The Ketogenic Diet: Is It an Answer for Sarcopenic Obesity?

Zahra Ilyas, Simone Perna, Tariq A Alalwan, Muhammad Nauman Zahid, Daniele Spadaccini, Clara Gasparri, Gabriella Peroni, Alessandro Faragli, Alessio Alogna, Edoardo La Porta, Ali Ali Redha, Massimo Negro, Giuseppe Cerullo, Giuseppe D'Antona, Mariangela Rondanelli, Zahra Ilyas, Simone Perna, Tariq A Alalwan, Muhammad Nauman Zahid, Daniele Spadaccini, Clara Gasparri, Gabriella Peroni, Alessandro Faragli, Alessio Alogna, Edoardo La Porta, Ali Ali Redha, Massimo Negro, Giuseppe Cerullo, Giuseppe D'Antona, Mariangela Rondanelli

Abstract

This review aims to define the effectiveness of the ketogenic diet (KD) for the management of sarcopenic obesity. As the combination of sarcopenia and obesity appears to have multiple negative metabolic effects, this narrative review discusses the effects of the ketogenic diet as a possible synergic intervention to decrease visceral adipose tissue (VAT) and fatty infiltration of the liver as well as modulate and improve the gut microbiota, inflammation and body composition. The results of this review support the evidence that the KD improves metabolic health and expands adipose tissue γδ T cells that are important for glycaemia control during obesity. The KD is also a therapeutic option for individuals with sarcopenic obesity due to its positive effect on VAT, adipose tissue, cytokines such as blood biochemistry, gut microbiota, and body composition. However, the long-term effect of a KD on these outcomes requires further investigations before general recommendations can be made.

Keywords: cytokine; fatty liver; gut microbiota; ketogenic diet; physical inactivity; sarcopenia; visceral adipose tissue (VAT).

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Prado C.M.M., Wells J.C.K., Smith S.R., Stephan B.C.M., Siervo M. Sarcopenic obesity: A Critical appraisal of the current evidence. Clin. Nutr. 2012;31:583–601.
    1. Barazzoni R., Bischoff S.C., Boirie Y., Busetto L., Cederholm T., Dicker D., Toplak H., Van Gossum A., Yumuk V., Vettor R. Sarcopenic obesity: Time to meet the challenge. Clin. Nutr. 2018;37:1787–1793. doi: 10.1016/j.clnu.2018.04.018.
    1. Alalwan T.A. Phenotypes of Sarcopenic Obesity: Exploring the Effects on Peri-Muscular Fat, the Obesity Paradox, Hormone-Related Responses and the Clinical Implications. Geriatrics. 2020;5:8. doi: 10.3390/geriatrics5010008.
    1. Collins K.H., Paul H.A., Hart D.A., Reimer R.A., Smith I.C., Rios J.L., Seerattan R.A., Herzog W. A High-fat high-sucrose diet rapidly alters muscle integrity, inflammation, and gut microbiota in male rats. Sci. Rep. 2016;6:37278.
    1. Hashimoto Y., Nakao C., Yamazaki R., Hiroyama H., Nemoto H., Yamamoto T., Sakurai S., Oike M., Wada H., Yoshida N., et al. Short-term feeding at the wrong time is sufficient to desynchronize peripheral clocks and induce obesity with hyperphagia, physical inactivity and metabolic disorders in mice. Metabolism. 2016;65:714–727.
    1. El Ghoch M., Calugi S., Grave R.D. Sarcopenic Obesity: Definition, Health Consequences and Clinical Management. Open Nutr. J. 2018;12:70–73. doi: 10.2174/1874288201812010070.
    1. Yusuf S., Hawken S., Ounpuu S., Dans T., Avezum A., Lanas F., McQueen M., Budaj A., Pais P., Varigos J., et al. Interheart Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet. 2004;364:937–952. doi: 10.1016/S0140-6736(04)17018-9.
    1. Forsythe L.K., Wallace J.M.W., Livingstone M.B.E. Obesity, and inflammation: The effects of weight loss. Nutr. Res. Rev. 2008;21:117–133. doi: 10.1017/S0954422408138732.
    1. Zamboni M., Mazzali G., Fantin F., Rossi A., Di Francesco V. Sarcopenic obesity: A new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 2008;18:388–395.
    1. Park H.S., Park J.Y., Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6. Diabetes Res. Clin. Pract. 2005;69:29–35. doi: 10.1016/j.diabres.2004.11.007.
    1. Polito R., Nigro E., Messina A., Monaco M.L., Monda V., Scudiero O., Cibelli G., Valenzano A., Picciocchi E., Zammit C., et al. Adiponectin and orexin—A as a potential immunity link between Adipose tissue and central nervous system. Front. Physiol. 2018;9:982.
    1. Bray G.A., Kim K.K., Wilding J.P.H. Obesity: A chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes. Rev. 2017;18:715–723. doi: 10.1111/obr.12551.
    1. Kelly O.J., Gilman J.C., Boschiero D., Ilich J.Z. Osteosarcopenic Obesity: Current Knowledge, Revised Identification Criteria and Treatment Principles. Nutrients. 2019;11:747. doi: 10.3390/nu11040747.
    1. Dimitri P., Bishop N., Walsh J.S., Eastell R. Obesity is a risk factor for fracture in children but is protective against fracture in adults: A paradox. Bone. 2012;50:457–466.
    1. Perna S., Peroni G., Anna F.M., Bartolo A., Naso M., Miccono A., Rondanelli M. Sarcopenia and sarcopenic obesity in comparison: Prevalence, metabolic profile, and key differences. A cross-sectional study in Italian hospitalized elderly. Aging Clin. Exp. Res. 2017;29:1249–1258. doi: 10.1007/s40520-016-0701-8.
    1. JafariNasabian P., Inglis J., Kelly O., Ilich J. Osteosarcopenic obesity in women: Impact, prevalence, and management challenges. Int. J. Womens Health. 2017;9:33–42. doi: 10.2147/IJWH.S106107.
    1. Ilich J.Z., Kelly O.J., Inglis J.E. Osteosarcopenic Obesity Syndrome: What Is It and How Can It Be Identified and Diagnosed? Curr. Gerontol. Geriatr. Res. 2016;2016:7325973. doi: 10.1155/2016/7325973.
    1. Verhage T., Heijdra Y., Molema J., Vercoulen J., Dekhuijzen R. Associations of muscle depletion with health status. Another gender difference in COPD? Clin. Nutr. 2011;30:332–338. doi: 10.1016/j.clnu.2010.09.013.
    1. Hara N., Iwasa M., Sugimoto R., Mifuji-Moroka R., Yoshikawa K., Terasaka E., Hattori A., Ishidome M., Kobayashi Y., Hasegawa H., et al. Sarcopenia and Sarcopenic Obesity Are Prognostic Factors for Overall Survival in Patients with Cirrhosis. Intern. Med. 2016;55:863–870. doi: 10.2169/internalmedicine.55.5676.
    1. Egger M., Smith G.D., Altman D.G. Systematic Reviews in Health Care: Meta-Analysis in Context. John Wiley & Sons; Chichester, UK: 2001.
    1. Walton C.M., Jacobsen S.M., Dallon B.W., Saito E.R., Bennett S.L., Davidson L.E., Thomson D.M., Hyldahl R.D., Bikman B.T. Ketones Elicit Distinct Alterations in Adipose Mitochondrial Bioenergetics. Int. J. Mol. Sci. 2020;21:6255. doi: 10.3390/ijms21176255.
    1. Roberts M.N., Wallace M.A., Tomilov A.A., Zhou Z., Marcotte G.R., Tran D., Perez G., Gutierrez-Casado E., Koike S., Knotts T.A., et al. A ketogenic diet extends longevity and healthspan in adult mice. Elsevier. 2017;26:539–546. doi: 10.1016/j.cmet.2017.08.005.
    1. Gutiérrez-Casado E., Khraiwesh H., López-Domínguez J.A., Montero-Guisado J., López-Lluch G., Navas P., De Cabo R., Ramsey J.J., González-Reyes J.A., Villalba J.M. The Impact of Aging, Calorie Restriction and Dietary Fat on Autophagy Markers and Mitochondrial Ultrastructure and Dynamics in Mouse Skeletal Muscle. J. Gerontol. A Biol. Sci. Med. Sci. 2019;74:760–769. doi: 10.1093/gerona/gly161.
    1. Parry H.A., Kephart W.C., Mumford P.W., Romero M.A., Mobley C.B., Zhang Y., Roberts M.D., Kavazis A.N. Ketogenic diet increases mitochondria volume in the liver and skeletal muscle without altering oxidative stress markers in rats. Heliyon. 2018;4:975. doi: 10.1016/j.heliyon.2018.e00975.
    1. López-Domínguez J.A., Ramsey J.J., Tran D., Imai D.M., Koehne A., Laing S.T., Griffey M., Kim K., Sandra L.T., Hagopian K., et al. The influence of dietary fat source on life span in calorie restricted mice. J. Gerontol. Ser. A. 2014;70:1181–1188.
    1. Merra G., Miranda R., Barrucco S., Gualtieri P., Mazza M., Moriconi E., Marchetti M., Chang T.F.M., De Lorenzo A., Di Renzo L. Very-low-calorie ketogenic diet with aminoacid supplement versus very low restricted-calorie diet for preserving muscle mass during weight loss: A pilot double-blind study. Eur. Rev. Med. Pharmacol. Sci. 2016;20:2613–2621.
    1. Rauch J.T., Silva J.E., Lowery R.P., McCleary S.A., Shields K.A., Ormes J.A., Sharp M.H., Weiner S.I., Georges J.I., Volek J.S., et al. The effects of ketogenic dieting on skeletal muscle and fat mass. J. Int. Soc. Sports Nutr. 2014;11:40–56. doi: 10.1186/1550-2783-11-S1-P40.
    1. Ley R., Peterson D., Cell J.G. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Elsevier. 2006;124:837–848.
    1. Benlloch M., Mar López-Rodríguez M., Cuerda-Ballester M., Drehmer E., Carrera S., Ceron J.J., Tvarijonaviciute A., Chirivella J., Fernández-García D., De La J.E., et al. Satiating Effect of a Ketogenic Diet and Its Impact on Muscle Improvement and Oxidation State in Multiple Sclerosis Patients. Nutrients. 2019;11:1156. doi: 10.3390/nu11051156.
    1. Zhang J.M., An J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007;45:27–37.
    1. Watanabe M., Tozzi R., Risi R., Tuccinardi D., Mariani S., Basciani S., Spera G., Lubrano C., Gnessi L. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: A comprehensive review of the literature. Obes. Rev. 2020;21:e13024. doi: 10.1111/obr.13024.
    1. Lim J.P., Leung B.P., Ding Y.Y., Tay L., Ismail N.H., Yeo A., Yew S., Chong M.S. Monocyte chemoattractant protein-1: A proinflammatory cytokine elevated in sarcopenic obesity. Clin. Interv. Aging. 2015;10:605–609. doi: 10.2147/CIA.S78901.
    1. Cohen C.W., Fontaine K.R., Arend R.C., Alvarez R.D., Leath C.A., III, Huh W.K., Bevis K.S., Kim K.H., Straughn J.M., Jr., Gower B.A. A ketogenic diet reduces central obesity and serum insulin in women with ovarian or endometrial cancer. J. Nutr. 2018;148:1253–1260.
    1. Roubenoff R., Parise H., Payette H.A., Abad L.W., D’Agostino R., Jacques P.F., Wilson P.W.F., Dinarello C.A., Harris T.B. Cytokines, insulin-like growth factor 1, sarcopenia, and mortality in very old community-dwelling men and women: The Framingham Heart Study. Am. J. Med. 2003;115:429–435. doi: 10.1016/j.amjmed.2003.05.001.
    1. Bertoli S., Neri I.G., Trentani C., Ferraris C., De Amicis R., Battezzati A., Veggiotti P., De Giorgis V., Tagliabue A. Short-term effects of ketogenic diet on anthropometric parameters, body fat distribution, and inflammatory cytokine production in GLUT1 deficiency syndrome. Nutrition. 2015;31:981–987. doi: 10.1016/j.nut.2015.02.017.
    1. Paoli A. Ketogenic diet for obesity: Friend or foe? Int. J. Environ. Res. Public Health. 2014;11:2092–2107. doi: 10.3390/ijerph110202092.
    1. Todoric J., Löffler M., Huber J., Bilban M., Reimers M., Kadl A., Zeyda M., Waldhäusl W., Stulnig T.M. Adipose tissue inflammation induced by high-fat diet in obese diabetic mice is prevented by n−3 polyunsaturated fatty acids. Diabetologia. 2006;49:2109–2119.
    1. Kinzig K.P., Honors M.A., Hargrave S. Insulin sensitivity and glucose tolerance are altered by maintenance on a ketogenic diet. Endocrinology. 2010;151:3105–3114. doi: 10.1210/en.2010-0175.
    1. Spranger J., Kroke A., Möhlig M., Hoffmann K., Bergmann M.M., Ristow M., Boeing H., Pfeiffer A.F. Inflammatory cytokines and the risk to develop type 2 diabetes: Results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)—Potsdam Study. Diabetes. 2003;52:812–817. doi: 10.2337/diabetes.52.3.812.
    1. Alexopoulos N., Katritsis D., Raggi P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis. 2014;233:104–112.
    1. Okumura S., Kaido T., Hamaguchi Y., Kobayashi A., Shirai H., Yao S., Yagi S., Kamo N., Hatano E., Okajima H., et al. Visceral Adiposity and Sarcopenic Visceral Obesity are Associated with Poor Prognosis After Resection of Pancreatic Cancer. Ann. Surg. Oncol. 2017;24:3732–3740. doi: 10.1245/s10434-017-6077-y.
    1. Baumgartner R.N., Wayne S.J., Waters D.L., Janssen I., Gallagher D., Morley J.E. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes. Res. 2004;12:1995–2004. doi: 10.1038/oby.2004.250.
    1. Goldberg E.L., Shchukina I., Asher J.L., Sidorov S., Artyomov M.N., Dixit V.D. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat. Metab. 2020;2:50–61. doi: 10.1038/s42255-019-0160-6.
    1. Cunha G.M., Correa de Mello L.L., Hasenstab K.A., Spina L., Bussade I., Prata Mesiano J.M., Coutinho W., Guzman G., Sajoux I. MRI estimated changes in visceral adipose tissue and liver fat fraction in patients with obesity during a very low-calorie-ketogenic diet compared to a standard low-calorie diet. Clin. Radiol. 2020;75:526–532. doi: 10.1016/j.crad.2020.02.014.
    1. Valenzano A., Polito R., Trimigno V., Di Palma A., Moscatelli F., Corso G., Sessa F., Salerno M., Montana A., Di Nunno N., et al. Effects of Very Low-Calorie Ketogenic Diet on the Orexinergic System, Visceral Adipose Tissue, and ROS Production. Antioxidants. 2019;8:643. doi: 10.3390/antiox8120643.
    1. Kong Z., Sun S., Shi Q., Zhang H., Tong T.K., Nie J. Short-Term Ketogenic Diet Improves Abdominal Obesity in Overweight/Obese Chinese Young Females. Front. Physiol. 2020;11:856.
    1. Takamura T., Misu H., Ota T., Kaneko S. Fatty liver as a consequence and cause of insulin resistance: Lessons from type 2 diabetic liver. Endocr. J. 2012;59:745–763. doi: 10.1507/endocrj.EJ12-0228.
    1. Petta S., Ciminnisi S., Di Marco V., Cabibi D., Cammà C., Licata A., Marchesini G., Craxì A. Sarcopenia is associated with severe liver fibrosis in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2017;45:510–518. doi: 10.1111/apt.13889.
    1. Petta S., Cammà C., Cabibi D., Di Marco V., Craxì A. Hyperuricemia is associated with histological liver damage in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2011;34:757–766. doi: 10.1111/j.1365-2036.2011.04788.x.
    1. Petta S., Muratore C., Craxì A. Non-alcoholic fatty liver disease pathogenesis: The present and the future. Dig. Liver Dis. 2009;41:615–625.
    1. Calvani R., Picca A., Marini F., Biancolillo A., Gervasoni J., Persichilli S., Primiano A., Coelho-Junior H.J., Bossola M., Urbani A., et al. A Distinct Pattern of Circulating Amino Acids Characterizes Older Persons with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study. Nutrients. 2018;10:1691. doi: 10.3390/nu10111691.
    1. Tendler D., Lin S., Yancy W.S., Mavropoulos J., Sylvestre P., Rockey D.C., Westman E.C. The effect of a low-carbohydrate, ketogenic diet on nonalcoholic fatty liver disease: A pilot study. Dig. Dis. Sci. 2007;52:589–593. doi: 10.1007/s10620-006-9433-5.
    1. Watanabe M., Risi R., Camajani E., Contini S., Persichetti A., Tuccinardi D., Ernesti I., Mariani S., Lubrano C., Genco A., et al. Baseline HOMA IR and Circulating FGF21 Levels Predict NAFLD Improvement in Patients Undergoing a Low Carbohydrate Dietary Intervention for Weight Loss: A Prospective Observational Pilot Study. Nutrients. 2020;12:2141. doi: 10.3390/nu12072141.
    1. Browning J.D., Baker J.A., Rogers T., Davis J., Satapati S., Burgess S.C. Short-term weight loss and hepatic triglyceride reduction: Evidence of a metabolic advantage with dietary carbohydrate restriction. Am. J. Clin. Nutr. 2011;93:1048–1052. doi: 10.3945/ajcn.110.007674.
    1. Kennedy A.R., Pissios P., Otu H., Xue B., Asakura K., Furukawa N., Marino F.E., Liu F.F., Kahn B.B., Libermann T.A., et al. A high-fat, ketogenic diet induces a unique metabolic state in mice. Am. J. Physiol. Endocrinol. Metab. 2007;292:1724–1739. doi: 10.1152/ajpendo.00717.2006.
    1. Longland T.M., Oikawa S.Y., Mitchell C.J., DeVries M.C., Phillips S.M. Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: A randomized trial. Am. J. Clin. Nutr. 2016;103:738–746. doi: 10.3945/ajcn.115.119339.
    1. Holland A.M., Kephart W.C., Mumford P.W., Mobley C.B., Lowery R.P., Shake J.J., Patel R.K., Healy J.C., McCullough D.J., Kluess H.A., et al. Effects of a ketogenic diet on adipose tissue, liver, and serum biomarkers in sedentary rats and rats that exercised via resisted voluntary wheel running. Am. J. Physiol.—Regul. Integr. Comp. Physiol. 2016;311:R337–R351. doi: 10.1152/ajpregu.00156.2016.
    1. Duranti S., Lugli G.A., Mancabelli L., Armanini F., Turroni F., James K., Ferretti P., Gorfer V., Ferrario C., Milani C., et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome. 2017;5:66. doi: 10.1186/s40168-017-0282-6.
    1. Million M., Journal D.R.-H.M. Linking gut redox to human microbiome. Elsevier. 2018;10:27–32. doi: 10.1016/j.humic.2018.07.002.
    1. Claesson M., Jeffery I., Conde S., Nature S.P. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–184. doi: 10.1038/nature11319.
    1. Ticinesi A., Nouvenne A., Cerundolo N., Catania P., Prati B., Tana C., Meschi T. Gut Microbiota, Muscle Mass, and Function in Aging: A Focus on Physical Frailty and Sarcopenia. Nutrients. 2019;11:1633. doi: 10.3390/nu11071633.
    1. Ticinesi A., Lauretani F., Milani C., Nouvenne A., Tana C., Del Rio D., Maggio M., Ventura M., Meschi T. Aging Gut Microbiota at the Crossroad between Nutrition, Physical Frailty, and Sarcopenia: Is There a Gut-Muscle Axis? Nutrients. 2017;9:1303. doi: 10.3390/nu9121303.
    1. Rondanelli M., Giacosa A., Faliva M.A., Perna S., Allieri F., Castellazzi A.M. Review on microbiota and effectiveness of probiotics use in older. World J. Clin. Cases. 2015;3:156–162. doi: 10.12998/wjcc.v3.i2.156.
    1. Dethlefsen L., Huse S., Sogin M.L., Relman D.A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16s rRNA sequencing. PLoS Biol. 2008;6:2383–2400. doi: 10.1371/journal.pbio.0060280.
    1. Thevaranjan N., Puchta A., Schulz C., Naidoo A., Szamosi J.C., Verschoor C.P., Loukov D., Schenck L.P., Jury J., Foley K.P., et al. Age-Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage Dysfunction. Cell Host Microbe. 2017;21:455–466. doi: 10.1016/j.chom.2017.03.002.
    1. Newell C., Bomhof M.R., Reimer R.A., Hittel D.S., Rho J.M., Shearer J. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol. Autism. 2016;7:37. doi: 10.1186/s13229-016-0099-3.
    1. Xie G., Zhou Q., Qiu C.Z., Dai W.K., Wang H.P., Li Y.H., Liao J.X., Lu X.G., Lin S.F., Ye J.H., et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J. Gastroenterol. 2017;23:6164–6171. doi: 10.3748/wjg.v23.i33.6164.
    1. Tagliabue A., Ferraris C., Uggeri F., Trentani C., Bertoli S., de Giorgis V., Veggiotti P., Elli M. Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 Deficiency Syndrome: A 3-month prospective observational study. Clin. Nutr. Eur. Soc. Clin. Nutr. Metab. 2017;17:33–37. doi: 10.1016/j.clnesp.2016.11.003.
    1. Wilson J.M., Lowery R.P., Roberts M.D., Sharp M.H., Joy J.M., Shields K.A., Partl J.M., Volek J.S., DʼAgostino D.P. Effects of Ketogenic Dieting on Body Composition, Strength, Power, and Hormonal Profiles in Resistance Training Men. J. Strength Cond. Res. 2020;34:3463–3474. doi: 10.1519/JSC.0000000000001935.
    1. Mohorko N., Černelič-Bizjak M., Poklar-Vatovec T., Grom G., Kenig S., Petelin A., Jenko-Pražnikar Z. Weight loss, improved physical performance, cognitive function, eating behavior, and metabolic profile in a 12-week ketogenic diet in obese adults. Nutr. Res. 2019;62:64–77. doi: 10.1016/j.nutres.2018.11.007.
    1. Anguah K., Syed-Abdul M., Hu Q., Jacome-Sosa M., Heimowitz C., Cox V., Parks E. Changes in Food Cravings and Eating Behavior after a Dietary Carbohydrate Restriction Intervention Trial. Nutrients. 2019;12:52. doi: 10.3390/nu12010052.
    1. Gregory R.M. A Low-Carbohydrate Ketogenic Diet Combined with 6-Weeks of Crossfit Training Improves Body Composition and Performance. Int. J. Sport. Exerc. Med. 2017;3:54. doi: 10.23937/2469-5718/1510054.

Source: PubMed

3
Subscribe