Cell-Free DNA-Based Multi-Cancer Early Detection Test in an Asymptomatic Screening Population (NHS-Galleri): Design of a Pragmatic, Prospective Randomised Controlled Trial

Richard D Neal, Peter Johnson, Christina A Clarke, Stephanie A Hamilton, Nan Zhang, Harpal Kumar, Charles Swanton, Peter Sasieni, Richard D Neal, Peter Johnson, Christina A Clarke, Stephanie A Hamilton, Nan Zhang, Harpal Kumar, Charles Swanton, Peter Sasieni

Abstract

We report the design of the NHS-Galleri trial (ISRCTN91431511), aiming to establish whether a multi-cancer early detection (MCED) test that screens asymptomatic individuals for cancer can reduce late-stage cancer incidence. This randomised controlled trial has invited approximately 1.5 million persons and enrolled over 140,000 from the general population of England (50-77 years; ≥3 years without cancer diagnosis or treatment; not undergoing investigation for suspected cancer). Blood is being collected at up to three annual visits. Following baseline blood collection, participants are randomised 1:1 to the intervention (blood tested by MCED test) or control (blood stored) arm. Only participants in the intervention arm with a cancer signal detected have results returned and are referred for urgent investigations and potential treatment. Remaining participants in both arms stay blinded and return for their next visit. Participants are encouraged to continue other NHS cancer screening programmes and seek help for new or unusual symptoms. The primary objective is to demonstrate a statistically significant reduction in the incidence rate of stage III and IV cancers diagnosed in the intervention versus control arm 3-4 years after randomisation. NHS-Galleri will help determine the clinical utility of population screening with an MCED test.

Keywords: cancer screening; cell-free nucleic acids; efficient design; liquid biopsy; multi-cancer early detection; population screening; randomised controlled trial.

Conflict of interest statement

R.D.N. provides his services as Co-Chief Investigator to the NHS-Galleri trial through university consultancy funded by GRAIL, LLC, a subsidiary of Illumina, Inc., to the University of Exeter; both he and the University of Exeter financially benefit from this partnership. C.C., N.Z. and H.K. are employees of GRAIL, LLC, a subsidiary of Illumina, Inc., and hold stock in Illumina, Inc. S.H. is an employee of Adela, Inc., was an employee of GRAIL, LLC, a subsidiary of Illumina, Inc., and holds stock in Illumina, Inc. C.S. provides his services as Co-Chief Investigator to the NHS-Galleri trial through university consultancy funded by GRAIL, LLC, a subsidiary of Illumina, Inc.,to University College London Business, for another study; is an AstraZeneca advisory board member and Chief Investigator for the AZ MeRmaiD 1 and 2 clinical trials; C.S. is paid member of GRAIL’s Scientific Advisory Board (SAB); received grant funding from AstraZeneca, Boehringer-Ingelheim, Bristol Myers Squibb, Pfizer, Roche-Ventana, Invitae, and Ono Pharmaceutical; receives consultant fees from Achilles Therapeutics (also SAB member), Genentech, Medixci, Roche Innovation Centre Shanghai, Bicycle Therapeutics (also SAB member), and the Sarah Canon Research Institute; and has received honoraria from Amgen, AstraZeneca, Pfizer, Novartis, GlaxoSmithKline, MSD, Bristol Myers Squibb, Illumina, Roche-Ventana, Metabomed (until July 2022); had stock options in Apogen Biotechnologies and GRAIL until June 2021; currently has stock options in Epic Bioscience, Bicycle Therapeutics, and Achilles Therapeutics; and is co-founder of Achilles Therapeutics. P.S. is a paid member of GRAIL’s Scientific Advisory Board and the Director of the The Cancer Research UK and King’s College London Cancer Prevention Trials Unit that is contracted by GRAIL, LLC, a subsidiary of Illumina, Inc. to run the NHS-Galleri trial, and receives consultant fees from Roche. P.J. receives honoraria from Genmab, Epizyme, and InCyte, and acts as a consultant for Epizyme.

Figures

Figure 1
Figure 1
An overview of the NHS-Galleri trial. GP, general practitioner; MCED, multi-cancer early detection; NHS, National Health Service. * Individuals with non-melanoma skin cancer and individuals with prostate cancer whose only treatment is active surveillance are not excluded.
Figure 2
Figure 2
(A) Map of the eight participating NHS Cancer Alliances and (B) the IMD score distribution of targeted GP practices identified by NHS DigiTrials. (A) England has a total of 21 NHS Cancer Alliances. The regions shaded in purple are the eight participating NHS Cancer Alliances in the NHS-Galleri trial. (B) The IMD score distribution is from targeted GP practices identified by NHS DigiTrials. NHS DigiTrials invited eligible participants registered with these GP practices. The bar graph represents the percent of GP practices (y-axis) in each Cancer Alliance based on the IMD score (x-axis). IMD decile: 1 = most deprived, 10 = least deprived. GP, general practitioner; IMD, Index of Multiple Deprivation; NHS, National Health Service.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492.
    1. Dagenais G.R., Leong D.P., Rangarajan S., Lanas F., Lopez-Jaramillo P., Gupta R., Diaz R., Avezum A., Oliveira G.B.F., Wielgosz A., et al. Variations in Common Diseases, Hospital Admissions, and Deaths in Middle-Aged Adults in 21 Countries from Five Continents (PURE): A Prospective Cohort Study. Lancet. 2019;395:785–794. doi: 10.1016/S0140-6736(19)32007-0.
    1. Lin L., Li Z., Yan L., Liu Y., Yang H., Li H. Global, Regional, and National Cancer Incidence and Death for 29 Cancer Groups in 2019 and Trends Analysis of the Global Cancer Burden, 1990–2019. J. Hematol. Oncol. 2021;14:1–24. doi: 10.1186/s13045-021-01213-z.
    1. Mortality Statistics-Underlying Cause, Sex and Age. [(accessed on 25 August 2022)]. Available online: .
    1. Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer Statistics, 2021. Cancer J. Clin. 2021;71:7–33. doi: 10.3322/caac.21654.
    1. World Health Organization Promoting Cancer Early Diagnosis. [(accessed on 25 August 2022)]. Available online: .
    1. Routes to Diagnosis-Data Briefing. [(accessed on 25 August 2022)]. Available online: .
    1. Stage Breakdown by CCG 2017. [(accessed on 25 August 2022)]. Available online: .
    1. Sud A., Torr B., Jones M.E., Broggio J., Scott S., Loveday C., Garrett A., Gronthoud F., Nicol D.L., Jhanji S., et al. Effect of Delays in the 2-Week-Wait Cancer Referral Pathway during the COVID-19 Pandemic on Cancer Survival in the UK: A Modelling Study. Lancet Oncol. 2020;21:1035–1044. doi: 10.1016/S1470-2045(20)30392-2.
    1. National Health Service Long Term Plan 2019. [(accessed on 25 August 2022)]. Available online:
    1. Cancer Research UK What Is Cancer Screening? [(accessed on 25 August 2022)]. Available online: .
    1. Cancer Research UK Cancer Mortality for Common Cancers. [(accessed on 25 August 2022)]. Available online: .
    1. NHS England Evaluation of the Targeted Lung Health Check Programme. [(accessed on 25 August 2022)]. Available online:
    1. Croswell J.M., Kramer B.S., Kreimer A.R., Prorok P.C., Xu J.-L., Baker S.G., Fagerstrom R., Riley T.L., Clapp J.D., Berg C.D., et al. Cumulative Incidence of False-Positive Results in Repeated, Multimodal Cancer Screening. Ann. Fam. Med. 2009;7:212–222. doi: 10.1370/afm.942.
    1. Rebolj M., Parmar D., Maroni R., Blyuss O., Duffy S.W. Concurrent Participation in Screening for Cervical, Breast, and Bowel Cancer in England. J. Med. Screen. 2019;27:9–17. doi: 10.1177/0969141319871977.
    1. Hackshaw A., Clarke C.A., Hartman A.-R. New Genomic Technologies for Multi-Cancer Early Detection: Rethinking the Scope of Cancer Screening. Cancer Cell. 2022;14:109–113. doi: 10.1016/j.ccell.2022.01.012.
    1. Klein E., Richards D., Cohn A., Tummala M., Lapham R., Cosgrove D., Chung G., Clement J., Gao J., Hunkapiller N. Clinical Validation of a Targeted Methylation-Based Multi-Cancer Early Detection Test Using an Independent Validation Set. Ann. Oncol. 2021;32:1167–1177. doi: 10.1016/j.annonc.2021.05.806.
    1. Corcoran R.B., Chabner B.A. Application of Cell-Free DNA Analysis to Cancer Treatment. N. Engl. J. Med. 2018;379:1754–1765. doi: 10.1056/NEJMra1706174.
    1. Salvi S., Gurioli G., Giorgi U.D., Conteduca V., Tedaldi G., Calistri D., Casadio V. Cell-Free DNA as a Diagnostic Marker for Cancer: Current Insights. Oncotargets Ther. 2016;9:6549. doi: 10.2147/OTT.S100901.
    1. Pinsky P.F., Gierada D.S., Black W., Munden R., Nath H., Aberle D., Kazerooni E. Performance of Lung-RADS in the National Lung Screening Trial: A Retrospective Assessment. Ann. Intern. Med. 2015;162:485–491. doi: 10.7326/M14-2086.
    1. Pinsky P.F., Berg C.D. Applying the National Lung Screening Trial Eligibility Criteria to the US Population: What Percent of the Population and of Incident Lung Cancers Would Be Covered? J. Med. Screen. 2012;19:154–156. doi: 10.1258/jms.2012.012010.
    1. Lehman C.D., Arao R.F., Sprague B.L., Lee J.M., Buist D.S.M., Kerlikowske K., Henderson L.M., Onega T., Tosteson A.N.A., Rauscher G.H., et al. National Performance Benchmarks for Modern Screening Digital Mammography: Update from the Breast Cancer Surveillance Consortium. Radiology. 2017;283:49–58. doi: 10.1148/radiol.2016161174.
    1. Siu A.L. Screening for Breast Cancer: US Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2016;164:279–296. doi: 10.7326/M15-2886.
    1. Davidson K.W., Barry M.J., Mangione C.M., Cabana M., Caughey A.B., Davis E.M., Donahue K.E., Doubeni C.A., Krist A.H., Kubik M. Screening for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2021;325:1965–1977.
    1. US Food and Drug Administration . FDA Summary of Safety and Effectiveness Data. PMA P130017. US Dept of Health and Human Services; Silver Spring, MD, USA: 2014.
    1. Kim J.J., Burger E.A., Regan C., Sy S. Screening for Cervical Cancer in Primary Care: A Decision Analysis for the US Preventive Services Task Force. JAMA. 2018;320:706. doi: 10.1001/jama.2017.19872.
    1. Wolf A.M.D., Wender R.C., Etzioni R.B., Thompson I.M., D’Amico A.V., Volk R.J., Brooks D.D., Dash C., Guessous I., Andrews K., et al. American Cancer Society Guideline for the Early Detection of Prostate Cancer: Update 2010. Cancer J. Clin. 2010;60:70–98. doi: 10.3322/caac.20066.
    1. Hubbell E., Clarke C.A., Aravanis A.M., Berg C.D. Modeled Reductions in Late-Stage Cancer with a Multi-Cancer Early Detection Test. Cancer Epidemiol. Biomark. Amp. Prev. 2021;30:460. doi: 10.1158/1055-9965.EPI-20-1134.
    1. Liu M., Cummings S., Vachon C., Kerlikowske K., Couch F., Morris E., Olson J., Polley E., Conners A., Ellis R., et al. Abstract OT3-02-01: Development of Cell-Free Nucleic Acid-Based Tests for Early Detection of Breast Cancer: The STRIVE Study. Cancer Res. 2018;78:OT3-02. doi: 10.1158/1538-7445.SABCS17-OT3-02-01.
    1. Chen X., Gole J., Gore A., He Q., Lu M., Min J., Yuan Z., Yang X., Jiang Y., Zhang T., et al. Non-Invasive Early Detection of Cancer Four Years before Conventional Diagnosis Using a Blood Test. Nat. Commun. 2020;11:3475. doi: 10.1038/s41467-020-17316-z.
    1. Lennon A.M., Buchanan A.H., Kinde I., Warren A., Honushefsky A., Cohain A.T., Ledbetter D.H., Sanfilippo F., Sheridan K., Rosica D., et al. Feasibility of Blood Testing Combined with PET-CT to Screen for Cancer and Guide Intervention. Science. 2020;369:eabb9601. doi: 10.1126/science.abb9601.
    1. Nadauld L.D., McDonnell C.H., Beer T.M., Liu M.C., Klein E.A., Hudnut A., Whittington R.A., Taylor B., Oxnard G.R., Lipson J., et al. The PATHFINDER Study: Assessment of the Implementation of an Investigational Multi-Cancer Early Detection Test into Clinical Practice. Cancers. 2021;13:3501. doi: 10.3390/cancers13143501.
    1. Beer T.M., McDonnell C.H., Nadauld L., Liu M.C., Klein E.A., Reid R.L., Marinac C., Chung K., Lopatin M., Fung E.T., et al. Interim Results of PATHFINDER, a Clinical Use Study Using a Methylation-Based Multi-Cancer Early Detection Test. J. Clin. Oncol. 2021;39:3010. doi: 10.1200/JCO.2021.39.15_suppl.3010.
    1. Beer T.M., McDonnell C.H., Nadauld L., Liu M.C., Klein E.A., Reid R.L., Chung K., Lopatin M., Fung E.T., Schrag D. A Prespecified Interim Analysis of the PATHFINDER Study: Performance of a Multicancer Early Detection Test in Support of Clinical Implementation. J. Clin. Oncol. 2021;39:3070. doi: 10.1200/JCO.2021.39.15_suppl.3070.
    1. Pinsky P., Miller A., Kramer B., Church T., Reding D., Prorok P., Gelmann E., Schoen R., Buys S., Hayes R., et al. Evidence of a Healthy Volunteer Effect in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am. J. Epidemiol. 2007;165:874–881. doi: 10.1093/aje/kwk075.
    1. Menon U., Gentry-Maharaj A., Burnell M., Singh N., Ryan A., Karpinskyj C., Carlino G., Taylor J., Massingham S.K., Raikou M. Ovarian Cancer Population Screening and Mortality after Long-Term Follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): A Randomised Controlled Trial. Lancet. 2021;397:2182–2193. doi: 10.1016/S0140-6736(21)00731-5.
    1. Ministry of Housing, Communities & Local Government The English Indices of Deprivation 2019 Frequently Asked Questions. [(accessed on 25 August 2022)]; Available online: .
    1. Henson K.E., Elliss-Brookes L., Coupland V.H., Payne E., Vernon S., Rous B., Rashbass J. Data Resource Profile: National Cancer Registration Dataset in England. Int. J. Epidemiol. 2020;49:16–16h. doi: 10.1093/ije/dyz076.
    1. Marteau T.M., Bekker H. The Development of a Six-item Short-form of the State Scale of the Spielberger State—Trait Anxiety Inventory (STAI) Br. J. Clin. Psychol. 1992;31:301–306. doi: 10.1111/j.2044-8260.1992.tb00997.x.
    1. Cockburn J., Luise T.D., Hurley S., Clover K. Development and Validation of the PCQ: A Questionnaire to Measure the Psychological Consequences of Screening Mammography. Soc. Sci. Med. 1992;34:1129–1134. doi: 10.1016/0277-9536(92)90286-Y.
    1. Herbert A., Wijlaars L., Zylbersztejn A., Cromwell D., Hardelid P. Data Resource Profile: Hospital Episode Statistics Admitted Patient Care (HES APC) Int. J. Epidemiol. 2017;46:1093–1093i. doi: 10.1093/ije/dyx015.
    1. National Health Service Diagnostic Imaging Data Set 2021. [(accessed on 25 August 2022)]. Available online:
    1. Office for National Statistics Mortality Statistics in England and Wales QMI 2022. [(accessed on 25 August 2022)]; Available online: .
    1. Zhang J., Braun J., Simon N., Hubbell E., Zhang N. Stage Shift and Mortality Reduction by Screening with a Multi-Cancer Early-Detection Test: Microsimulation Modeling of a Randomized Controlled Trial. [(accessed on 8 August 2021)]. Available online: .
    1. Liu M.C., Oxnard G.R., Klein E.A., Swanton C., Seiden M.V., Cummings S.R., Absalan F., Alexander G., Allen B., Amini H., et al. Sensitive and Specific Multi-Cancer Detection and Localization Using Methylation Signatures in Cell-Free DNA. Ann. Oncol. 2020;31:745–759. doi: 10.1016/j.annonc.2020.02.011.
    1. Zelen M. A New Design for Randomized Clinical Trials. N. Engl. J. Med. 1979;300:1242–1245. doi: 10.1056/NEJM197905313002203.
    1. Zelen M. Randomized Consent Designs for Clinical Trials: An Update. Stat. Med. 1990;9:645–656. doi: 10.1002/sim.4780090611.
    1. Spencer K., Jones C.M., Girdler R., Roe C., Sharpe M., Lawton S., Miller L., Lewis P., Evans M., Sebag-Montefiore D. The Impact of the COVID-19 Pandemic on Radiotherapy Services in England, UK: A Population-Based Study. Lancet Oncol. 2021;22:309–320. doi: 10.1016/S1470-2045(20)30743-9.
    1. Quinn-Scoggins H.D., Cannings-John R., Moriarty Y., Whitelock V., Whitaker K.L., Grozeva D., Hughes J., Townson J., Osborne K., Goddard M. Cancer Symptom Experience and Help-Seeking Behaviour during the COVID-19 Pandemic in the UK: A Cross-Sectional Population Survey. BMJ Open. 2021;11:e053095. doi: 10.1136/bmjopen-2021-053095.
    1. DeGregori J., Pharoah P., Sasieni P., Swanton C. Cancer Screening, Surrogates of Survival, and the Soma. Cancer Cell. 2020;38:433–437. doi: 10.1016/j.ccell.2020.09.003.
    1. Sasieni P.D., Wald N.J. Should a Reduction in All-Cause Mortality Be the Goal When Assessing Preventive Medical Therapies? Circulation. 2017;135:1985–1987. doi: 10.1161/CIRCULATIONAHA.116.023359.
    1. Autier P., Héry C., Haukka J., Boniol M., Byrnes G. Advanced Breast Cancer and Breast Cancer Mortality in Randomized Controlled Trials on Mammography Screening. J. Clin. Oncol. 2009;27:5919–5923. doi: 10.1200/JCO.2009.22.7041.
    1. Tabar L., Fagerberg G., Chen H.H., Duffy S.W., Smart C.R., Gad A., Smith R.A. Efficacy of Breast Cancer Screening by Age. New Results from the Swedish Two-County Trial. Cancer. 1995;75:2507–2517. doi: 10.1002/1097-0142(19950515)75:10<2507::AID-CNCR2820751017>;2-H.
    1. McPhail S., Johnson S., Greenberg D., Peake M., Rous B. Stage at Diagnosis and Early Mortality from Cancer in England. Br. J. Cancer. 2015;112:S108–S115. doi: 10.1038/bjc.2015.49.
    1. Welch H.G., Black W.C. Overdiagnosis in Cancer. JNCI J. Natl. Cancer Inst. 2010;102:605–613. doi: 10.1093/jnci/djq099.
    1. Chen X., Dong Z., Hubbell E., Kurtzman K.N., Oxnard G.R., Venn O., Melton C., Clarke C.A., Shaknovich R., Ma T., et al. Prognostic Significance of Blood-Based Multi-Cancer Detection in Plasma Cell-Free DNA. Clin. Cancer Res. 2021;27:4221–4229. doi: 10.1158/1078-0432.CCR-21-0417.
    1. Chabon J.J., Hamilton E.G., Kurtz D.M., Esfahani M.S., Moding E.J., Stehr H., Schroers-Martin J., Nabet B.Y., Chen B., Chaudhuri A.A., et al. Integrating Genomic Features for Non-Invasive Early Lung Cancer Detection. Nature. 2020;580:245–251. doi: 10.1038/s41586-020-2140-0.
    1. Surveillance Research Program; National Cancer Institute SEER*Stat Software (), Version 8.3.8. National Cancer Institute; Bethesda, MD, USA: 2020. Data: Surveillance, Epidemiology, and End Results (SEER) Program () SEER*Stat Database: Incidence-SEER Research Data, 9 Registries, Nov 2019 Sub (1975–2017)-Linked To County Attributes-Time Dependent (1990–2017) Income/Rurality, 1969-2018 Counties, National Cancer Institute, DCCPS, Surveillance Research Program.
    1. Gale D., Heider K., Perry M., Marsico G., Ruiz-Valdepeñas A., Rundell V., Wulff J., Sharma G., Howarth K., Gilligan D., et al. Residual CtDNA after Treatment Predicts Early Relapse in Patients with Early-Stage NSCLC. J. Clin. Oncol. 2021;39:8517. doi: 10.1200/JCO.2021.39.15_suppl.8517.
    1. Hackshaw A., Berg C.D. An Efficient Randomised Trial Design for Multi-Cancer Screening Blood Tests: Nested Enhanced Mortality Outcomes of Screening Trial. Lancet Oncol. 2021;22:1360–1362. doi: 10.1016/S1470-2045(21)00204-7.
    1. Jacobs I.J., Menon U., Ryan A., Gentry-Maharaj A., Burnell M., Kalsi J.K., Amso N.N., Apostolidou S., Benjamin E., Cruickshank D., et al. Ovarian Cancer Screening and Mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): A Randomised Controlled Trial. Lancet. 2016;387:945–956. doi: 10.1016/S0140-6736(15)01224-6.
    1. Field J.K., Vulkan D., Davies M.P.A., Baldwin D.R., Brain K.E., Devaraj A., Eisen T., Gosney J., Green B.A., Holemans J.A., et al. Lung Cancer Mortality Reduction by LDCT Screening: UKLS Randomised Trial Results and International Meta-Analysis. Lancet Reg. Health Eur. 2021;10:100179. doi: 10.1016/j.lanepe.2021.100179.

Source: PubMed

3
Subscribe