Human Milk: An Ideal Food for Nutrition of Preterm Newborn

Clair-Yves Boquien, Clair-Yves Boquien

Abstract

Human milk is the best food for newborn nutrition. There is no ideal composition of human milk and also no easy way to control the complexity of its nutritional quality and the quantity received by breastfed infants. Pediatricians and nutritionists use charts of infant growth (weight, size, head circumference) and neurodevelopment criteria that reflect the food that these infants receive. These charts reflect first the infant physiology and likely reflect the composition of human milk when infants are breastfed. In a situation of preterm birth, mother physiology impacts partly breast milk composition and this explains how this is more difficult to correlate infant growth or neurodevelopment with milk composition. Some biomarkers (lipids, oligosaccharides) have been identified in breast milk but their function is not always yet known. A better knowledge on how human milk could act on infant development to the mid- and long-term participating thus to nutritional programming is a challenging question for a better management of infants' nutrition, especially for preterm infants who are most fragile.

Keywords: breast milk; breastfeeding; infant neurodevelopment; mother milk; neonatal growth; nutritional programming; preterm.

Figures

Figure 1
Figure 1
Human milk composition.
Figure 2
Figure 2
Preterm infant nutrition during early life.
Figure 3
Figure 3
Nutrition with human milk and preterm infant growth and neurodevelopment (HM, Human Milk).

References

    1. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia (1993) 36:62–7. 10.1007/BF00399095
    1. Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am J Clin Nutr. (2000) 71:1344S−52S. 10.1093/ajcn/71.5.1344s
    1. Victora CG, Bahl R, Barros AJ, Franca GV, Horton S, Krasevec J, et al. . Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet (2016) 387:475–90. 10.1016/S0140-6736(15)01024-7
    1. Jeeva SM, Bireshwar S, Ranadip C, Nita B, Sunita T, Jose M, et al. Optimal breastfeeding practices and infant and child mortality: a systematic review and meta-analysis. Acta Paediatr. (2015) 104:3–13. 10.1111/apa.13147
    1. Der G, Batty GD, Deary IJ. Effect of breast feeding on intelligence in children: prospective study, sibling pairs analysis, and meta-analysis. BMJ (2006) 333:945. 10.1136/bmj.38978.699583.55
    1. Rozé JC, Darmaun D, Boquien CY, Flamant C, Picaud JC, Savagner C, et al. . The apparent breastfeeding paradox in very preterm infants: relationship between breast feeding, early weight gain and neurodevelopment based on results from two cohorts, EPIPAGE and LIFT. BMJ Open (2012) 2:e000834. 10.1136/bmjopen-2012-000834
    1. Bernard JY, De Agostini M, Forhan A, Alfaiate T, Bonet M, Champion V, et al. . Breastfeeding duration and cognitive development at 2 and 3 years of age in the EDEN mother-child cohort. J Pediatr. (2013) 163:36–42.e31. 10.1016/j.jpeds.2012.11.090
    1. Vohr BR, Poindexter BB, Dusick AM, McKinley LT, Wright LL, Langer JC, et al. . Beneficial effects of breast milk in the neonatal intensive care unit on the developmental outcome of extremely low birth weight infants at 18 months of age. Pediatrics (2006) 118:e115–23. 10.1542/peds.2005-2382
    1. Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics (2006) 117:1253–61. 10.1542/peds.2005-1368
    1. Belfort MB, Anderson PJ, Nowak VA, Lee KJ, Molesworth C, Thompson DK, et al. . Breast milk feeding, brain development, and neurocognitive outcomes: a 7-year longitudinal study in infants born at less than 30 weeks' gestation. J Pediatr. (2016) 177:133–9.e1. 10.1016/j.jpeds.2016.06.045
    1. Chowdhury R, Sinha B, Sankar MJ, Taneja S, Bhandari N, Rollins N, et al. . Breastfeeding and maternal health outcomes: a systematic review and meta-analysis. Acta Paediatr. (2015) 104:96–113. 10.1111/apa.13102
    1. Gunderson EP, Lewis CE, Lin Y, Sorel M, Gross M, Sidney S, et al. . Lactation duration and progression to diabetes in women across the childbearing years: the 30-year CARDIA study. JAMA Int Med. (2018) 178:328–37. 10.1001/jamainternmed.2017.7978
    1. Tackoen M. [Breast milk: its nutritional composition and functional properties]. Rev Med Brux. (2012) 33:309–17.
    1. Demmelmair H, Prell C, Timby N, Lonnerdal B. Benefits of lactoferrin, osteopontin and milk fat globule membranes for infants. Nutrients (2017) 9:817. 10.3390/nu9080817
    1. Antignac JP, Main KM, Virtanen HE, Boquien CY, Marchand P, Venisseau A, et al. . Country-specific chemical signatures of persistent organic pollutants (POPs) in breast milk of French, Danish and Finnish women. Environ Pollut. (2016) 218:728–38. 10.1016/j.envpol.2016.07.069
    1. Thomsen C, Stigum H, Froshaug M, Broadwell SL, Becher G, Eggesbo M. Determinants of brominated flame retardants in breast milk from a large scale Norwegian study. Environ Int. (2010) 36:68–74. 10.1016/j.envint.2009.10.002
    1. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. . The microRNA spectrum in 12 body fluids. Clin Chem. (2010) 56:1733–41. 10.1373/clinchem.2010.147405
    1. Alsaweed M, Hartmann PE, Geddes DT, Kakulas F. MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health (2015) 12:13981–4020. 10.3390/ijerph121113981
    1. Laubier J, Castille J, Le Guillou S, Le Provost F. No effect of an elevated miR-30b level in mouse milk on its level in pup tissues. RNA Biol. (2015) 12:26–9. 10.1080/15476286.2015.1017212
    1. Martin R, Jimenez E, Heilig H, Fernandez L, Marin ML, Zoetendal EG, et al. . Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol. (2009) 75:965–9. 10.1128/AEM.02063-08
    1. Hunt KM, Foster JA, Forney LJ, Schütte UME, Beck DL, Abdo Z. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE (2011) 6:e21313. 10.1371/journal.pone.0021313
    1. De Leoz ML, Kalanetra KM, Bokulich NA, Strum JS, Underwood MA, German JB, et al. . Human milk glycomics and gut microbial genomics in infant feces show a correlation between human milk oligosaccharides and gut microbiota: a proof-of-concept study. J Proteome Res. (2015) 14:491–502. 10.1021/pr500759e
    1. Bauer J, Gerss J. Variability in human milk composition: benefit of individualized fortification in very-low-birth-weight infants. Clin Nutr. (2011) 30:215–20. 10.1016/j.clnu.2010.08.003
    1. Gidrewicz DA, Fenton TR. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. (2014) 14:216. 10.1186/1471-2431-14-216
    1. Zhang Z, Adelman AS, Rai D, Boettcher J, Lonnerdal B. Amino acid profiles in term and preterm human milk through lactation: a systematic review. Nutrients (2013) 5:4800–21. 10.3390/nu5124800
    1. Mehta R, Petrova A. Biologically active breast milk proteins in association with very preterm delivery and stage of lactation. J Perinatol. (2011) 31:58–62. 10.1038/jp.2010.68
    1. Albenzio M, Santillo A, Stolfi I, Manzoni P, Iliceto A, Rinaldi M, et al. . Lactoferrin levels in human milk after preterm and term delivery. Am J Perinatol. (2016) 33:1085–9. 10.1055/s-0036-1586105
    1. Koenig A, Albuquerque Diniz EM, Barbosa SFC, Vaz FAC. Immunologic factors in human milk: the effects of gestational age and pasteurization. J Hum Lact. (2005) 21:439–43. 10.1177/0890334405280652
    1. Garcia C, Duan RD, Brevaut-Malaty V, Gire C, Millet V, Simeoni U, et al. . Bioactive compounds in human milk and intestinal health and maturity in preterm newborn: an overview. Cell Mol Biol. (2013) 59:108–31. 10.1170/T952
    1. Molinari CE, Casadio YS, Hartmann BT, Arthur PG, Hartmann PE. Longitudinal analysis of protein glycosylation and beta-casein phosphorylation in term and preterm human milk during the first 2 months of lactation. Br J Nutr. (2013) 110:105–15. 10.1017/S0007114512004588
    1. Kunz C, Meyer C, Collado MC, Geiger L, Garcia-Mantrana I, Bertua-Rios B, et al. . Influence of gestational age, secretor, and lewis blood group status on the oligosaccharide content of human milk. J Pediatr Gastroenterol Nutr. (2017) 64:789–98. 10.1097/MPG.0000000000001402
    1. Bokor S, Koletzko B, Decsi T. Systematic review of fatty acid composition of human milk from mothers of preterm compared to full-term infants. Ann Nutr Metabol. (2007) 51:550–6. 10.1159/000114209
    1. Fily A, Pierrat V, Delporte V, Breart G, Truffert P. Factors associated with neurodevelopmental outcome at 2 years after very preterm birth: the population-based Nord-Pas-de-Calais EPIPAGE cohort. Pediatrics (2006) 117:357–66. 10.1542/peds.2005-0236
    1. Larroque B, Ancel PY, Marret S, Marchand L, Andre M, Arnaud C, et al. . Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): a longitudinal cohort study. Lancet (2008) 371:813–20. 10.1016/S0140-6736(08)60380-3
    1. Larroque B, Ancel PY, Marchand-Martin L, Cambonie G, Fresson J, Pierrat V, et al. . Special care and school difficulties in 8-year-old very preterm children: the Epipage cohort study. PLoS ONE (2011) 6:e21361. 10.1371/journal.pone.0021361
    1. Wood NS, Marlow N, Costeloe K, Gibson AT, Wilkinson AR. Neurologic and developmental disability after extremely preterm birth. EPICure Study Group. N Engl J Med. (2000) 343:378–84. 10.1056/NEJM200008103430601
    1. Hofman PL, Regan F, Jackson WE, Jefferies C, Knight DB, Robinson EM, et al. . Premature birth and later insulin resistance. N Engl J Med. (2004) 351:2179–86. 10.1056/NEJMoa042275
    1. Stettler N, Zemel BS, Kumanyika S, Stallings VA. Infant weight gain and childhood overweight status in a multicenter, cohort study. Pediatrics (2002) 109:194–9. 10.1542/peds.109.2.194
    1. Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, et al. . Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. (2010) 50:85–91. 10.1097/MPG.0b013e3181adaee0
    1. Prentice P, Koulman A, Matthews L, Acerini CL, Ong KK, Dunger DB. Lipidomic analyses, breast- and formula-feeding, and growth in infants. J Pediatr. (2015) 166:276–81.e6. 10.1016/j.jpeds.2014.10.021
    1. Innis SM. Polyunsaturated fatty acids in human milk: an essential role in infant development. Adv Exp Med Biol. (2004) 554:27–43. 10.1007/978-1-4757-4242-8_5
    1. Innis SM. Human milk: maternal dietary lipids and infant development. Proc Nutr Soc. (2007) 66:397–404. 10.1017/S0029665107005666
    1. Koletzko B, Lien E, Agostoni C, Bohles H, Campoy C, Cetin I, et al. . The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med. (2008) 36:5–14. 10.1515/JPM.2008.001
    1. Koletzko B, Agostoni C, Bergmann R, Ritzenthaler K, Shamir R. Physiological aspects of human milk lipids and implications for infant feeding: a workshop report. Acta Paediatr. (2011) 100:1405–15. 10.1111/j.1651-2227.2011.02343.x
    1. Innis SM. Impact of maternal diet on human milk composition and neurological development of infants. Am J Clin Nutr. (2014) 99:734S−41S. 10.3945/ajcn.113.072595
    1. Delplanque B, Gibson R, Koletzko B, Lapillonne A, Strandvik B. Lipid quality in infant nutrition: current knowledge and future opportunities. J Pediatr Gastroenterol Nutr. (2015) 61:8–17. 10.1097/MPG.0000000000000818
    1. Prentice P, Ong KK, Schoemaker MH, van Tol EA, Vervoort J, Hughes IA, et al. . Breast milk nutrient content and infancy growth. Acta Paediatr. (2016) 105:641–7. 10.1111/apa.13362
    1. Bernard JY, Armand M, Peyre H, Garcia C, Forhan A, De Agostini M, et al. . Breastfeeding, polyunsaturated fatty acid levels in colostrum and child intelligence quotient at age 5–6 years. J Pediatr. (2017) 183:43–50.e3. 10.1016/j.jpeds.2016.12.039
    1. Lundqvist-Persson C, Lau G, Nordin P, Strandvik B, Sabel KG. Early behaviour and development in breast-fed premature infants are influenced by omega-6 and omega-3 fatty acid status. Early Hum Dev. (2010) 86:407–12. 10.1016/j.earlhumdev.2010.05.017
    1. Alexandre-Gouabau MC, Moyon T, Cariou V, Antignac JP, Qannari EM, Croyal M, et al. . Breast milk lipidome is associated with early growth trajectory in preterm infants. Nutrients (2018) 10:164. 10.3390/nu10020164
    1. Kunz C, Kuntz S, Rudloff S. Bioactivity of human milk oligosaccharides, In: Moreno FJ, Sanz MLE, editors. Food Oligosaccharides: Production, Analysis and Bioactivity. Chichester: Wiley-Blackwell; (2014). p. 5–20. 10.1002/9781118817360.ch1
    1. Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, et al. . Preterm milk oligosaccharides during the first month of lactation. Pediatrics (2011) 128:e1520–31. 10.1542/peds.2011-1206
    1. Xu G, Davis JC, Goonatilleke E, Smilowitz JT, German JB, Lebrilla CB. Absolute quantitation of human milk oligosaccharides reveals phenotypic variations during lactation. J Nutr. (2017) 147:117–24. 10.3945/jn.116.238279
    1. Ward RE, Ninonuevo M, Mills DA, Lebrilla CB, German JB. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl Environ Microbiol. (2006) 72:4497–9. 10.1128/AEM.02515-05
    1. Ben XM, Li J, Feng ZT, Shi SY, Lu YD, Chen R, et al. . Low level of galacto-oligosaccharide in infant formula stimulates growth of intestinal Bifidobacteria and Lactobacilli. World J Gastroenterol. (2008) 14:6564–8. 10.3748/wjg.14.6564
    1. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. (1995) 125:1401–12. 10.1093/jn/125.6.1401
    1. Coppa GV, Gabrielli O, Zampini L, Galeazzi T, Ficcadenti A, Padella L, et al. . Oligosaccharides in 4 different milk groups, Bifidobacteria, and Ruminococcus obeum. J Pediatr Gastroenterol Nutr. (2011) 53:80–7. 10.1097/MPG.0b013e3182073103
    1. Frese SA, Hutton AA, Contreras LN, Shaw CA, Palumbo MC, Casaburi G, et al. . Persistence of supplemented Bifidobacterium longum subsp. infantis EVC001 in breastfed infants. mSphere (2017) 2:e00501–17. 10.1128/mSphere.00501-17
    1. Medina DA, Pinto F, Ovalle A, Thomson P, Garrido D. Prebiotics mediate microbial interactions in a consortium of the infant gut microbiome. Int J Mol Sci. (2017) 18:2095. 10.3390/ijms18102095
    1. Hoashi M, Meche L, Mahal LK, Bakacs E, Nardella D, Naftolin F, et al. . Human milk bacterial and glycosylation patterns differ by delivery mode. Reprod Sci. (2016) 23:902–7. 10.1177/1933719115623645
    1. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology (2012) 22:1147–62. 10.1093/glycob/cws074
    1. Wang B, McVeagh P, Petocz P, Brand-Miller J. Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Am J Clin Nutr. (2003) 78:1024–9. 10.1093/ajcn/78.5.1024
    1. Bode L. Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr. (2006) 136:2127–30. 10.1093/jn/136.8.2127
    1. Jantscher-Krenn E, Zherebtsov M, Nissan C, Goth K, Guner YS, Naidu N, et al. . The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. Gut (2012) 61:1417–25. 10.1136/gutjnl-2011-301404
    1. De Leoz ML, Gaerlan SC, Strum JS, Dimapasoc LM, Mirmiran M, Tancredi DJ, et al. . Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J Proteome Res. (2012) 11:4662–72. 10.1021/pr3004979
    1. Underwood MA, Gaerlan S, De Leoz MLA, Dimapasoc L, Kalanetra KM, Lemay DG, et al. . Human milk oligosaccharides in premature infants: absorption, excretion, and influence on the intestinal microbiota. Pediatr Res. (2015) 78:670–7. 10.1038/pr.2015.162
    1. Charbonneau MR, O'Donnell D, Blanton LV, Totten SM, Davis JC, Barratt MJ, et al. . Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell (2016) 164:859–71. 10.1016/j.cell.2016.01.024
    1. Bashiardes S, Thaiss CA, Elinav E. It's in the milk: feeding the microbiome to promote infant growth. Cell Metabol. (2016) 23:393–4. 10.1016/j.cmet.2016.02.015
    1. Goran MI, Martin AA, Alderete TL, Fujiwara H, Fields DA. Fructose in breast milk is positively associated with infant body composition at 6 months of age. Nutrients (2017) 9:146. 10.3390/nu9020146
    1. Miralles O, Sanchez J, Palou A, Pico C. A physiological role of breast milk leptin in body weight control in developing infants. Obesity (2006) 14:1371–7. 10.1038/oby.2006.155
    1. Fields DA, Demerath EW. Relationship of insulin, glucose, leptin, IL-6 and TNF-alpha in human breast milk with infant growth and body composition. Pediatr Obes. (2012) 7:304–12. 10.1111/j.2047-6310.2012.00059.x
    1. Eriksen KG, Christensen SH, Lind MV, Michaelsen KF. Human milk composition and infant growth. Curr Opin Clin Nutr Metab Care (2018) 21:200–6. 10.1097/MCO.0000000000000466
    1. Gregory KE, Samuel BS, Houghteling P, Shan G, Ausubel FM, Sadreyev RI, et al. . Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants. Microbiome (2016) 4:68. 10.1186/s40168-016-0214-x
    1. Grier A, Qiu X, Bandyopadhyay S, Holden-Wiltse J, Kessler HA, Gill AL, et al. . Impact of prematurity and nutrition on the developing gut microbiome and preterm infant growth. Microbiome (2017) 5:158. 10.1186/s40168-017-0377-0
    1. Arnold RR, Brewer M, Gauthier JJ. Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms. Infect Immun. (1980) 28:893–8.
    1. Fransson GB, Keen CL, Lonnerdal B. Supplementation of milk with iron bound to lactoferrin using weanling mice: L. Effects on hematology and tissue iron. J Pediatr Gastroenterol Nutr. (1983) 2:693–700. 10.1097/00005176-198311000-00021
    1. Liepke C, Adermann K, Raida M, Magert HJ, Forssmann WG, Zucht HD. Human milk provides peptides highly stimulating the growth of bifidobacteria. Eur J Biochem. (2002) 269:712–8. 10.1046/j.0014-2956.2001.02712.x
    1. Pammi M, Abrams SA. Oral lactoferrin for the prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. (2015):CD007137. 10.1002/14651858.CD007137.pub5
    1. Casper C, Hascoet JM, Ertl T, Gadzinowski JS, Carnielli V, Rigo J, et al. . Recombinant bile salt-stimulated lipase in preterm infant feeding: a randomized phase 3 study. PLoS ONE (2016) 11:e0156071. 10.1371/journal.pone.0156071
    1. Debucquet G, Adt V. The naturalist discourse surrounding breastfeeding among french mothers. In: Cassidy T, El Tom A, editors. Ethnographies of breastfeeding: Cultural contexts and confrontations. London: Bloomsbury Publishing; (2015).
    1. Rollins NC, Bhandari N, Hajeebhoy N, Horton S, Lutter CK, Martines JC, et al. . Why invest, and what it will take to improve breastfeeding practices? Lancet (2016) 387:491–504. 10.1016/S0140-6736(15)01044-2

Source: PubMed

3
Subscribe