.1113/EP085273.
    1. Tomlinson D.J., Erskine R.M., Morse C.I., Winwood K., Onambélé-Pearson G. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology. 2016;17:467–483. doi: 10.1007/s10522-015-9626-4.
    1. Gretebeck K.A., Sabatini L.M., Black D.R., Gretebeck R.J. Physical activity, functional ability, and obesity in older adults: A gender difference. J. Gerontol. Nurs. 2017;43:38–46. doi: 10.3928/00989134-20170406-03.
    1. Di Renzo L., Gratteri S., Sarlo F., Cabibbo A., Colica C., De Lorenzo A. Individually tailored screening of susceptibility to sarcopenia using p53 codon 72 polymorphism, phenotypes, and conventional risk factors. Dis. Markers. 2014:743634. doi: 10.1155/2014/743634.
    1. Di Renzo L., Sarlo F., Petramala L., Iacopino L., Monteleone G., Colica C., De Lorenzo A. Association between −308 G/A TNF-alpha polymorphism and appendicular skeletal muscle mass index as a marker of sarcopenia in normal weight obese syndrome. Dis. Markers. 2013;35:615–623. doi: 10.1155/2013/983424.
    1. Anagnostis P., Dimopoulou C., Karras S., Lambrinoudaki I., Goulis D.G. Sarcopenia in post-menopausal women: Is there any role for vitamin D? Maturitas. 2015;82:56–64. doi: 10.1016/j.maturitas.2015.03.014.
    1. Oh C., Jho S., No J.-K., Kim H.-S. Body composition changes were related to nutrient intakes in elderly men but elderly women had a higher prevalence of sarcopenic obesity in a population of Korean adults. Nutr. Res. 2015;35:1–6. doi: 10.1016/j.nutres.2014.07.018.
    1. Newman A.B., Lee J.S., Visser M., Goodpaster B.H., Kritchevsky S.B., Tylavsky F.A., Nevitt M., Harris T.B. Weight change and the conservation of lean mass in old age: The Health, Aging and Body Composition Study. Am. J. Clin. Nutr. 2005;82:872–878. doi: 10.1093/ajcn/82.4.872.
    1. Rossi A.P., Rubele S., Caliari C., Pedelini F., Calugi S., Soave F., Chignola E., Bazzani P.V., Dalle Grave R., Zamboni M. Weight cycling as a risk factor for low muscle mass and strength in a population of males and females with obesity. Obesity. 2019 doi: 10.1002/oby.22493.
    1. Kelly O.J., Gilman J.C., Boschiero D., Ilich J.Z. Osteosarcopenic Obesity: Current Knowledge, Revised Identification Criteria and Treatment Principles. Nutrients. 2019;11:747. doi: 10.3390/nu11040747.
    1. Prado C.M., Wells J.C., Smith S.R., Stephan B.C., Siervo M. Sarcopenic obesity: A critical appraisal of the current evidence. Clin. Nutr. 2012;31:583–601. doi: 10.1016/j.clnu.2012.06.010.
    1. American Society of Bariatric Physicians (ASBP) Obesity Algorithm. [(accessed on 26 May 2019)];2015 Available online: .
    1. Cesari M., Fielding R.A., Pahor M., Goodpaster B., Hellerstein M., Van Kan G.A., Anker S.D., Rutkove S., Vrijbloed J.W., Isaac M., et al. Biomarkers of sarcopenia in clinical trials-recommendations from the International Working Group on Sarcopenia. J. Cachexia Sarcopenia Muscle. 2012;3:181–190. doi: 10.1007/s13539-012-0078-2.
    1. Petroni M.L., Bertoli S., Maggioni M., Morini P., Battezzati A., Tagliaferri M.A. Feasibility of air plethysmography (BOD POD) in morbid obesity: A pilot study. Acta Diabetol. 2003;40:S59–S62. doi: 10.1007/s00592-003-0028-8.
    1. Ilich J.Z., Kelly O.J., Inglis J.E. Osteosarcopenic Obesity Syndrome: What Is It and How Can It Be Identified and Diagnosed? Curr. Gerontol. Geriatr. Res. 2016;2016:7325973. doi: 10.1155/2016/7325973.
    1. Newman A.B., Kupelian V., Visser M., Simonsick E., Goodpaster B., Nevitt M., Kritchevsky S.B., Tylavsky F.A., Rubin S.M., Harris T.B., et al. Sarcopenia: Alternative definitions and associations with lower extremity function. J. Am. Geriatr. Soc. 2003;51:1602–1609. doi: 10.1046/j.1532-5415.2003.51534.x.
    1. Domiciano D.S., Figueiredo C.P., Lopes J.B., Caparbo V.F., Takayama L., Menezes P.R., Bonfa E., Pereira R.M. Discriminating sarcopenia in community-dwelling older women with high frequency of overweight/obesity: The São Paulo Ageing & Health Study (SPAH) Osteoporos. Int. 2013;24:595–603. doi: 10.1007/s00198-012-2002-1.
    1. Morley J.E., Abbatecola A.M., Argiles J.M., Baracos V., Bauer J., Bhasin S., Cederholm T., Coats A.J.S., Cummings S.R., Evans W.J., et al. Sarcopenia with limited mobility: An international consensus. J. Am. Med. Dir. Assoc. 2011;12:403–409. doi: 10.1016/j.jamda.2011.04.014.
    1. Cawthon P.M., Travison T.G., Manini T.M., Patel S., Pencina K.M., Fielding R.A., Magaziner J.M., Newman A.B., Brown T., Kiel D.P., et al. Establishing the link between lean mass and grip strength cut-points with mobility disability and other health outcomes: Proceedings of the Sarcopenia Definition and Outcomes Consortium Conference. J. Gerontol. A Biol. Sci. Med. Sci. 2019 doi: 10.1093/gerona/glz081.
    1. Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Boirie Y., Cederholm T., Landi F., Martin F.C., Michel J.P., Rolland Y., Schneider S.M., et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034.
    1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169.
    1. El Ghoch M., Rossi A.P., Calugi S., Rubele S., Soave F., Zamboni M., Chignola E., Mazzali G., Bazzani P.V., Dalle Grave R. Physical performance measures in screening for reduced lean body mass in adult females with obesity. Nutr. Metab. Cardiovasc. Dis. 2018;28:917–921. doi: 10.1016/j.numecd.2018.06.008.
    1. Porter Starr K.N., Pieper C.F., Orenduff M.C., McDonald S.R., McClure L.B., Zhou R., Payne M.E., Bales C.W. Improved function with enhanced protein intake per meal: A pilot study of weight reduction in frail, obese older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2016;71:1369–1375. doi: 10.1093/gerona/glv210.
    1. Bales C.W., Porter Starr K.N., Orenduff M.C., McDonald S.R., Molnar K., Jarman A.K., Onyenwoke A., Mulder H., Payne M.E., Pieper C.F. Influence of protein intake, race, and age on responses to a weight-reduction intervention in obese women. Curr. Dev. Nutr. 2017;1:e000703. doi: 10.3945/cdn.117.000703.
    1. DeLany J.P., Jakicic J.M., Lowery J.B., Hames K.C., Kelley D.E., Goodpaster B.H. African American women exhibit similar adherence to intervention but lose less weight due to lower energy requirements. Int. J. Obes. 2014;38:1147–1152. doi: 10.1038/ijo.2013.240.
    1. Wingo B.C., Carson T.L., Ard J. Differences in weight loss and health outcomes among African Americans and whites in multicentre trials. Obes. Rev. 2014;15(Suppl. 4):46–61. doi: 10.1111/obr.12212.
    1. Sorensen M.B., Rosenfalck A.M., Hojgaard L., Ottesen B. Obesity and sarcopenia after menopause are reversed by sex hormone replacement therapy. Obes. Res. 2001;9:622–626. doi: 10.1038/oby.2001.81.
    1. El Hajj C., Fares S., Chardigny J.M., Boirie Y., Walrand S. Vitamin D supplementation and muscle strength in pre-sarcopenic elderly Lebanese people: A randomized controlled trial. Arch. Osteoporos. 2019;14:4. doi: 10.1007/s11657-018-0553-2.
    1. Cunha P.M., Ribeiro A.S., Tomeleri C.M., Schoenfeld B.J., Silva A.M., Souza M.F., Nascimento M.A., Sardinha L.B., Cyrino E.S. The effects of resistance training volume on osteosarcopenic obesity in older women. J. Sports Sci. 2018;36:1564–1571. doi: 10.1080/02640414.2017.1403413.
    1. De Oliveira Silva A., Dutra M., de Moraes W.M., Funghetto S., Lopes de Farias D., dos Santos P.H.F., Vieira D.C.L., da Cunha Nascimento D., Orsano V.S.M., Schoenfeld B.J., et al. Resistance training-induced gains in muscle strength, body composition, and functional capacity are attenuated in elderly women with sarcopenic obesity. Clin. Interv. Aging. 2018;13:411–417. doi: 10.2147/CIA.S156174.
    1. Davidson L.E., Hudson R., Kilpatrick K., Kuk J.L., McMillan K., Janiszewski P.M., Lee S., Lam M., Ross R. Effects of exercise modality on insulin resistance and functional limitation in older adults: A randomized controlled trial. Arch. Intern. Med. 2009;169:122–131. doi: 10.1001/archinternmed.2008.558.
    1. Mason C., Xiao L., Imayama I., Duggan C.R., Foster-Schubert K.E., Kong A., Neuhouser M.L., Alfano C.M. Influence of diet, exercise, and serum vitamin d on sarcopenia in postmenopausal women. Med. Sci. Sports Exerc. 2013;45:607–614. doi: 10.1249/MSS.0b013e31827aa3fa.
    1. Mojtahedi M.C., Thorpe M.P., Karampinos D.C., Johnson C.L., Layman D.K., Georgiadis J.G., Evans E.M. The effects of a higher protein intake during energy restriction on changes in body composition and physical function in older women. J. Gerontol. A Biol. Sci. Med. Sci. 2011;66A:1218–1225. doi: 10.1093/gerona/glr120.
    1. Galbreath M., Campbell B., LaBounty P., Bunn J., Dove J., Harvey T., Hudson G., Gutierrez J., Levers K., Galvan E., et al. Effects of adherence to a higher protein diet on weight loss, markers of health, and functional capacity in older women participating in a resistance-based exercise program. Nutrients. 2018;10:1070. doi: 10.3390/nu10081070.
    1. Figueroa A., Going S.B., Milliken L.A., Blew R.M., Sharp S., Teixeira P.J., Lohman T.G. Effects of exercise training and hormone replacement therapy on lean and fat mass in postmenopausal women. J. Gerontol. A Biol. Sci. Med. Sci. 2003;58:266–270. doi: 10.1093/gerona/58.3.M266.
    1. Shea M.K., Nicklas B.J., Marsh A.P., Houston D.K., Miller G.D., Isom S., Miller M.E., Carr J.J., Lyles M.F., Harris T.B., et al. The effect of pioglitazone and resistance training on body composition in older men and women undergoing hypocaloric weight loss. Obesity. 2011;19:1636–1646. doi: 10.1038/oby.2010.327.
    1. Corica F., Bianchi G., Corsonello A., Mazzella N., Lattanzio F., Marchesini G. Obesity in the context of aging: Quality of lfe considerations. Pharmacoeconomics. 2015;33:655–672. doi: 10.1007/s40273-014-0237-8.
    1. Aleman-Mateo H., Macias L., Esparza-Romero J., Astiazaran-Garcia H., Blancas A.L. Physiological effects beyond the significant gain in muscle mass in sarcopenic elderly men: Evidence from a randomized clinical trial using a protein-rich food. Clin. Interv. Aging. 2012;7:225–234. doi: 10.2147/CIA.S32356.
    1. Muscariello E., Nasti G., Siervo M., Di Maro M., Lapi D., D’Addio G., Colantuoni A. Dietary protein intake in sarcopenic obese older women. Clin. Interv. Aging. 2016;11:133–140. doi: 10.2147/CIA.S96017.
    1. Sammarco R., Marra M., Di Guglielmo M.L., Naccarato M., Contaldo F., Poggiogalle E., Donini L.M., Pasanisi F. Evaluation of hypocaloric diet with protein supplementation in middle-aged sarcopenic obese women: A pilot study. Obes. Facts. 2017;10:160–167. doi: 10.1159/000468153.
    1. Aubertin-Leheudre M., Lord C., Khalil A., Dionne I.J. Six months of isoflavone supplement increases fat-free mass in obese–sarcopenic postmenopausal women: A randomized double-blind controlled trial. Eur. J. Clin. Nutr. 2007;61:1442–1444. doi: 10.1038/sj.ejcn.1602695.
    1. Gadelha A.B., Paiva F.M., Gauche R., de Oliveira R.J., Lima R.M. Effects of resistance training on sarcopenic obesity index in older women: A randomized controlled trial. Arch. Gerontol. Geriatr. 2016;65:168–173. doi: 10.1016/j.archger.2016.03.017.
    1. Chen H.-T., Chung Y.-C., Chen Y.-J., Ho S.-Y., Wu H.-J. Effects of different types of exercise on body composition, muscle strength, and IGF-1 in the elderly with sarcopenic obesity. J. Am. Geriatr. Soc. 2017;65:827–832. doi: 10.1111/jgs.14722.
    1. Park J., Kwon Y., Park H. Effects of 24-week aerobic and resistance training on carotid artery intima-media thickness and flow velocity in elderly women with sarcopenic obesity. J. Atheroscler. Thromb. 2017;24:1117–1124. doi: 10.5551/jat.39065.
    1. Liao C.-D., Tsauo J.-Y., Huang S.-W., Ku J.-W., Hsiao D.-J., Liou T.-H. Effects of elastic band exercise on lean mass and physical capacity in older women with sarcopenic obesity: A randomized controlled trial. Sci. Rep. 2018;8:2317. doi: 10.1038/s41598-018-20677-7.
    1. Huang S.-W., Ku J.-W., Lin L.-F., Liao C.-D., Chou L.-C., Liou T.-H. Body composition influenced by progressive elastic band resistance exercise of sarcopenic obesity elderly women: A pilot randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2017;53:556–563. doi: 10.23736/S1973-9087.17.04443-4.
    1. Balachandran A., Krawczyk S.N., Potiaumpai M., Signorile J.F. High-speed circuit training vs. hypertrophy training to improve physical function in sarcopenic obese adults: A randomized controlled trial. Exp. Gerontol. 2014;60:64–71. doi: 10.1016/j.exger.2014.09.016.
    1. Kemmler W., Teschler M., Weissenfels A., Bebenek M., von Stengel S., Kohl M., Freiberger E., Goisser S., Jakob F., Sieber C., et al. Whole-body electromyostimulation to fight sarcopenic obesity in community-dwelling older women at risk. Results of the randomized controlled FORMOsA-sarcopenic obesity study. Osteoporos. Int. 2016;27:3261–3270. doi: 10.1007/s00198-016-3662-z.
    1. Kim H., Kim M., Kojima N., Fujino K., Hosoi E., Kobayashi H., Somekawa S., Niki Y., Yamashiro Y., Yoshida H. Exercise and nutritional supplementation on community-dwelling elderly Japanese women with sarcopenic obesity: A randomized controlled trial. J. Am. Med. Dir. Assoc. 2016;17:1011–1019. doi: 10.1016/j.jamda.2016.06.016.
    1. Nicklas B.J., Chmelo E., Delbono O., Carr J.J., Lyles M.F., Marsh A.P. Effects of resistance training with and without caloric restriction on physical function and mobility in overweight and obese older adults: A randomized controlled trial. Am. J. Clin. Nutr. 20151;101:991–999. doi: 10.3945/ajcn.114.105270.
    1. Poggiogalle E., Migliaccio S., Lenzi A., Donini L.M. Treatment of body composition changes in obese and overweight older adults: Insight into the phenotype of sarcopenic obesity. Endocrine. 2014;47:699–716. doi: 10.1007/s12020-014-0315-x.
    1. Cava E., Yeat N.C., Mittendorfer B. Preserving muscle mass during weight loss. Adv. Nutr. 2017;8:511–519. doi: 10.3945/an.116.014506.
    1. Bopp M.J., Houston D.K., Lenchik L., Easter L., Kritchevsky S.B., Nicklas B.J. Lean mass loss is associated with low protein intake during dietary-induced weight loss in postmenopausal women. J. Am. Diet. Assoc. 2008;108:1216–1220. doi: 10.1016/j.jada.2008.04.017.
    1. Backx E.M., Tieland M., Borgonjen-van den Berg K.J., Claessen P.R., van Loon L.J., de Groot L.C. Protein intake and lean body mass preservation during energy intake restriction in overweight older adults. Int. J. Obes. 2016;40:299–304. doi: 10.1038/ijo.2015.182.
    1. Beavers K.M., Nesbit B.A., Kiel J.R., Sheedy J.L., Arterburn L.M., Collins A.E., Ford S.A., Henderson R.M., Coleman C.D., Beavers D.P. Effect of an energy-restricted, nutritionally complete, higher protein meal plan on body composition and mobility in older adults with obesity: A randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 2018 doi: 10.1093/gerona/gly146.
    1. Villareal D.T., Aguirre L., Gurney A.B., Waters D.L., Sinacore D.R., Colombo E., Armamento-Villareal R., Qualls C. Aerobic or resistance exercise, or both, in dieting obese older adults. N. Engl. J. Med. 2017;376:1943–1955. doi: 10.1056/NEJMoa1616338.
    1. Frimel T.N., Sinacore D.R., Villareal D.T. Exercise attenuates the weight-loss-induced reduction in muscle mass in frail obese older adults. Med. Sci. Sports Exerc. 2008;40:1213–1219. doi: 10.1249/MSS.0b013e31816a85ce.
    1. Houston D.K., Miller M.E., Kitzman D.W., Rejeski W.J., Messier S.P., Lyles M.F., Kritchevsky S.B., Nicklas B.J. Long-term effects of randomization to a weight loss intervention in older adults: A pilot study. J. Nutr. Gerontol. Geriatr. 2019;38:83–99. doi: 10.1080/21551197.2019.1572570.
    1. Anderson L.J., Liu H., Garcia J.M. Sex Differences in Muscle Wasting. In: Mauvais-Jarvis F., editor. Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity. Springer International Publishing; Cham, Switzerland: 2017. pp. 153–197.
    1. Oikawa S.Y., Callahan D.M., McGlory C., Toth M.J., Phillips S.M. Maintenance of skeletal muscle function following reduced daily physical activity in healthy older adults: A pilot trial. Appl. Physiol. Nutr. Metab. 2019 doi: 10.1139/apnm-2018-0631.

Source: PubMed

3
Subscribe