Genetic Landscape and Emerging Therapies in Uveal Melanoma

Rino S Seedor, Marlana Orloff, Takami Sato, Rino S Seedor, Marlana Orloff, Takami Sato

Abstract

Despite successful treatment of primary uveal melanoma, up to 50% of patients will develop systemic metastasis. Metastatic disease portends a poor outcome, and no adjuvant or metastatic therapy has been FDA approved. The genetic landscape of uveal melanoma is unique, providing prognostic and potentially therapeutic insight. In this review, we discuss our current understanding of the molecular and cytogenetic mutations in uveal melanoma, and the importance of obtaining such information. Most of our knowledge is based on primary uveal melanoma and a better understanding of the mutational landscape in metastatic uveal melanoma is needed. Clinical trials targeting certain mutations such as GNAQ/GNA11, BAP1, and SF3B1 are ongoing and promising. We also discuss the role of liquid biopsies in uveal melanoma in this review.

Keywords: genetic landscape; metastatic uveal melanoma; targeted therapy; treatment strategy; uveal melanoma.

Conflict of interest statement

M.O. is a consultant for Immunocore and sits on the Scientific advisory board of Trisalus. R.S.S. and T.S. declare no conflict of interest.

Figures

Figure 1
Figure 1
Schema of TCGA UM Subtypes. Reprinted from “Molecular Characteristics of Uveal Melanoma: Insights from the Cancer Genome Atlas (TCGA) Project,” by Matheiu F. Bakhoum and Bita Esmaeli. 2019, Copyright 2019 by authors [28].
Figure 2
Figure 2
Signaling Pathways in UM. Adapted from “Targeted Therapy of Uveal Melanoma: Recent Failures and New Perspectives” by Michela Croce et al. 846 [121].

References

    1. Singh A.D., Turell M.E., Topham A.K. Uveal melanoma: Trends in incidence, treatment, and survival. Ophthalmology. 2011;118:1881–1885. doi: 10.1016/j.ophtha.2011.01.040.
    1. Shields J.A., Shields C.L. Intraocular Tumors: An Atlas and Textbook. Wolters Kluwer Health; Philadelphia, PA, USA: 2016.
    1. Aronow M.E., Topham A.K., Singh A.D. Uveal Melanoma: 5-Year Update on Incidence, Treatment, and Survival (SEER 1973-2013) Ocul. Oncol. Pathol. 2018;4:145–151. doi: 10.1159/000480640.
    1. Kujala E., Makitie T., Kivela T. Very long-term prognosis of patients with malignant uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2003;44:4651–4659. doi: 10.1167/iovs.03-0538.
    1. Diener-West M., Reynolds S.M., Agugliaro D.J., Caldwell R., Cumming K., Earle J.D., Hawkins B.S., Hayman J.A., Jaiyesimi I., Jampol L.M., et al. Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group Report No. 26. Arch. Ophthalmol. 2005;123:1639–1643. doi: 10.1001/archopht.123.12.1639.
    1. Augsburger J.J., Correa Z.M., Shaikh A.H. Effectiveness of treatments for metastatic uveal melanoma. Am. J. Ophthalmol. 2009;148:119–127. doi: 10.1016/j.ajo.2009.01.023.
    1. Kuk D., Shoushtari A.N., Barker C.A., Panageas K.S., Munhoz R.R., Momtaz P., Ariyan C.E., Brady M.S., Coit D.G., Bogatch K., et al. Prognosis of Mucosal, Uveal, Acral, Nonacral Cutaneous, and Unknown Primary Melanoma from the Time of First Metastasis. Oncologist. 2016;21:848–854. doi: 10.1634/theoncologist.2015-0522.
    1. Yang J., Manson D.K., Marr B.P., Carvajal R.D. Treatment of uveal melanoma: Where are we now? Ther. Adv. Med. Oncol. 2018;10:1758834018757175. doi: 10.1177/1758834018757175.
    1. Lane A.M., Kim I.K., Gragoudas E.S. Survival Rates in Patients After Treatment for Metastasis from Uveal Melanoma. JAMA Ophthalmol. 2018;136:981–986. doi: 10.1001/jamaophthalmol.2018.2466.
    1. Khoja L., Atenafu E.G., Joshua A.M., International Rare Cancer’s Intiative-Ocular Melanoma Group Meta-analysis of phase II trials in metastatic uveal melanoma (MUM) to determine progression-free (PFS) and overall survival (OS) benchmarks for future phase II trials: An irci-ocular melanoma initiative. J. Clin. Oncol. 2016;34:9567. doi: 10.1200/JCO.2016.34.15_suppl.9567.
    1. Khoja L., Atenafu E.G., Suciu S., Leyvraz S., Sato T., Marshall E., Keilholz U., Zimmer L., Patel S.P., Piperno-Neumann S., et al. Meta-Analysis in Metastatic Uveal Melanoma to Determine Progression-Free and Overall Survival Benchmarks: An International Rare Cancers Initiative (IRCI) Ocular Melanoma study. Ann. Oncol. 2019;30:1370–1380. doi: 10.1093/annonc/mdz176.
    1. Jochems A., van der Kooij M.K., Fiocco M., Schouwenburg M.G., Aarts M.J., van Akkooi A.C., van den Berkmortel F., Blank C.U., van den Eertwegh A.J.M., Franken M.G., et al. Metastatic Uveal Melanoma: Treatment Strategies and Survival-Results from the Dutch Melanoma Treatment Registry. Cancers. 2019;11:1007. doi: 10.3390/cancers11071007.
    1. Seedor R.S., Eschelman D.J., Gonsalves C.F., Adamo R.D., Orloff M., Amjad A., Sharpe-Mills E., Chervoneva I., Shields C.L., Shields J.A., et al. An Outcome Assessment of a Single Institution’s Longitudinal Experience with Uveal Melanoma Patients with Liver Metastasis. Cancers. 2020;12:117. doi: 10.3390/cancers12010117.
    1. Pelster M.S., Gruschkus S.K., Bassett R., Gombos D.S., Shephard M., Posada L., Glover M.S., Simien R., Diab A., Hwu P., et al. Nivolumab and Ipilimumab in Metastatic Uveal Melanoma: Results from a Single-Arm Phase II Study. J. Clin. Oncol. 2021;39:599–607. doi: 10.1200/JCO.20.00605.
    1. Rantala E.S., Hernberg M., Kivela T.T. Overall survival after treatment for metastatic uveal melanoma: A systematic review and meta-analysis. Melanoma Res. 2019;29:561–568. doi: 10.1097/CMR.0000000000000575.
    1. Rietschel P., Panageas K.S., Hanlon C., Patel A., Abramson D.H., Chapman P.B. Variates of Survival in Metastatic Uveal Melanoma. J. Clin. Oncol. 2005;23:8076–8080. doi: 10.1200/JCO.2005.02.6534.
    1. Rodriguez-Vidal C., Fernandez-Diaz D., Fernandez-Marta B., Lago-Baameiro N., Pardo M., Silva P., Paniagua L., Blanco-Teijeiro M.J., Pineiro A., Bande M. Treatment of Metastatic Uveal Melanoma: Systematic Review. Cancers. 2020;12:2557. doi: 10.3390/cancers12092557.
    1. Johnson D.B., Daniels A.B. Continued Poor Survival in Metastatic Uveal Melanoma: Implications for Molecular Prognostication, Surveillance Imaging, Adjuvant Therapy, and Clinical Trials. JAMA Ophthalmol. 2018;136:986–988. doi: 10.1001/jamaophthalmol.2018.1813.
    1. Algazi A.P., Tsai K.K., Shoushtari A.N., Munhoz R.R., Eroglu Z., Piulats J.M., Ott P.A., Johnson D.B., Hwang J., Daud A.I., et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer. 2016;122:3344–3353. doi: 10.1002/cncr.30258.
    1. Schank T.E., Hassel J.C. Immunotherapies for the Treatment of Uveal Melanoma-History and Future. Cancers. 2019;11:1048. doi: 10.3390/cancers11081048.
    1. Bol K.F., Ellebaek E., Hoejberg L., Bagger M.M., Larsen M.S., Klausen T.W., Kohler U.H., Schmidt H., Bastholt L., Kiilgaard J.F., et al. Real-World Impact of Immune Checkpoint Inhibitors in Metastatic Uveal Melanoma. Cancers. 2019;11:1489. doi: 10.3390/cancers11101489.
    1. Heppt M.V., Amaral T., Kahler K.C., Heinzerling L., Hassel J.C., Meissner M., Kreuzberg N., Loquai C., Reinhardt L., Utikal J., et al. Combined immune checkpoint blockade for metastatic uveal melanoma: A retrospective, multi-center study. J. Immunother. Cancer. 2019;7:299. doi: 10.1186/s40425-019-0800-0.
    1. Piulats J.M., Espinosa E., de la Cruz Merino L., Varela M., Alonso Carrion L., Martin-Algarra S., Lopez Castro R., Curiel T., Rodriguez-Abreu D., Redrado M., et al. Nivolumab Plus Ipilimumab for Treatment-Naive Metastatic Uveal Melanoma: An Open-Label, Multicenter, Phase II Trial by the Spanish Multidisciplinary Melanoma Group (GEM-1402) J. Clin. Oncol. 2021;39:586–598. doi: 10.1200/JCO.20.00550.
    1. Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Rutkowski P., Lao C.D., Cowey C.L., Schadendorf D., Wagstaff J., Dummer R., et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019;381:1535–1546. doi: 10.1056/NEJMoa1910836.
    1. Wolchok J.D., Chiarion-Sileni V., Gonzalez R., Grob J.-J., Rutkowski P., Lao C.D., Cowey C.L., Schadendorf D., Wagstaff J., Dummer R., et al. CheckMate 067: 6.5-year outcomes in patients (pts) with advanced melanoma. J. Clin. Oncol. 2021;39:9506. doi: 10.1200/JCO.2021.39.15_suppl.9506.
    1. Cancer Genome Atlas N. Genomic Classification of Cutaneous Melanoma. Cell. 2015;161:1681–1696. doi: 10.1016/j.cell.2015.05.044.
    1. Robertson A.G., Shih J., Yau C., Gibb E.A., Oba J., Mungall K.L., Hess J.M., Uzunangelov V., Walter V., Danilova L., et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell. 2017;32:204–220.e15. doi: 10.1016/j.ccell.2017.07.003.
    1. Bakhoum M.F., Esmaeli B. Molecular Characteristics of Uveal Melanoma: Insights from the Cancer Genome Atlas (TCGA) Project. Cancers. 2019;11:1061. doi: 10.3390/cancers11081061.
    1. Johansson P.A., Brooks K., Newell F., Palmer J.M., Wilmott J.S., Pritchard A.L., Broit N., Wood S., Carlino M.S., Leonard C., et al. Whole genome landscapes of uveal melanoma show an ultraviolet radiation signature in iris tumours. Nat. Commun. 2020;11:2408. doi: 10.1038/s41467-020-16276-8.
    1. Royer-Bertrand B., Torsello M., Rimoldi D., El Zaoui I., Cisarova K., Pescini-Gobert R., Raynaud F., Zografos L., Schalenbourg A., Speiser D., et al. Comprehensive Genetic Landscape of Uveal Melanoma by Whole-Genome Sequencing. Am. J. Hum. Genet. 2016;99:1190–1198. doi: 10.1016/j.ajhg.2016.09.008.
    1. Vichitvejpaisal P., Dalvin L.A., Mazloumi M., Ewens K.G., Ganguly A., Shields C.L. Genetic Analysis of Uveal Melanoma in 658 Patients Using the Cancer Genome Atlas Classification of Uveal Melanoma as A, B, C, and D. Ophthalmology. 2019;126:1445–1453. doi: 10.1016/j.ophtha.2019.04.027.
    1. Rodrigues M., Mobuchon L., Houy A., Fiévet A., Gardrat S., Barnhill R.L., Popova T., Servois V., Rampanou A., Mouton A., et al. Outlier response to anti-PD1 in uveal melanoma reveals germline MBD4 mutations in hypermutated tumors. Nat. Commun. 2018;9:1866. doi: 10.1038/s41467-018-04322-5.
    1. Rodrigues M., Mobuchon L., Houy A., Alsafadi S., Baulande S., Mariani O., Marande B., Ait Rais K., Van der Kooij M.K., Kapiteijn E., et al. Evolutionary Routes in Metastatic Uveal Melanomas Depend on MBD4 Alterations. Clin. Cancer Res. 2019;25:5513–5524. doi: 10.1158/1078-0432.CCR-19-1215.
    1. Repo P., Jantti J.E., Jarvinen R.S., Rantala E.S., Tall M., Raivio V., Kivela T.T., Turunen J.A. Germline loss-of-function variants in MBD4 are rare in Finnish patients with uveal melanoma. Pigment. Cell Melanoma Res. 2020;33:756–762. doi: 10.1111/pcmr.12892.
    1. Harbour J.W. The genetics of uveal melanoma: An emerging framework for targeted therapy. Pigment. Cell Melanoma Res. 2012;25:171–181. doi: 10.1111/j.1755-148X.2012.00979.x.
    1. Karlsson J., Nilsson L.M., Mitra S., Alsen S., Shelke G.V., Sah V.R., Forsberg E.M.V., Stierner U., All-Eriksson C., Einarsdottir B., et al. Molecular profiling of driver events in metastatic uveal melanoma. Nat. Commun. 2020;11:1894. doi: 10.1038/s41467-020-15606-0.
    1. Shain A.H., Bagger M.M., Yu R., Chang D., Liu S., Vemula S., Weier J.F., Wadt K., Heegaard S., Bastian B.C., et al. The genetic evolution of metastatic uveal melanoma. Nat. Genet. 2019;51:1123–1130. doi: 10.1038/s41588-019-0440-9.
    1. Reiter J.G., Makohon-Moore A.P., Gerold J.M., Heyde A., Attiyeh M.A., Kohutek Z.A., Tokheim C.J., Brown A., DeBlasio R.M., Niyazov J., et al. Minimal functional driver gene heterogeneity among untreated metastases. Science. 2018;361:1033–1037. doi: 10.1126/science.aat7171.
    1. Vogelstein B., Papadopoulos N., Velculescu V.E., Zhou S., Diaz L.A., Jr., Kinzler K.W. Cancer genome landscapes. Science. 2013;339:1546–1558. doi: 10.1126/science.1235122.
    1. Hoefsmit E.P., Rozeman E.A., Van T.M., Dimitriadis P., Krijgsman O., Conway J.W., Pires da Silva I., van der Wal J.E., Ketelaars S.L.C., Bresser K., et al. Comprehensive analysis of cutaneous and uveal melanoma liver metastases. J. Immunother. Cancer. 2020;8:1501. doi: 10.1136/jitc-2020-001501.
    1. Coupland S.E., Lake S.L., Zeschnigk M., Damato B.E. Molecular pathology of uveal melanoma. Eye. 2013;27:230–242. doi: 10.1038/eye.2012.255.
    1. Kilic E., van Gils W., Lodder E., Beverloo H.B., van Til M.E., Mooy C.M., Paridaens D., de Klein A., Luyten G.P. Clinical and cytogenetic analyses in uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2006;47:3703–3707. doi: 10.1167/iovs.06-0101.
    1. Hoglund M., Gisselsson D., Hansen G.B., White V.A., Sall T., Mitelman F., Horsman D. Dissecting karyotypic patterns in malignant melanomas: Temporal clustering of losses and gains in melanoma karyotypic evolution. Int. J. Cancer. 2004;108:57–65. doi: 10.1002/ijc.11558.
    1. van den Bosch T., van Beek J.G., Vaarwater J., Verdijk R.M., Naus N.C., Paridaens D., de Klein A., Kilic E. Higher percentage of FISH-determined monosomy 3 and 8q amplification in uveal melanoma cells relate to poor patient prognosis. Investig. Ophthalmol. Vis. Sci. 2012;53:2668–2674. doi: 10.1167/iovs.11-8697.
    1. White V.A., Chambers J.D., Courtright P.D., Chang W.Y., Horsman D.E. Correlation of cytogenetic abnormalities with the outcome of patients with uveal melanoma. Cancer. 1998;83:354–359. doi: 10.1002/(SICI)1097-0142(19980715)83:2<354::AID-CNCR20>;2-R.
    1. Harbour J.W., Onken M.D., Roberson E.D., Duan S., Cao L., Worley L.A., Council M.L., Matatall K.A., Helms C., Bowcock A.M. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330:1410–1413. doi: 10.1126/science.1194472.
    1. Mallone F., Sacchetti M., Lambiase A., Moramarco A. Molecular Insights and Emerging Strategies for Treatment of Metastatic Uveal Melanoma. Cancers. 2020;12:2761. doi: 10.3390/cancers12102761.
    1. Prescher G., Bornfeld N., Hirche H., Horsthemke B., Jockel K.H., Becher R. Prognostic implications of monosomy 3 in uveal melanoma. Lancet. 1996;347:1222–1225. doi: 10.1016/s0140-6736(96)90736-9.
    1. Derrien A.-C., Rodrigues M., Eeckhoutte A., Dayot S., Houy A., Mobuchon L., Gardrat S., Lequin D., Ballet S., Pierron G., et al. Germline MBD4 Mutations and Predisposition to Uveal Melanoma. JNCI J. Natl. Cancer Inst. 2021;113:80–87. doi: 10.1093/jnci/djaa047.
    1. Johansson P.A., Stark A., Palmer J.M., Bigby K., Brooks K., Rolfe O., Pritchard A.L., Whitehead K., Warrier S., Glasson W., et al. Prolonged stable disease in a uveal melanoma patient with germline MBD4 nonsense mutation treated with pembrolizumab and ipilimumab. Immunogenetics. 2019;71:433–436. doi: 10.1007/s00251-019-01108-x.
    1. Onken M.D., Worley L.A., Ehlers J.P., Harbour J.W. Gene Expression Profiling in Uveal Melanoma Reveals Two Molecular Classes and Predicts Metastatic Death. Cancer Res. 2004;64:7205–7209. doi: 10.1158/0008-5472.CAN-04-1750.
    1. Harbour J.W., Chen R. The DecisionDx-UM Gene Expression Profile Test Provides Risk Stratification and Individualized Patient Care in Uveal Melanoma. PLoS Curr. 2013;5 doi: 10.1371/currents.eogt.af8ba80fc776c8f1ce8f5dc485d4a618.
    1. Onken M.D., Worley L.A., Char D.H., Augsburger J.J., Correa Z.M., Nudleman E., Aaberg T.M., Altaweel M.M., Bardenstein D.S., Finger P.T., et al. Collaborative Ocular Oncology Group Report Number 1: Prospective Validation of a Multi-Gene Prognostic Assay in Uveal Melanoma. Ophthalmology. 2012;119:1596–1603. doi: 10.1016/j.ophtha.2012.02.017.
    1. Aaberg T.M., Covington K.R., Tsai T., Shildkrot Y., Plasseraud K.M., Alsina K.M., Oelschlager K.M., Monzon F.A. Gene Expression Profiling in Uveal Melanoma: Five-Year Prospective Outcomes and Meta-Analysis. Ocul. Oncol. Pathol. 2020;6:360–367. doi: 10.1159/000508382.
    1. Chang S.-H., Worley L.A., Onken M.D., Harbour J.W. Prognostic biomarkers in uveal melanoma: Evidence for a stem cell-like phenotype associated with metastasis. Melanoma Res. 2008;18:191–200. doi: 10.1097/CMR.0b013e3283005270.
    1. Onken M.D., Ehlers J.P., Worley L.A., Makita J., Yokota Y., Harbour J.W. Functional Gene Expression Analysis Uncovers Phenotypic Switch in Aggressive Uveal Melanomas. Cancer Res. 2006;66:4602–4609. doi: 10.1158/0008-5472.CAN-05-4196.
    1. Cai L., Paez-Escamilla M., Walter S.D., Tarlan B., Decatur C.L., Perez B.M., Harbour J.W. Gene Expression Profiling and PRAME Status Versus Tumor-Node-Metastasis Staging for Prognostication in Uveal Melanoma. Am. J. Ophthalmol. 2018;195:154–160. doi: 10.1016/j.ajo.2018.07.045.
    1. Van Raamsdonk C.D., Griewank K.G., Crosby M.B., Garrido M.C., Vemula S., Wiesner T., Obenauf A.C., Wackernagel W., Green G., Bouvier N., et al. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 2010;363:2191–2199. doi: 10.1056/NEJMoa1000584.
    1. Van Raamsdonk C.D., Bezrookove V., Green G., Bauer J., Gaugler L., O’Brien J.M., Simpson E.M., Barsh G.S., Bastian B.C. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457:599–602. doi: 10.1038/nature07586.
    1. Johansson P., Aoude L.G., Wadt K., Glasson W.J., Warrier S.K., Hewitt A.W., Kiilgaard J.F., Heegaard S., Isaacs T., Franchina M., et al. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget. 2016;7:4624–4631. doi: 10.18632/oncotarget.6614.
    1. Moore A.R., Ceraudo E., Sher J.J., Guan Y., Shoushtari A.N., Chang M.T., Zhang J.Q., Walczak E.G., Kazmi M.A., Taylor B.S., et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat. Genet. 2016;48:675–680. doi: 10.1038/ng.3549.
    1. Vivet-Noguer R., Tarin M., Roman-Roman S., Alsafadi S. Emerging Therapeutic Opportunities Based on Current Knowledge of Uveal Melanoma Biology. Cancers. 2019;11:1019. doi: 10.3390/cancers11071019.
    1. Bauer J., Kilic E., Vaarwater J., Bastian B.C., Garbe C., De Klein A. Oncogenic GNAQ mutations are not correlated with disease-free survival in uveal melanoma. Br. J. Cancer. 2009;101:813–815. doi: 10.1038/sj.bjc.6605226.
    1. Onken M.D., Worley L.A., Long M.D., Duan S., Council M.L., Bowcock A.M., Harbour J.W. Oncogenic Mutations inGNAQOccur Early in Uveal Melanoma. Investig. Opthalmology Vis. Sci. 2008;49:5230. doi: 10.1167/iovs.08-2145.
    1. Van Weeghel C., Wierenga A.P.A., Versluis M., Van Hall T., Van Der Velden P.A., Kroes W.G.M., Pfeffer U., Luyten G.P.M., Jager M.J. Do GNAQ and GNA11 Differentially Affect Inflammation and HLA Expression in Uveal Melanoma? Cancers. 2019;11:1127. doi: 10.3390/cancers11081127.
    1. Terai M., Orloff M., Sugase T., Thomas J., Daneilson M., Sharpe-Mills E., Aplin A., Sato T. Somatic mutations and their impact on survival in metastatic uveal melanoma. Pigment. Cell Melanoma Res. 2000;33:148–255. doi: 10.1111/pcmr.12834.
    1. Ewens K.G., Kanetsky P.A., Richards-Yutz J., Purrazzella J., Shields C.L., Ganguly T., Ganguly A. Chromosome 3 Status Combined WithBAP1andEIF1AXMutation Profiles Are Associated with Metastasis in Uveal Melanoma. Investig. Opthalmology Vis. Sci. 2014;55:5160. doi: 10.1167/iovs.14-14550.
    1. Martin M., Maßhöfer L., Temming P., Rahmann S., Metz C., Bornfeld N., Van De Nes J., Klein-Hitpass L., Hinnebusch A.G., Horsthemke B., et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat. Genet. 2013;45:933–936. doi: 10.1038/ng.2674.
    1. Yavuzyigitoglu S., Koopmans A.E., Verdijk R.M., Vaarwater J., Eussen B., van Bodegom A., Paridaens D., Kilic E., de Klein A., Rotterdam Ocular Melanoma Study Group Uveal Melanomas with SF3B1 Mutations: A Distinct Subclass Associated with Late-Onset Metastases. Ophthalmology. 2016;123:1118–1128. doi: 10.1016/j.ophtha.2016.01.023.
    1. Etemadmoghadam D., Azar W.J., Lei Y., Moujaber T., Garsed D.W., Kennedy C.J., Fereday S., Mitchell C., Chiew Y.-E., Hendley J., et al. EIF1AX and NRAS Mutations Co-occur and Cooperate in Low-Grade Serous Ovarian Carcinomas. Cancer Res. 2017;77:4268–4278. doi: 10.1158/0008-5472.CAN-16-2224.
    1. Krishnamoorthy G.P., Davidson N.R., Leach S.D., Zhao Z., Lowe S.W., Lee G., Landa I., Nagarajah J., Saqcena M., Singh K., et al. EIF1AX and RAS Mutations Cooperate to Drive Thyroid Tumorigenesis through ATF4 and c-MYC. Cancer Discov. 2019;9:264–281. doi: 10.1158/-18-0606.
    1. Zhou Z., Gong Q., Wang Y., Li M., Wang L., Ding H., Li P. The biological function and clinical significance of SF3B1 mutations in cancer. Biomark. Res. 2020;8:38. doi: 10.1186/s40364-020-00220-5.
    1. Mergener S., Siveke J.T., Peña-Llopis S. Monosomy 3 Is Linked to Resistance to MEK Inhibitors in Uveal Melanoma. Int. J. Mol. Sci. 2021;22:6727. doi: 10.3390/ijms22136727.
    1. Aoude L.G., Vajdic C.M., Kricker A., Armstrong B., Hayward N.K. Prevalence of germline BAP1 mutation in a population-based sample of uveal melanoma cases. Pigment. Cell Melanoma Res. 2013;26:278–279. doi: 10.1111/pcmr.12046.
    1. Gupta M.P., Lane A.M., Deangelis M.M., Mayne K., Crabtree M., Gragoudas E.S., Kim I.K. Clinical Characteristics of Uveal Melanoma in Patients with GermlineBAP1Mutations. JAMA Ophthalmol. 2015;133:881. doi: 10.1001/jamaophthalmol.2015.1119.
    1. Turunen J.A., Markkinen S., Wilska R., Saarinen S., Raivio V., Täll M., Lehesjoki A.-E., Kivela T.T. BAP1 Germline Mutations in Finnish Patients with Uveal Melanoma. Ophthalmology. 2016;123:1112–1117. doi: 10.1016/j.ophtha.2016.01.008.
    1. Huang K.-L., Mashl R.J., Wu Y., Ritter D.I., Wang J., Oh C., Paczkowska M., Reynolds S., Wyczalkowski M.A., Oak N., et al. Pathogenic Germline Variants in 10,389 Adult Cancers. Cell. 2018;173:355–370.e14. doi: 10.1016/j.cell.2018.03.039.
    1. Masoomian B., Shields J.A., Shields C.L. Overview of BAP1 cancer predisposition syndrome and the relationship to uveal melanoma. J. Curr. Ophthalmol. 2018;30:102–109. doi: 10.1016/j.joco.2018.02.005.
    1. Rai K., Pilarski R., Cebulla C.M., Abdel-Rahman M.H. Comprehensive review of BAP1 tumor predisposition syndrome with report of two new cases. Clin. Genet. 2016;89:285–294. doi: 10.1111/cge.12630.
    1. Pilarski R., Carlo M., Cebulla C., Abdel-Rahman M. BAP1 Tumor Predisposition Syndrome. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Mirzaa G., Amemiya A., editors. GeneReviews (®) University of Washington; Seattle, DC, USA: 2020.
    1. Singh N., Singh R., Bowen R.C., Abdel-Rahman M.H., Singh A.D. Uveal Melanoma in BAP1 Tumor Predisposition Syndrome: Estimation of Risk. Am. J. Ophthalmol. 2021;224:172–177. doi: 10.1016/j.ajo.2020.12.005.
    1. Star P., Goodwin A., Kapoor R., Conway R.M., Long G.V., Scolyer R.A., Guitera P. Germline BAP1-positive patients: The dilemmas of cancer surveillance and a proposed interdisciplinary consensus monitoring strategy. Eur. J. Cancer. 2018;92:48–53. doi: 10.1016/j.ejca.2017.12.022.
    1. Carbone M., Ferris L.K., Baumann F., Napolitano A., Lum C.A., Flores E.G., Gaudino G., Powers A., Bryant-Greenwood P., Krausz T., et al. BAP1 cancer syndrome: Malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J. Transl. Med. 2012;10:179. doi: 10.1186/1479-5876-10-179.
    1. Battaglia A. The Importance of Multidisciplinary Approach in Early Detection of BAP1 Tumor Predisposition Syndrome: Clinical Management and Risk Assessment. Clin. Med. Insights Oncol. 2014;8:37–47. doi: 10.4137/CMO.S15239.
    1. Pilarski R., Cebulla C.M., Massengill J.B., Rai K., Rich T., Strong L., McGillivray B., Asrat M.-J., Davidorf F.H., Abdel-Rahman M.H. Expanding the clinical phenotype of hereditaryBAP1cancer predisposition syndrome, reporting three new cases. Genes Chromosomes Cancer. 2014;53:177–182. doi: 10.1002/gcc.22129.
    1. Njauw C.-N.J., Kim I., Piris A., Gabree M., Taylor M., Lane A.M., Deangelis M.M., Gragoudas E., Duncan L.M., Tsao H. Germline BAP1 Inactivation Is Preferentially Associated with Metastatic Ocular Melanoma and Cutaneous-Ocular Melanoma Families. PLoS ONE. 2012;7:e35295. doi: 10.1371/journal.pone.0035295.
    1. Ewens K.G., Lalonde E., Richards-Yutz J., Shields C.L., Ganguly A. Comparison of Germline versus Somatic BAP1 Mutations for Risk of Metastasis in Uveal Melanoma. BMC Cancer. 2018;18:1172. doi: 10.1186/s12885-018-5079-x.
    1. Walpole S., Pritchard A.L., Cebulla C.M., Pilarski R., Stautberg M., Davidorf F.H., De La Fouchardière A., Cabaret O., Golmard L., Stoppa-Lyonnet D., et al. Comprehensive Study of the Clinical Phenotype of GermlineBAP1Variant-Carrying Families Worldwide. JNCI J. Natl. Cancer Inst. 2018;110:1328–1341. doi: 10.1093/jnci/djy171.
    1. Shields C.L., Furuta M., Thangappan A., Nagori S., Mashayekhi A., Lally D.R., Kelly C.C., Rudich D.S., Nagori A.V., Wakade O.A., et al. Metastasis of uveal melanoma millimeter-by-millimeter in 8033 consecutive eyes. Arch. Ophthalmol. 2009;127:989–998. doi: 10.1001/archophthalmol.2009.208.
    1. Shields C.L., Kaliki S., Furuta M., Fulco E., Alarcon C., Shields J.A. American Joint Committee on Cancer classification of posterior uveal melanoma (tumor size category) predicts prognosis in 7731 patients. Ophthalmology. 2013;120:2066–2071. doi: 10.1016/j.ophtha.2013.03.012.
    1. Kaliki S., Shields C.L., Shields J.A. Uveal melanoma: Estimating prognosis. Indian J. Ophthalmol. 2015;63:93–102. doi: 10.4103/0301-4738.154367.
    1. Barisione G., Fabbi M., Gino A., Queirolo P., Orgiano L., Spano L., Picasso V., Pfeffer U., Mosci C., Jager M.J., et al. Potential Role of Soluble c-Met as a New Candidate Biomarker of Metastatic Uveal Melanoma. JAMA Ophthalmol. 2015;133:1013. doi: 10.1001/jamaophthalmol.2015.1766.
    1. National Comprehensive Cancer Network Melanoma: Uveal (Version 2.2021) [(accessed on 2 August 2021)]. Available online: .
    1. Marshall E., Romaniuk C., Ghaneh P., Wong H., McKay M., Chopra M., Coupland S.E., Damato B.E. MRI in the detection of hepatic metastases from high-risk uveal melanoma: A prospective study in 188 patients. Br. J. Ophthalmol. 2013;97:159–163. doi: 10.1136/bjophthalmol-2012-302323.
    1. Wen J.C., Sai V., Straatsma B.R., McCannel T.A. Radiation-Related Cancer Risk Associated with Surveillance Imaging for Metastasis from Choroidal Melanoma. JAMA Ophthalmol. 2013;131:56. doi: 10.1001/jamaophthalmol.2013.564.
    1. Orcurto V., Denys A., Voelter V., Schalenbourg A., Schnyder P., Zografos L., Leyvraz S., Delaloye A.B., Prior J.O. 18F-fluorodeoxyglucose positron emission tomography/computed tomography and magnetic resonance imaging in patients with liver metastases from uveal melanoma. Melanoma Res. 2012;22:63–69. doi: 10.1097/CMR.0b013e32834d3dcb.
    1. Gonsalves C.F., Eschelman D.J., Sullivan K.L., Anne P.R., Doyle L., Sato T. Radioembolization as Salvage Therapy for Hepatic Metastasis of Uveal Melanoma: A Single-Institution Experience. Am. J. Roentgenol. 2011;196:468–473. doi: 10.2214/AJR.10.4881.
    1. Gupta S., Bedikian A.Y., Ahrar J., Ensor J., Ahrar K., Madoff D.C., Wallace M.J., Murthy R., Tam A., Hwu P. Hepatic artery chemoembolization in patients with ocular melanoma metastatic to the liver: Response, survival, and prognostic factors. Am. J. Clin. Oncol. 2010;33:474–480. doi: 10.1097/COC.0b013e3181b4b065.
    1. Hsueh E.C., Essner R., Foshag L.J., Ye X., Wang H.-J., Morton D.L. Prolonged survival after complete resection of metastases from intraocular melanoma. Cancer. 2004;100:122–129. doi: 10.1002/cncr.11872.
    1. Huppert P.E., Fierlbeck G., Pereira P., Schanz S., Duda S.H., Wietholtz H., Rozeik C., Claussen C.D. Transarterial chemoembolization of liver metastases in patients with uveal melanoma. Eur. J. Radiol. 2010;74:e38–e44. doi: 10.1016/j.ejrad.2009.03.064.
    1. Mariani P., Piperno-Neumann S., Servois V., Berry M.G., Dorval T., Plancher C., Couturier J., Levy-Gabriel C., Lumbroso-Le Rouic L., Desjardins L., et al. Surgical management of liver metastases from uveal melanoma: 16 years’ experience at the Institut Curie. Eur. J. Surg. Oncol. 2009;35:1192–1197. doi: 10.1016/j.ejso.2009.02.016.
    1. Patel K., Sullivan K., Berd D., Mastrangelo M.J., Shields C.L., Shields J.A., Sato T. Chemoembolization of the hepatic artery with BCNU for metastatic uveal melanoma: Results of a phase II study. Melanoma Res. 2005;15:297–304. doi: 10.1097/00008390-200508000-00011.
    1. Gomez D., Wetherill C., Cheong J., Jones L., Marshall E., Damato B., Coupland S.E., Ghaneh P., Poston G.J., Malik H.Z., et al. The Liverpool uveal melanoma liver metastases pathway: Outcome following liver resection. J. Surg. Oncol. 2014;109:542–547. doi: 10.1002/jso.23535.
    1. Middleton M.R., McAlpine C., Woodcock V.K., Corrie P., Infante J.R., Steven N.M., Evans T.R.J., Anthoney A., Shoushtari A.N., Hamid O., et al. Tebentafusp, A TCR/Anti-CD3 Bispecific Fusion Protein Targeting gp100, Potently Activated Antitumor Immune Responses in Patients with Metastatic Melanoma. Clin. Cancer Res. 2020;26:5869–5878. doi: 10.1158/1078-0432.CCR-20-1247.
    1. Blohmer J.U., Rezai M., Kümmel S., Kühn T., Warm M., Friedrichs K., Benkow A., Valentine W.J., Eiermann W. Using the 21-gene assay to guide adjuvant chemotherapy decision-making in early-stage breast cancer: A cost-effectiveness evaluation in the German setting. J. Med. Econ. 2013;16:30–40. doi: 10.3111/13696998.2012.722572.
    1. Reed S.D., Dinan M.A., Schulman K.A., Lyman G.H. Cost-effectiveness of the 21-gene recurrence score assay in the context of multifactorial decision making to guide chemotherapy for early-stage breast cancer. Genet. Med. 2013;15:203–211. doi: 10.1038/gim.2012.119.
    1. Vataire A.L., Laas E., Aballea S., Gligorov J., Rouzier R., Chereau E. Cost-effectiveness of a chemotherapy predictive test. Bull. Cancer. 2012;99:907–914. doi: 10.1684/bdc.2012.1652.
    1. Aaberg T.M., Jr., Cook R.W., Oelschlager K., Maetzold D., Rao P.K., Mason J.O., 3rd Current clinical practice: Differential management of uveal melanoma in the era of molecular tumor analyses. Clin. Ophthalmol. 2014;8:2449–2460. doi: 10.2147/OPTH.S70839.
    1. Davanzo J.M., Binkley E.M., Bena J.F., Singh A.D. Risk-stratified systemic surveillance in uveal melanoma. Br. J. Ophthalmol. 2019;103:1868–1871. doi: 10.1136/bjophthalmol-2018-313569.
    1. Plasseraud K.M., Cook R.W., Tsai T., Shildkrot Y., Middlebrook B., Maetzold D., Wilkinson J., Stone J., Johnson C., Oelschlager K., et al. Clinical Performance and Management Outcomes with the DecisionDx-UM Gene Expression Profile Test in a Prospective Multicenter Study. J. Oncol. 2016;2016:1–9. doi: 10.1155/2016/5325762.
    1. Schefler A.C., Skalet A., Oliver S.C., Mason J., Daniels A.B., Alsina K.M., Plasseraud K.M., Monzon F.A., Firestone B. Prospective evaluation of risk-appropriate management of uveal melanoma patients informed by gene expression profiling. Melanoma Manag. 2020;7:MMT37. doi: 10.2217/mmt-2020-0001.
    1. Beran T.M., McCannel T.A., Stanton A.L., Straatsma B.R., Burgess B.L. Reactions to and Desire for Prognostic Testing in Choroidal Melanoma Patients. J. Genet. Couns. 2009;18:265–274. doi: 10.1007/s10897-009-9223-2.
    1. Cook S.A., Damato B., Marshall E., Salmon P. Psychological aspects of cytogenetic testing of uveal melanoma: Preliminary findings and directions for future research. Eye. 2009;23:581–585. doi: 10.1038/eye.2008.54.
    1. Mahipal A., Tijani L., Chan K., Laudadio M., Mastrangelo M.J., Sato T. A pilot study of sunitinib malate in patients with metastatic uveal melanoma. Melanoma Res. 2012;22:440–446. doi: 10.1097/CMR.0b013e328358b373.
    1. Valsecchi M.E., Orloff M., Sato R., Chervoneva I., Shields C.L., Shields J.A., Mastrangelo M.J., Sato T. Adjuvant Sunitinib in High-Risk Patients with Uveal Melanoma: Comparison with Institutional Controls. Ophthalmology. 2018;125:210–217. doi: 10.1016/j.ophtha.2017.08.017.
    1. Sato T., Orloff M.M., Valsecchi M.E., Shimada A., Chervoneva I., Sharpe-Mills E., Klose H., Norcini J., Belinsky J., Sato S., et al. A randomized phase II study of adjuvant sunitinib or valproic acid in high-risk patients with uveal melanoma. J. Clin. Oncol. 2020;38:e22059. doi: 10.1200/JCO.2020.38.15_suppl.e22059.
    1. Surriga O., Rajasekhar V.K., Ambrosini G., Dogan Y., Huang R., Schwartz G.K. Crizotinib, a c-Met Inhibitor, Prevents Metastasis in a Metastatic Uveal Melanoma Model. Mol. Cancer Ther. 2013;12:2817–2826. doi: 10.1158/1535-7163.MCT-13-0499.
    1. Khan S., Lutzky J., Shoushtari A.N., Jeter J.M., Chiuzan C., Sender N., Blumberg L.E., Nesson A., Singh-Kandah S.V., Hernandez S., et al. Adjuvant crizotinib in high-risk uveal melanoma following definitive therapy. J. Clin. Oncol. 2020;38:10075. doi: 10.1200/JCO.2020.38.15_suppl.10075.
    1. Bol K.F., van den Bosch T., Schreibelt G., Mensink H.W., Keunen J.E., Kilic E., Japing W.J., Geul K.W., Westdorp H., Boudewijns S., et al. Adjuvant Dendritic Cell Vaccination in High-Risk Uveal Melanoma. Ophthalmology. 2016;123:2265–2267. doi: 10.1016/j.ophtha.2016.06.027.
    1. Fountain E., Bassett R., Cain S., Posada L., Gombos D., Hwu P., Bedikian A., Patel S. Adjuvant Ipilimumab in High-Risk Uveal Melanoma. Cancers. 2019;11:152. doi: 10.3390/cancers11020152.
    1. Croce M., Ferrini S., Pfeffer U., Gangemi R. Targeted Therapy of Uveal Melanoma: Recent Failures and New Perspectives. Cancers. 2019;11:846. doi: 10.3390/cancers11060846.
    1. Xiong X.F., Zhang H., Boesgaard M.W., Underwood C.R., Brauner-Osborne H., Stromgaard K. Structure-Activity Relationship Studies of the Natural Product Gq/11 Protein Inhibitor YM-254890. ChemMedChem. 2019;14:865–870. doi: 10.1002/cmdc.201900018.
    1. Schrage R., Schmitz A.-L., Gaffal E., Annala S., Kehraus S., Wenzel D., Büllesbach K.M., Bald T., Inoue A., Shinjo Y., et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun. 2015;6:10156. doi: 10.1038/ncomms10156.
    1. Lapadula D., Farias E., Randolph C.E., Purwin T.J., McGrath D., Charpentier T.H., Zhang L., Wu S., Terai M., Sato T., et al. Effects of Oncogenic Gαq and Gα11 Inhibition by FR900359 in Uveal Melanoma. Mol. Cancer Res. 2019;17:963–973. doi: 10.1158/1541-7786.MCR-18-0574.
    1. Onken M.D., Makepeace C.M., Kaltenbronn K.M., Kanai S.M., Todd T.D., Wang S., Broekelmann T.J., Rao P.K., Cooper J.A., Blumer K.J. Targeting nucleotide exchange to inhibit constitutively active G protein α subunits in cancer cells. Sci. Signal. 2018;11:eaao6852. doi: 10.1126/scisignal.aao6852.
    1. Yoo J.H., Shi D.S., Grossmann A.H., Sorensen L.K., Tong Z., Mleynek T.M., Rogers A., Zhu W., Richards J.R., Winter J.M., et al. ARF6 Is an Actionable Node that Orchestrates Oncogenic GNAQ Signaling in Uveal Melanoma. Cancer Cell. 2016;29:889–904. doi: 10.1016/j.ccell.2016.04.015.
    1. Buchbinder E.I., Cohen J.V., Haq R., Hodi F.S., Lawrence D.P., Giobbie-Hurder A., Knoerzer D., Sullivan R.J. A phase II study of ERK inhibition by ulixertinib (BVD-523) in metastatic uveal melanoma. J. Clin. Oncol. 2020;38:10036. doi: 10.1200/JCO.2020.38.15_suppl.10036.
    1. Steeb T., Wessely A., Ruzicka T., Heppt M.V., Berking C. How to MEK the best of uveal melanoma: A systematic review on the efficacy and safety of MEK inhibitors in metastatic or unresectable uveal melanoma. Eur. J. Cancer. 2018;103:41–51. doi: 10.1016/j.ejca.2018.08.005.
    1. Carvajal R.D., Piperno-Neumann S., Kapiteijn E., Chapman P.B., Frank S., Joshua A.M., Piulats J.M., Wolter P., Cocquyt V., Chmielowski B., et al. Selumetinib in Combination with Dacarbazine in Patients with Metastatic Uveal Melanoma: A Phase III, Multicenter, Randomized Trial (SUMIT) J. Clin. Oncol. 2018;36:1232–1239. doi: 10.1200/JCO.2017.74.1090.
    1. Carvajal R.D., Sosman J.A., Quevedo J.F., Milhem M.M., Joshua A.M., Kudchadkar R.R., Linette G.P., Gajewski T.F., Lutzky J., Lawson D.H., et al. Effect of selumetinib vs. chemotherapy on progression-free survival in uveal melanoma: A randomized clinical trial. JAMA. 2014;311:2397–2405. doi: 10.1001/jama.2014.6096.
    1. Kirkwood J.M., Bastholt L., Robert C., Sosman J., Larkin J., Hersey P., Middleton M., Cantarini M., Zazulina V., Kemsley K., et al. Phase II, Open-Label, Randomized Trial of the MEK1/2 Inhibitor Selumetinib as Monotherapy versus Temozolomide in Patients with Advanced Melanoma. Clin. Cancer Res. 2012;18:555–567. doi: 10.1158/1078-0432.CCR-11-1491.
    1. Shoushtari A.N., Kudchadkar R.R., Panageas K., Murthy R.K., Jung M., Shah R., O’Donnell B., Khawaja T.T., Shames Y., Prempeh-Keteku N.A., et al. A randomized phase 2 study of trametinib with or without GSK2141795 in patients with advanced uveal melanoma. J. Clin. Oncol. 2016;34:9511. doi: 10.1200/JCO.2016.34.15_suppl.9511.
    1. Falchook G.S., Lewis K.D., Infante J.R., Gordon M.S., Vogelzang N.J., DeMarini D.J., Sun P., Moy C., Szabo S.A., Roadcap L.T., et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: A phase 1 dose-escalation trial. Lancet Oncol. 2012;13:782–789. doi: 10.1016/S1470-2045(12)70269-3.
    1. Mackeigan J.P., Collins T.S., Ting J.P.Y. MEK Inhibition Enhances Paclitaxel-induced Tumor Apoptosis. J. Biol. Chem. 2000;275:38953–38956. doi: 10.1074/jbc.C000684200.
    1. Fizazi K., Maillard A., Penel N., Baciarello G., Allouache D., Daugaard G., Van De Wouw A., Soler G., Vauleon E., Chaigneau L., et al. A phase III trial of empiric chemotherapy with cisplatin and gemcitabine or systemic treatment tailored by molecular gene expression analysis in patients with carcinomas of an unknown primary (CUP) site (GEFCAPI 04) Ann. Oncol. 2019;30:v851. doi: 10.1093/annonc/mdz394.
    1. Decaudin D., El Botty R., Diallo B., Massonnet G., Fleury J., Naguez A., Raymondie C., Davies E., Smith A., Wilson J., et al. Selumetinib-based therapy in uveal melanoma patient-derived xenografts. Oncotarget. 2018;9:21674–21686. doi: 10.18632/oncotarget.24670.
    1. Piperno-Neumann S., Kapiteijn E., Larkin J.M.G., Carvajal R.D., Luke J.J., Seifert H., Roozen I., Zoubir M., Yang L., Choudhury S., et al. Phase I dose-escalation study of the protein kinase C (PKC) inhibitor AEB071 in patients with metastatic uveal melanoma. J. Clin. Oncol. 2014;32:9030. doi: 10.1200/jco.2014.32.15_suppl.9030.
    1. Kapiteijn E., Carlino M., Boni V., Loirat D., Speetjens F., Park J., Calvo E., Carvajal R., Nyakas M., Gonzalez-Maffe J., et al. Abstract CT068: A phase I trial of LXS196, a novel PKC inhibitor for metastatic uveal melanoma. AACR. 2019:CT068. doi: 10.1158/1538-7445.AM2019-CT068.
    1. IDEAYA Biosciences Corporate Presentation. Jul, 2021. [(accessed on 8 August 2021)]. Available online: .
    1. Carita G., Frisch-Dit-Leitz E., Dahmani A., Raymondie C., Cassoux N., Piperno-Neumann S., Némati F., Laurent C., De Koning L., Halilovic E., et al. Dual inhibition of protein kinase C and p53-MDM2 or PKC and mTORC1 are novel efficient therapeutic approaches for uveal melanoma. Oncotarget. 2016;7:33542–33556. doi: 10.18632/oncotarget.9552.
    1. Shoushtari A.N., Ong L.T., Schoder H., Singh-Kandah S., Abbate K.T., Postow M.A., Callahan M.K., Wolchok J., Chapman P.B., Panageas K.S., et al. A phase 2 trial of everolimus and pasireotide long-acting release in patients with metastatic uveal melanoma. Melanoma Res. 2016;26:272–277. doi: 10.1097/CMR.0000000000000234.
    1. Khalili J.S., Yu X., Wang J., Hayes B.C., Davies M.A., Lizee G., Esmaeli B., Woodman S.E. Combination Small Molecule MEK and PI3K Inhibition Enhances Uveal Melanoma Cell Death in a Mutant GNAQ- and GNA11-Dependent Manner. Clin. Cancer Res. 2012;18:4345–4355. doi: 10.1158/1078-0432.CCR-11-3227.
    1. Musi E., Ambrosini G., De Stanchina E., Schwartz G.K. The Phosphoinositide 3-Kinase α Selective Inhibitor BYL719 Enhances the Effect of the Protein Kinase C Inhibitor AEB071 in GNAQ/GNA11-Mutant Uveal Melanoma Cells. Mol. Cancer Ther. 2014;13:1044–1053. doi: 10.1158/1535-7163.MCT-13-0550.
    1. Amirouchene-Angelozzi N., Frisch-Dit-Leitz E., Carita G., Dahmani A., Raymondie C., Liot G., Gentien D., Némati F., Decaudin D., Roman-Roman S., et al. The mTOR inhibitor Everolimus synergizes with the PI3K inhibitor GDC0941 to enhance anti-tumor efficacy in uveal melanoma. Oncotarget. 2016;7:23633–23646. doi: 10.18632/oncotarget.8054.
    1. Bhatia S., Moon J., Margolin K.A., Weber J.S., Lao C.D., Othus M., Aparicio A.M., Ribas A., Sondak V.K. Phase II Trial of Sorafenib in Combination with Carboplatin and Paclitaxel in Patients with Metastatic Uveal Melanoma: SWOG S0512. PLoS ONE. 2012;7:e48787. doi: 10.1371/journal.pone.0048787.
    1. Scheulen M.E., Kaempgen E., Keilholz U., Heinzerling L., Ochsenreither S., Abendroth A., Hilger R.A., Grubert M., Wetter A., Guberina N., et al. STREAM: A randomized discontinuation, blinded, placebo-controlled phase II study of sorafenib (S) treatment of chemonaïve patients (pts) with metastatic uveal melanoma (MUM) J. Clin. Oncol. 2017;35:9511. doi: 10.1200/JCO.2017.35.15_suppl.9511.
    1. Luke J.J., Olson D.J., Allred J.B., Strand C.A., Bao R., Zha Y., Carll T., Labadie B.W., Bastos B.R., Butler M.O., et al. Randomized Phase II Trial and Tumor Mutational Spectrum Analysis from Cabozantinib versus Chemotherapy in Metastatic Uveal Melanoma (Alliance A091201) Clin. Cancer Res. 2020;26:804–811. doi: 10.1158/1078-0432.CCR-19-1223.
    1. Feng X., Degese M.S., Iglesias-Bartolome R., Vaque J.P., Molinolo A.A., Rodrigues M., Zaidi M.R., Ksander B.R., Merlino G., Sodhi A., et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell. 2014;25:831–845. doi: 10.1016/j.ccr.2014.04.016.
    1. Feng X., Arang N., Rigiracciolo D.C., Lee J.S., Yeerna H., Wang Z., Lubrano S., Kishore A., Pachter J.A., Konig G.M., et al. A Platform of Synthetic Lethal Gene Interaction Networks Reveals that the GNAQ Uveal Melanoma Oncogene Controls the Hippo Pathway through FAK. Cancer Cell. 2019;35:457–472. doi: 10.1016/j.ccell.2019.01.009.
    1. Sulzmaier F.J., Jean C., Schlaepfer D.D. FAK in cancer: Mechanistic findings and clinical applications. Nat. Rev. Cancer. 2014;14:598–610. doi: 10.1038/nrc3792.
    1. Serrels A., Lund T., Serrels B., Byron A., McPherson R.C., von Kriegsheim A., Gomez-Cuadrado L., Canel M., Muir M., Ring J.E., et al. Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity. Cell. 2015;163:160–173. doi: 10.1016/j.cell.2015.09.001.
    1. Paradis J.S., Acosta M., Saddawi-Konefka R., Kishore A., Lubrano S., Gomes F., Arang N., Tiago M., Coma S., Wu X., et al. Synthetic Lethal Screens Reveal Cotargeting FAK and MEK as a Multimodal Precision Therapy for GNAQ-Driven Uveal Melanoma. Clin. Cancer Res. 2021;27:3190–3200. doi: 10.1158/1078-0432.CCR-20-3363.
    1. Eskens F.A.L.M., Ramos F.J., Burger H., O’Brien J.P., Piera A., De Jonge M.J.A., Mizui Y., Wiemer E.A.C., Carreras M.J., Baselga J., et al. Phase I Pharmacokinetic and Pharmacodynamic Study of the First-in-Class Spliceosome Inhibitor E7107 in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2013;19:6296–6304. doi: 10.1158/1078-0432.CCR-13-0485.
    1. Leeksma A.C., Derks I.A.M., Kasem M.H., Kilic E., de Klein A., Jager M.J., van de Loosdrecht A.A., Jansen J.H., Navrkalova V., Faber L.M., et al. The Effect of SF3B1 Mutation on the DNA Damage Response and Nonsense-Mediated mRNA Decay in Cancer. Front. Oncol. 2020;10:609409. doi: 10.3389/fonc.2020.609409.
    1. Seiler M., Yoshimi A., Darman R., Chan B., Keaney G., Thomas M., Agrawal A.A., Caleb B., Csibi A., Sean E., et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat. Med. 2018;24:497–504. doi: 10.1038/nm.4493.
    1. Ito K., Thodima V., Carter J., Bhagwat N., Sivakumar M., Grego A., Rager J., Terai M., Sato T., Abdel-Wahab O., et al. Abstract 1137: PRMT5 inhibition regulates alternative splicing and DNA damage repair pathways in SF3B1 R625G expressing uveal melanoma cells. Cancer Res. 2021;81:1137. doi: 10.1158/1538-7445.Am2021-1137.
    1. Fong J.Y., Pignata L., Goy P.A., Kawabata K.C., Lee S.C., Koh C.M., Musiani D., Massignani E., Kotini A.G., Penson A., et al. Therapeutic Targeting of RNA Splicing Catalysis through Inhibition of Protein Arginine Methylation. Cancer Cell. 2019;36:194–209.e9. doi: 10.1016/j.ccell.2019.07.003.
    1. Grimes J., Shoushtari A.N., Orloff M., Khan S., Chiuzan C., Hsiao S.J., McDonnell D., Marr B.P., Carvajal R.D. Clinical characteristics of SF3B1 mutant (mut) uveal melanoma (UM) and response to immune checkpoint inhibition (ICI) J. Clin. Oncol. 2021;39:9535. doi: 10.1200/JCO.2021.39.15_suppl.9535.
    1. Centore R.C., Soares L.M., Vaswani R.G., Ichikawa K., Li Z., Fan H., Setser J., Lahr D.L., Zawadzke L., Chen X., et al. Abstract 1224: Discovery of novel BAF inhibitors for the treatment of transcription factor-driven cancers. Cancer Res. 2021;81:1224. doi: 10.1158/1538-7445.Am2021-1224.
    1. Bigot J., Lalanne A.I., Lucibello F., Gueguen P., Houy A., Dayot S., Ganier O., Gilet J., Tosello J., Nemati F., et al. Splicing Patterns in SF3B1-Mutated Uveal Melanoma Generate Shared Immunogenic Tumor-Specific Neoepitopes. Cancer Discov. 2021;11:1938–1951. doi: 10.1158/-20-0555.
    1. Scheuermann J.C., De Ayala Alonso A.G., Oktaba K., Ly-Hartig N., McGinty R.K., Fraterman S., Wilm M., Muir T.W., Müller J. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature. 2010;465:243–247. doi: 10.1038/nature08966.
    1. Landreville S., Agapova O.A., Matatall K.A., Kneass Z.T., Onken M.D., Lee R.S., Bowcock A.M., Harbour J.W. Histone Deacetylase Inhibitors Induce Growth Arrest and Differentiation in Uveal Melanoma. Clin. Cancer Res. 2012;18:408–416. doi: 10.1158/1078-0432.CCR-11-0946.
    1. Wang Y., Liu M., Jin Y., Jiang S., Pan J. In vitro and in vivo anti-uveal melanoma activity of JSL-1, a novel HDAC inhibitor. Cancer Lett. 2017;400:47–60. doi: 10.1016/j.canlet.2017.04.028.
    1. Moschos M.M., Dettoraki M., Androudi S., Kalogeropoulos D., Lavaris A., Garmpis N., Damaskos C., Garmpi A., Tsatsos M. The Role of Histone Deacetylase Inhibitors in Uveal Melanoma: Current Evidence. Anticancer. Res. 2018;38:3817–3824. doi: 10.21873/anticanres.12665.
    1. Jespersen H., Olofsson Bagge R., Ullenhag G., Carneiro A., Helgadottir H., Ljuslinder I., Levin M., All-Eriksson C., Andersson B., Stierner U., et al. Concomitant use of pembrolizumab and entinostat in adult patients with metastatic uveal melanoma (PEMDAC study): Protocol for a multicenter phase II open label study. BMC Cancer. 2019;19:415. doi: 10.1186/s12885-019-5623-3.
    1. Jespersen H., Bagge O.R., Ullenhag G., Carneiro A., Helgadottir H., Ljuslinder I., Levin M., All-Eriksson C., Andersson B., Stierner U., et al. Phase II multicenter open label study of pembrolizumab and entinostat in adult patients with metastatic uveal melanoma (PEMDAC study) Ann. Oncol. 2019;30:v907. doi: 10.1093/annonc/mdz394.068.
    1. Booth L., Roberts J.L., Sander C., Lalani A.S., Kirkwood J.M., Hancock J.F., Poklepovic A., Dent P. Neratinib and entinostat combine to rapidly reduce the expression of K-RAS, N-RAS, Gαq and Gα11 and kill uveal melanoma cells. Cancer Biol. Ther. 2019;20:700–710. doi: 10.1080/15384047.2018.1551747.
    1. Faião-Flores F., Emmons M.F., Durante M.A., Kinose F., Saha B., Fang B., Koomen J.M., Chellappan S.P., Maria-Engler S.S., Rix U., et al. HDAC Inhibition Enhances the In Vivo Efficacy of MEK Inhibitor Therapy in Uveal Melanoma. Clin. Cancer Res. 2019;25:5686–5701. doi: 10.1158/1078-0432.CCR-18-3382.
    1. Lafave L.M., Béguelin W., Koche R., Teater M., Spitzer B., Chramiec A., Papalexi E., Keller M.D., Hricik T., Konstantinoff K., et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat. Med. 2015;21:1344–1349. doi: 10.1038/nm.3947.
    1. Schoumacher M., Le Corre S., Houy A., Mulugeta E., Stern M.-H., Roman-Roman S., Margueron R. Uveal melanoma cells are resistant to EZH2 inhibition regardless of BAP1 status. Nat. Med. 2016;22:577–578. doi: 10.1038/nm.4098.
    1. Filippakopoulos P., Qi J., Picaud S., Shen Y., Smith W.B., Fedorov O., Morse E.M., Keates T., Hickman T.T., Felletar I., et al. Selective inhibition of BET bromodomains. Nature. 2010;468:1067–1073. doi: 10.1038/nature09504.
    1. Szczepanski A.P., Zhao Z., Sosnowski T., Goo Y.A., Bartom E.T., Wang L. ASXL3 bridges BRD4 to BAP1 complex and governs enhancer activity in small cell lung cancer. Genome Med. 2020;12:63. doi: 10.1186/s13073-020-00760-3.
    1. Parrella P., Caballero O.L., Sidransky D., Merbs S.L. Detection of c-myc amplification in uveal melanoma by fluorescent in situ hybridization. Investig. Ophthalmol. Vis. Sci. 2001;42:1679–1684.
    1. Ambrosini G., Sawle A.D., Musi E., Schwartz G.K. BRD4-targeted therapy induces Myc-independent cytotoxicity in Gnaq/11-mutatant uveal melanoma cells. Oncotarget. 2015;6:33397–33409. doi: 10.18632/oncotarget.5179.
    1. Chua V., Orloff M., Teh J.L., Sugase T., Liao C., Purwin T.J., Lam B.Q., Terai M., Ambrosini G., Carvajal R.D., et al. Stromal fibroblast growth factor 2 reduces the efficacy of bromodomain inhibitors in uveal melanoma. EMBO Mol. Med. 2019;11:e9081. doi: 10.15252/emmm.201809081.
    1. Rago F., Elliott G., Li A., Sprouffske K., Kerr G., Desplat A., Abramowski D., Chen J.T., Farsidjani A., Xiang K.X., et al. The Discovery of SWI/SNF Chromatin Remodeling Activity as a Novel and Targetable Dependency in Uveal Melanoma. Mol. Cancer Ther. 2020;19:2186–2195. doi: 10.1158/1535-7163.MCT-19-1013.
    1. Shrestha R., Nabavi N., Lin Y.Y., Mo F., Anderson S., Volik S., Adomat H.H., Lin D., Xue H., Dong X., et al. BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma. Genome Med. 2019;11:8. doi: 10.1186/s13073-019-0620-3.
    1. Louie B.H., Kurzrock R. BAP1: Not just a BRCA1-associated protein. Cancer Treat. Rev. 2020;90:102091. doi: 10.1016/j.ctrv.2020.102091.
    1. Peña-Llopis S., Vega-Rubín-De-Celis S., Liao A., Leng N., Pavía-Jiménez A., Wang S., Yamasaki T., Zhrebker L., Sivanand S., Spence P., et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 2012;44:751–759. doi: 10.1038/ng.2323.
    1. Hanpude P., Massengill J.B., Cebulla C.M., Davidorf F., Abdel-Rahman M.H. BAP1 status and response to radiation in melanoma. Investig. Ophthalmol. Vis. Sci. 2021;62:2872.
    1. Augsburger J.J., Corrêa Z.M., Augsburger B.D. Frequency and Implications of Discordant Gene Expression Profile Class in Posterior Uveal Melanomas Sampled by Fine Needle Aspiration Biopsy. Am. J. Ophthalmol. 2015;159:248–256. doi: 10.1016/j.ajo.2014.10.026.
    1. Jin E., Burnier J.V. Liquid Biopsy in Uveal Melanoma: Are We There Yet? Ocul. Oncol. Pathol. 2021;7:1–16. doi: 10.1159/000508613.
    1. Tobal K., Sherman L.S., Foss A.J., Lightman S.L. Detection of melanocytes from uveal melanoma in peripheral blood using the polymerase chain reaction. Investig. Ophthalmol. Vis. Sci. 1993;34:2622–2625.
    1. Bidard F.C., Madic J., Mariani P., Piperno-Neumann S., Rampanou A., Servois V., Cassoux N., Desjardins L., Milder M., Vaucher I., et al. Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in metastatic uveal melanoma. Int. J. Cancer. 2014;134:1207–1213. doi: 10.1002/ijc.28436.
    1. Bande M.F., Santiago M., Muinelo-Romay L., Blanco M.J., Mera P., Capeans C., Pardo M., Piñeiro A. Detection of circulating melanoma cells in choroidal melanocytic lesions. BMC Res. Notes. 2015;8:452. doi: 10.1186/s13104-015-1420-5.
    1. Anand K., Roszik J., Gombos D., Upshaw J., Sarli V., Meas S., Lucci A., Hall C., Patel S. Pilot Study of Circulating Tumor Cells in Early-Stage and Metastatic Uveal Melanoma. Cancers. 2019;11:856. doi: 10.3390/cancers11060856.
    1. Mazzini C., Pinzani P., Salvianti F., Scatena C., Paglierani M., Ucci F., Pazzagli M., Massi D. Circulating Tumor Cells Detection and Counting in Uveal Melanomas by a Filtration-Based Method. Cancers. 2014;6:323–332. doi: 10.3390/cancers6010323.
    1. Callejo S.A., Antecka E., Blanco P.L., Edelstein C., Burnier M.N. Identification of circulating malignant cells and its correlation with prognostic factors and treatment in uveal melanoma. A prospective longitudinal study. Eye. 2007;21:752–759. doi: 10.1038/sj.eye.6702322.
    1. Tura A., Lüke J., Merz H., Reinsberg M., Lüke M., Jager M.J., Grisanti S. Identification of Circulating Melanoma Cells in Uveal Melanoma Patients by Dual-Marker Immunoenrichment. Investig. Opthalmology Vis. Sci. 2014;55:4395. doi: 10.1167/iovs.14-14512.
    1. Terai M., Mu Z., Eschelman D.J., Gonsalves C.F., Kageyama K., Chervoneva I., Orloff M., Weight R., Mastrangelo M.J., Cristofanilli M., et al. Arterial Blood, Rather Than Venous Blood, is a Better Source for Circulating Melanoma Cells. EBioMedicine. 2015;2:1821–1826. doi: 10.1016/j.ebiom.2015.09.019.
    1. Madic J., Piperno-Neumann S., Servois V., Rampanou A., Milder M., Trouiller B., Gentien D., Saada S., Assayag F., Thuleau A., et al. Pyrophosphorolysis-Activated Polymerization Detects Circulating Tumor DNA in Metastatic Uveal Melanoma. Clin. Cancer Res. 2012;18:3934–3941. doi: 10.1158/1078-0432.CCR-12-0309.
    1. Metz C.H.D., Scheulen M., Bornfeld N., Lohmann D., Zeschnigk M. Ultradeep sequencing detects GNAQ and GNA11 mutations in cell-free DNA from plasma of patients with uveal melanoma. Cancer Med. 2013;2:208–215. doi: 10.1002/cam4.61.
    1. Park J.J., Diefenbach R.J., Byrne N., Long G.V., Scolyer R.A., Gray E.S., Carlino M.S., Rizos H. Circulating Tumor DNA Reflects Uveal Melanoma Responses to Protein Kinase C Inhibition. Cancers. 2021;13:1740. doi: 10.3390/cancers13071740.
    1. Shoushtari A.N., Collins L., Espinosa E., Sethi H., Stanhope S., Abdullah S., Ikeguchi A., Ranade K., Hamid O. 1757O Early reduction in ctDNA, regardless of best RECIST response, is associated with overall survival (OS) on tebentafusp in previously treated metastatic uveal melanoma (mUM) patients. Ann. Oncol. 2021;32:S1210. doi: 10.1016/j.annonc.2021.08.1702.
    1. Ragusa M., Barbagallo C., Statello L., Caltabiano R., Russo A., Puzzo L., Avitabile T., Longo A., Toro M.D., Barbagallo D., et al. miRNA profiling in vitreous humor, vitreal exosomes and serum from uveal melanoma patients: Pathological and diagnostic implications. Cancer Biol. Ther. 2015;16:1387–1396. doi: 10.1080/15384047.2015.1046021.
    1. Achberger S., Aldrich W., Tubbs R., Crabb J.W., Singh A.D., Triozzi P.L. Circulating immune cell and microRNA in patients with uveal melanoma developing metastatic disease. Mol. Immunol. 2014;58:182–186. doi: 10.1016/j.molimm.2013.11.018.
    1. Russo A., Caltabiano R., Longo A., Avitabile T., Franco L.M., Bonfiglio V., Puzzo L., Reibaldi M. Increased Levels of miRNA-146a in Serum and Histologic Samples of Patients with Uveal Melanoma. Front. Pharmacol. 2016;7:424. doi: 10.3389/fphar.2016.00424.
    1. Stark M.S., Gray E.S., Isaacs T., Chen F.K., Millward M., McEvoy A., Zaenker P., Ziman M., Soyer H.P., Glasson W.J., et al. A Panel of Circulating MicroRNAs Detects Uveal Melanoma with High Precision. Transl. Vis. Sci. Technol. 2019;8:12. doi: 10.1167/tvst.8.6.12.
    1. Radhakrishnan A., Badhrinarayanan N., Biswas J., Krishnakumar S. Analysis of chromosomal aberration (1, 3, and 8) and association of microRNAs in uveal melanoma. Mol. Vis. 2009;15:2146–2154.
    1. Venza M., Dell’Aversana C., Visalli M., Altucci L., Teti D., Venza I. Identification of microRNA expression patterns in cutaneous and uveal melanoma cell lines. Tumori. 2014;100:e4–e7. doi: 10.1177/1430.15828.
    1. Eldh M., Olofsson Bagge R., Lässer C., Svanvik J., Sjöstrand M., Mattsson J., Lindnér P., Choi D.-S., Gho Y.S., Lötvall J. MicroRNA in exosomes isolated directly from the liver circulation in patients with metastatic uveal melanoma. BMC Cancer. 2014;14:962. doi: 10.1186/1471-2407-14-962.
    1. Abdel-Rahman M.H., Cebulla C.M., Verma V., Christopher B.N., Carson W.E., Olencki T., Davidorf F.H. Monosomy 3 status of uveal melanoma metastases is associated with rapidly progressive tumors and short survival. Exp. Eye Res. 2012;100:26–31. doi: 10.1016/j.exer.2012.04.010.

Source: PubMed

3
Subscribe