BAP1 Loss Promotes Suppressive Tumor Immune Microenvironment via Upregulation of PROS1 in Class 2 Uveal Melanomas

Christopher J Kaler, James J Dollar, Anthony M Cruz, Jeffim N Kuznetsoff, Margaret I Sanchez, Christina L Decatur, Jonathan D Licht, Keiran S M Smalley, Zelia M Correa, Stefan Kurtenbach, J William Harbour, Christopher J Kaler, James J Dollar, Anthony M Cruz, Jeffim N Kuznetsoff, Margaret I Sanchez, Christina L Decatur, Jonathan D Licht, Keiran S M Smalley, Zelia M Correa, Stefan Kurtenbach, J William Harbour

Abstract

Uveal melanoma (UM) is the most common primary cancer of the eye and is associated with a high rate of metastatic death. UM can be stratified into two main classes based on metastatic risk, with class 1 UM having a low metastatic risk and class 2 UM having a high metastatic risk. Class 2 UM have a distinctive genomic, transcriptomic, histopathologic, and clinical phenotype characterized by biallelic inactivation of the BAP1 tumor-suppressor gene, an immune-suppressive microenvironment enriched for M2-polarized macrophages, and poor response to checkpoint-inhibitor immunotherapy. To identify potential mechanistic links between BAP1 loss and immune suppression in class 2 UM, we performed an integrated analysis of UM samples, as well as genetically engineered UM cell lines and uveal melanocytes (UMC). Using RNA sequencing (RNA-seq), we found that the most highly upregulated gene associated with BAP1 loss across these datasets was PROS1, which encodes a ligand that triggers phosphorylation and activation of the immunosuppressive macrophage receptor MERTK. The inverse association between BAP1 and PROS1 in class 2 UM was confirmed by single-cell RNA-seq, which also revealed that MERTK was upregulated in CD163+ macrophages in class 2 UM. Using ChIP-seq, BAP1 knockdown in UM cells resulted in an accumulation of H3K27ac at the PROS1 locus, suggesting epigenetic regulation of PROS1 by BAP1. Phosphorylation of MERTK in RAW 264.7 monocyte-macrophage cells was increased upon coculture with BAP1-/- UMCs, and this phosphorylation was blocked by depletion of PROS1 in the UMCs. These findings were corroborated by multicolor immunohistochemistry, where class 2/BAP1-mutant UMs demonstrated increased PROS1 expression in tumor cells and increased MERTK phosphorylation in CD163+ macrophages compared with class 1/BAP1-wildtype UMs. Taken together, these findings provide a mechanistic link between BAP1 loss and the suppression of the tumor immune microenvironment in class 2 UMs, and they implicate the PROS1-MERTK pathway as a potential target for immunotherapy in UM.

Keywords: BAP1; MERTK; PROS1; macrophage; metastasis; tumor immune microenvironment; uveal melanoma.

Conflict of interest statement

J.W.H. is the inventor of intellectual property related to prognostic testing in uveal melanoma. He is a paid consultant for Castle Biosciences, licensee of this intellectual property, and he receives royalties from its commercialization. All remaining authors declare no competing financial interests. Castle Biosciences had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
PROS1 expression is regulated by BAP1 in uveal melanocytes and uveal melanoma cells. (A) Summary of RNA sequencing data from BAP1-wildtype Mel202, 92.1, and MP41 uveal melanoma cells, and UMC026 uveal melanocytes with or without shRNA-mediated knockdown of BAP1, and 80 UM samples from The Cancer Genome Atlas (TCGA) data repository with or without mutational inactivation of BAP1. Numbers in parenthesis indicate the number of genes upregulated by loss of BAP1. Numbers within the Venn diagram indicate the number of overlapping genes between indicated subsets of genes. PROS1 was one of only two genes that was upregulated across all datasets. (B) Immunoblots confirming upregulation of PROS1 protein following knockout of BAP1 in UMC026 cells, or knockdown of BAP1 in Mel202 cells. Conversely, ectopic expression of BAP1 in MP46 BAP1-mutant class 2 uveal melanoma cells resulted in downregulation of PROS1. PROS1/β-actin densitometry ratios (lanes 1–6): 0.29592, 1.2059, 0.61066, 1.1644, 0.34334, 0.10613 (C) ChIP-seq analysis of H3K27ac at the PROS1 locus in Mel202 cells with or without doxycycline-induced, shRNA-mediated knockdown of BAP1.
Figure 2
Figure 2
Single-cell RNA sequencing analysis of PROS1 and MERTK in uveal melanomas. (A) UMAP dimensionality reduction plot of 59,915 neoplastic and non-neoplastic cells from 11 uveal melanoma samples, with cell types indicated in the legend. (B) Left: UMAP plot of the 42,230 uveal melanoma cells in the dataset, with colors indicating gene expression profile (GEP) class 1 (blue) and class 2 (red). Right: corresponding UMAP plot demonstrating log normalized expression of PROS1, as indicated by heatmap. (C) Left: UMAP plot of the 5053 monocytes/macrophages in the dataset, with colors indicating GEP class 1 (blue) and class 2 (red) of the tumors from which the cells were derived. Right: corresponding UMAP plots demonstrating log normalized expression of CD68, CD163, and MERTK, as indicated by a heatmap. (D) Dot plot demonstrating MERTK expression in monocytes/macrophages with respect to GEP class status of the tumors from which the cells were derived. (E) Scatter plot demonstrating association between expression of MERTK and CD163 in monocytes/macrophages from class 2 tumors.
Figure 3
Figure 3
Multicolor immunohistochemistry of PROS1, MERTK, and CD163 in uveal melanomas. (A) Top, representative photomicrographs of class 1 and class 2 uveal melanomas analyzed with hematoxylin and eosin (H&E) and with immunostaining for BAP1, PROS1, phosphorylated MERTK (phospho-MERTK), and CD163. Scale bar (lower left), 100 µm. Bottom: donut plots summarizing percentage of cells that were positive for each biomarker with respect to GEP tumor class 1 versus class 2. (B) Donut plot demonstrating the proportion of CD163+/phospho-MERTK+ cells with respect to GEP tumor class 1 versus class 2. Total number of cells analyzed and number (and percentage) of cells staining positive for each indicated protein are summarized in Table 1.
Figure 4
Figure 4
Loss of BAP1 in uveal melanocytes activates MERTK in macrophages in a PROS1-dependent manner. (A) Soluble PROS1 protein levels measured by ELISA in media from cultured UMC026 cells with or without knockout of BAP1. (B) Confocal microscopy of UMC026 cells with or without knockout of BAP1 immunostained for PROS1. Scale bar (lower right), 10 µm. (C) Representative immunoblot of lysates from RAW 264.7 cells cocultured with UMC026 cells with or without knockout of BAP1, immunoprecipitated with total-MERTK antibody, and probed with either total-MERTK or phospho-MERTK antibody. Immunoprecipitated MERTK is undetectable when UMC026 cells are cultured independently of RAW 264.7 cells (Supplementary Figure S11). Phospho-MERTK/total-MERTK densitometry ratios (lanes 1–2): 0.11181, 0.46660. (D) Densitometric analysis of immunoblots from triplicate coculture experiments represented in panel C. (E) Representative immunoblot of lysates from RAW 264.7 cells cocultured with UMC026 cells knocked out for BAP1, with or without siRNA-mediated knockdown of PROS1, immunoprecipitated with total-MERTK antibody, and probed with phospho-MERTK antibody. Phospho-MERTK/total-MERTK densitometry ratios (lanes 1–2): 0.33620, 0.71485. (F) Densitometric analysis of immunoblots from triplicate coculture experiments represented in panel E.
Figure 5
Figure 5
Proposed model for how BAP1 loss leads to suppression of the tumor immune microenvironment. In class 1 BAP1-wildtype uveal melanomas, tumor cells express low levels of PROS1, and tumor-associated macrophages are mostly M1-polarized with low MERTK expression and low MERTK phosphorylation. In BAP1-mutant class 2 uveal melanomas, PROS1 is upregulated since it is no longer repressed by BAP1. Mostly, membrane-bound PROS1 on tumor cells interacts with MERTK on nearby macrophages, leading to phosphorylation of MERTK and activation of downstream signaling that promotes M2 polarization.

References

    1. Harbour J.W., Shih H.A. In: Initial Management of Uveal and Conjunctival Melanomas. Atkins M.B., Berman R.S., editors. UpToDate; Waltham, MA, USA: 2018. [(accessed on 27 July 2022)]. Available online: .
    1. Onken M.D., Worley L.A., Char D.H., Augsburger J.J., Correa Z.M., Nudleman E., Aaberg T.M., Jr., Altaweel M.M., Bardenstein D.S., Finger P.T., et al. Collaborative Ocular Oncology Group report number 1: Prospective validation of a multi-gene prognostic assay in uveal melanoma. Ophthalmology. 2012;119:1596–1603. doi: 10.1016/j.ophtha.2012.02.017.
    1. Harbour J.W., Chen R. The DecisionDx-UM Gene Expression Profile Test Provides Risk Stratification and Individualized Patient Care in Uveal Melanoma. PLoS Curr. 2013;5 doi: 10.1371/currents.eogt.af8ba80fc776c8f1ce8f5dc485d4a618.
    1. Harbour J.W., Onken M.D., Roberson E.D., Duan S., Cao L., Worley L.A., Council M.L., Matatall K.A., Helms C., Bowcock A.M. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330:1410–1413. doi: 10.1126/science.1194472.
    1. Han A., Purwin T.J., Bechtel N., Liao C., Chua V., Seifert E., Sato T., Schug Z.T., Speicher D.W., Harbour J.W., et al. BAP1 mutant uveal melanoma is stratified by metabolic phenotypes with distinct vulnerability to metabolic inhibitors. Oncogene. 2020;40:618–632. doi: 10.1038/s41388-020-01554-y.
    1. Chua V., Han A., Bechtel N., Purwin T.J., Hunter E., Liao C., Harbour J.W., Aplin A.E. The AMP-Dependent Kinase Pathway is Upregulated in BAP1 Mutant Uveal Melanoma. Pigment Cell Melanoma Res. 2021;35:78–87. doi: 10.1111/pcmr.13007.
    1. Matatall K.A., Agapova O.A., Onken M.D., Worley L.A., Bowcock A.M., Harbour J.W. BAP1 deficiency causes loss of melanocytic cell identity in uveal melanoma. BMC Cancer. 2013;13:371. doi: 10.1186/1471-2407-13-371.
    1. Aronow M.E., Topham A.K., Singh A.D. Uveal Melanoma: 5-Year Update on Incidence, Treatment, and Survival (SEER 1973-2013) Ocul. Oncol. Pathol. 2018;4:145–151. doi: 10.1159/000480640.
    1. Eskelin S., Pyrhonen S., Summanen P., Hahka-Kemppinen M., Kivela T. Tumor doubling times in metastatic malignant melanoma of the uvea: Tumor progression before and after treatment. Ophthalmology. 2000;107:1443–1449. doi: 10.1016/S0161-6420(00)00182-2.
    1. Heppt M.V., Amaral T., Kahler K.C., Heinzerling L., Hassel J.C., Meissner M., Kreuzberg N., Loquai C., Reinhardt L., Utikal J., et al. Combined immune checkpoint blockade for metastatic uveal melanoma: A retrospective, multi-center study. J. Immunother. Cancer. 2019;7:299. doi: 10.1186/s40425-019-0800-0.
    1. Durante M.A., Rodriguez D.A., Kurtenbach S., Kuznetsov J.N., Sanchez M.I., Decatur C.L., Snyder H., Feun L.G., Livingstone A.S., Harbour J.W. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat. Commun. 2020;11:496. doi: 10.1038/s41467-019-14256-1.
    1. Figueiredo C.R., Kalirai H., Sacco J.J., Azevedo R.A., Duckworth A., Slupsky J.R., Coulson J.M., Coupland S.E. Loss of BAP1 expression is associated with an immunosuppressive microenvironment in uveal melanoma, with implications for immunotherapy development. J. Pathol. 2020;250:420–439. doi: 10.1002/path.5384.
    1. de Lange M., Nell R.J., Lalai R.N., Versluis M., Jordanova E.S., Luyten G.P., Jager M.J., van der Burg S.H., Zoutman W.H., van Hall T., et al. Digital PCR-based T Cell Quantification Assisted Deconvolution of the Microenvironment Reveals that Activated Macrophages Drive Tumor Inflammation in Uveal Melanoma. Mol. Cancer Res. 2018;16:1902–1911. doi: 10.1158/1541-7786.MCR-18-0114.
    1. van Essen T.H., van Pelt S.I., Bronkhorst I.H., Versluis M., Nemati F., Laurent C., Luyten G.P., van Hall T., van den Elsen P.J., van der Velden P.A., et al. Upregulation of HLA Expression in Primary Uveal Melanoma by Infiltrating Leukocytes. PLoS ONE. 2016;11:e0164292. doi: 10.1371/journal.pone.0164292.
    1. Bronkhorst I.H., Jager M.J. Uveal melanoma: The inflammatory microenvironment. J. Innate Immun. 2012;4:454–462. doi: 10.1159/000334576.
    1. Gezgin G., Dogrusoz M., van Essen T.H., Kroes W.G.M., Luyten G.P.M., van der Velden P.A., Walter V., Verdijk R.M., van Hall T., van der Burg S.H., et al. Genetic evolution of uveal melanoma guides the development of an inflammatory microenvironment. Cancer Immunol. Immunother. 2017;66:903–912. doi: 10.1007/s00262-017-1991-1.
    1. Labani-Motlagh A., Ashja-Mahdavi M., Loskog A. The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Front. Immunol. 2020;11:940. doi: 10.3389/fimmu.2020.00940.
    1. Kuznetsov J.N., Aguero T.H., Owens D.A., Kurtenbach S., Field M.G., Durante M.A., Rodriguez D.A., King M.L., Harbour J.W. BAP1 regulates epigenetic switch from pluripotency to differentiation in developmental lineages giving rise to BAP1-mutant cancers. Sci. Adv. 2019;5:eaax1738. doi: 10.1126/sciadv.aax1738.
    1. Amirouchene-Angelozzi N., Nemati F., Gentien D., Nicolas A., Dumont A., Carita G., Camonis J., Desjardins L., Cassoux N., Piperno-Neumann S., et al. Establishment of novel cell lines recapitulating the genetic landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target. Mol. Oncol. 2014;8:1508–1520. doi: 10.1016/j.molonc.2014.06.004.
    1. Kuznetsoff J.N., Owens D.A., Lopez A., Rodriguez D.A., Chee N.T., Kurtenbach S., Bilbao D., Roberts E.R., Volmar C.H., Wahlestedt C., et al. Dual Screen for Efficacy and Toxicity Identifies HDAC Inhibitor with Distinctive Activity Spectrum for BAP1-Mutant Uveal Melanoma. Mol. Cancer Res. 2021;19:215–222. doi: 10.1158/1541-7786.MCR-20-0434.
    1. Field M.G., Kuznetsov J.N., Bussies P.L., Cai L.Z., Alawa K.A., Decatur C.L., Kurtenbach S., Harbour J.W. BAP1 Loss Is Associated with DNA Methylomic Repatterning in Highly Aggressive Class 2 Uveal Melanomas. Clin. Cancer Res. 2019;25:5663–5673. doi: 10.1158/1078-0432.CCR-19-0366.
    1. Felix K. Babraham Bioinformatics-Trim Galore! [(accessed on 1 January 2020)]. Available online:
    1. Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinform. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635.
    1. Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323.
    1. Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923.
    1. Mistry M.R.K. Introduction to ChIP-Seq Using High-Performance Computing. Harvard Chan Bioinformatics Core; Cambridge, MA, USA: 2017. Peak calling with MACS2.
    1. Kurtenbach S., Harbour J.W. SparK: A Publication-quality NGS Visualization Tool. bioRxiv. 2019:845529. doi: 10.1101/845529.
    1. Butler A., Hoffman P., Smibert P., Papalexi E., Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 2018;36:411–420. doi: 10.1038/nbt.4096.
    1. Stuart T., Butler A., Hoffman P., Hafemeister C., Papalexi E., Mauck W.M., Stoeckius M., Smibert P., Satija R. Comprehensive integration of single cell data. bioRxiv. 2018;177:1888–1902. doi: 10.1016/j.cell.2019.05.031.
    1. Zhang W., DeRyckere D., Hunter D., Liu J., Stashko M.A., Minson K.A., Cummings C.T., Lee M., Glaros T.G., Newton D.L., et al. UNC2025, a potent and orally bioavailable MER/FLT3 dual inhibitor. J. Med. Chem. 2014;57:7031–7041. doi: 10.1021/jm500749d.
    1. Ubil E., Caskey L., Holtzhausen A., Hunter D., Story C., Earp H.S. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J. Clin. Invest. 2018;128:2356–2369. doi: 10.1172/JCI97354.
    1. Bootcov M.R., Bauskin A.R., Valenzuela S.M., Moore A.G., Bansal M., He X.Y., Zhang H.P., Donnellan M., Mahler S., Pryor K., et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc. Natl. Acad. Sci. USA. 1997;94:11514–11519. doi: 10.1073/pnas.94.21.11514.
    1. Bronkhorst I.H., Ly L.V., Jordanova E.S., Vrolijk J., Versluis M., Luyten G.P., Jager M.J. Detection of M2-macrophages in uveal melanoma and relation with survival. Investig. Ophthalmol. Vis. Sci. 2011;52:643–650. doi: 10.1167/iovs.10-5979.
    1. Carrera Silva E.A., Chan P.Y., Joannas L., Errasti A.E., Gagliani N., Bosurgi L., Jabbour M., Perry A., Smith-Chakmakova F., Mucida D., et al. T cell-derived protein S engages TAM receptor signaling in dendritic cells to control the magnitude of the immune response. Immunity. 2013;39:160–170. doi: 10.1016/j.immuni.2013.06.010.
    1. Lew E.D., Oh J., Burrola P.G., Lax I., Zagorska A., Traves P.G., Schlessinger J., Lemke G. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities. Elife. 2014;3:e03385. doi: 10.7554/eLife.03385.
    1. Rothlin C.V., Carrera-Silva E.A., Bosurgi L., Ghosh S. TAM receptor signaling in immune homeostasis. Annu. Rev. Immunol. 2015;33:355–391. doi: 10.1146/annurev-immunol-032414-112103.
    1. Myers K.V., Amend S.R., Pienta K.J. Targeting Tyro3, Axl and MerTK (TAM receptors): Implications for macrophages in the tumor microenvironment. Mol. Cancer. 2019;18:94. doi: 10.1186/s12943-019-1022-2.
    1. Du W., Huang H., Sorrelle N., Brekken R.A. Sitravatinib potentiates immune checkpoint blockade in refractory cancer models. JCI Insight. 2018;3:e124184. doi: 10.1172/jci.insight.124184.
    1. Wu H., Zheng J., Xu S., Fang Y., Wu Y., Zeng J., Shao A., Shi L., Lu J., Mei S., et al. Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury. J. Neuroinflammation. 2021;18:2. doi: 10.1186/s12974-020-02041-7.
    1. Zhang B., Fang L., Wu H.M., Ding P.S., Xu K., Liu R.Y. Mer receptor tyrosine kinase negatively regulates lipoteichoic acid-induced inflammatory response via PI3K/Akt and SOCS3. Mol. Immunol. 2016;76:98–107. doi: 10.1016/j.molimm.2016.06.016.
    1. Lee Y.J., Han J.Y., Byun J., Park H.J., Park E.M., Chong Y.H., Cho M.S., Kang J.L. Inhibiting Mer receptor tyrosine kinase suppresses STAT1, SOCS1/3, and NF-κB activation and enhances inflammatory responses in lipopolysaccharide-induced acute lung injury. J. Leukoc. Biol. 2012;91:921–932. doi: 10.1189/jlb.0611289.
    1. Robertson A.G., Shih J., Yau C., Gibb E.A., Oba J., Mungall K.L., Hess J.M., Uzunangelov V., Walter V., Danilova L., et al. Integrative analysis identifies four molecular and.d clinical subsets in uveal melanoma. Cancer Cell. 2017;32:204–220. doi: 10.1016/j.ccell.2017.07.003.
    1. Carbone M., Harbour J.W., Brugarolas J., Bononi A., Pagano I., Dey A., Krausz T., Pass H.I., Yang H., Gaudino G. Biological Mechanisms and Clinical Significance of BAP1 Mutations in Human Cancer. Cancer Discov. 2020;10:1103–1120. doi: 10.1158/-19-1220.
    1. Krishna Y., Acha-Sagredo A., Sabat-Pospiech D., Kipling N., Clarke K., Figueiredo C.R., Kalirai H., Coupland S.E. Transcriptome Profiling Reveals New Insights into the Immune Microenvironment and Upregulation of Novel Biomarkers in Metastatic Uveal Melanoma. Cancers. 2020;12:2832. doi: 10.3390/cancers12102832.
    1. Wang T., Lu R., Kapur P., Jaiswal B.S., Hannan R., Zhang Z., Pedrosa I., Luke J.J., Zhang H., Goldstein L.D., et al. An Empirical Approach Leveraging Tumorgrafts to Dissect the Tumor Microenvironment in Renal Cell Carcinoma Identifies Missing Link to Prognostic Inflammatory Factors. Cancer Discov. 2018;8:1142–1155. doi: 10.1158/-17-1246.
    1. Abboud-Jarrous G., Priya S., Maimon A., Fischman S., Cohen-Elisha M., Czerninski R., Burstyn-Cohen T. Protein S drives oral squamous cell carcinoma tumorigenicity through regulation of AXL. Oncotarget. 2017;8:13986–14002. doi: 10.18632/oncotarget.14753.
    1. Liu X., Liu Y., Zhao J., Liu Y. Screening of potential biomarkers in uterine leiomyomas disease via gene expression profiling analysis. Mol. Med. Rep. 2018;17:6985–6996. doi: 10.3892/mmr.2018.8756.
    1. Ning P., Zhong J.G., Jiang F., Zhang Y., Zhao J., Tian F., Li W. Role of protein S in castration-resistant prostate cancer-like cells. Endocr. Relat. Cancer. 2016;23:595–607. doi: 10.1530/ERC-16-0126.
    1. Tsou W.I., Nguyen K.Q., Calarese D.A., Garforth S.J., Antes A.L., Smirnov S.V., Almo S.C., Birge R.B., Kotenko S.V. Receptor tyrosine kinases, TYRO3, AXL, and MER, demonstrate distinct patterns and complex regulation of ligand-induced activation. J. Biol. Chem. 2014;289:25750–25763. doi: 10.1074/jbc.M114.569020.
    1. Burstyn-Cohen T., Maimon A. TAM receptors, Phosphatidylserine, inflammation, and Cancer. Cell Commun. Signal. 2019;17:156. doi: 10.1186/s12964-019-0461-0.
    1. Khanolkar R., Naidoo R., Güç E., Leach E., Stanhope S., Gascoyne D., Collins L., Ranade K., Benlahrech A. IL-2 combination with ImmTAC overcomes CD163+ TAM-like M2 macrophage inhibition of ImmTAC-mediated T cell killing of tumor cells. J. ImmunoTher.Cancer. 2021;9:A600. doi: 10.1136/jitc-2021-SITC2021.571.
    1. Massague J., Ganesh K. Metastasis-Initiating Cells and Ecosystems. Cancer Discov. 2021;11:971–994. doi: 10.1158/-21-0010.
    1. Davoli T., Uno H., Wooten E.C., Elledge S.J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. 2017;355:eaaf8399. doi: 10.1126/science.aaf8399.
    1. Martin T.D., Patel R.S., Cook D.R., Choi M.Y., Patil A., Liang A.C., Li M.Z., Haigis K.M., Elledge S.J. The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science. 2021;373:1327–1335. doi: 10.1126/science.abg5784.
    1. Jager M.J., Magner J.A., Ksander B.R., Dubovy S.R. Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis) Trans. Am. Ophthalmol. Soc. 2016;114:T5.

Source: PubMed

3
Subscribe