Current and Future Use of Artificial Intelligence in Electrocardiography

Manuel Martínez-Sellés, Manuel Marina-Breysse, Manuel Martínez-Sellés, Manuel Marina-Breysse

Abstract

Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed.

Keywords: artificial intelligence; cost effectiveness; deep learning; diagnosis; electrocardiography; machine learning; prognosis.

Conflict of interest statement

Manuel Marina-Breysse is a founding member of IDOVEN. ChatGPT was used but only in the last sentence of the conclusion “In the future, artificial intelligence is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed”. This sentence has been copied verbatim. As our focus is artificial intelligence in electrocardiography, we thought it appropriate to keep the exact words obtained by this open artificial intelligence chat. The authors declare no other conflict of interest.

Figures

Figure 1
Figure 1
Supervised and unsupervised learning.
Figure 2
Figure 2
Example of a sensitivity map for understanding the region where the AI algorithm is focusing to predict an output. The most important region is in orange, and the least important regions are in black.
Figure 3
Figure 3
Use of AI ECG analysis for real-time ECG monitoring.
Figure 4
Figure 4
Possible use cases of AI ECG analysis in current clinical workflows.

References

    1. Somani S., Russak A.J., Richter F., Zhao S., Vaid A., Chaudhry F., De Freitas J.K., Naik N., Miotto R., Nadkarni G.N., et al. Deep learning and the electrocardiogram: Review of the current state-of-the-art. Europace. 2021;23:1179–1191. doi: 10.1093/europace/euaa377.
    1. Averbuch T., Sullivan K., Sauer A., A Mamas M., A Voors A., Gale C.P., Metra M., Ravindra N., Van Spall H.G.C. Applications of artificial intelligence and machine learning in heart failure. Eur. Heart J. -Digit. Health. 2022;3:311–322. doi: 10.1093/ehjdh/ztac025.
    1. Srivastava A., Pratiher S., Alam S., Hari A., Banerjee N., Ghosh N., Patra A. A deep residual inception network with channel attention modules for multi-label cardiac abnormality detection from reduced-lead ECG. Physiol. Meas. 2022;43:064005. doi: 10.1088/1361-6579/ac6f40.
    1. Teplitzky B.A., McRoberts M., Ghanbari H. Deep learning for comprehensive ECG annotation. Heart Rhythm. 2020;17:881–888. doi: 10.1016/j.hrthm.2020.02.015.
    1. Wilson A., Saeed H., Pringle C., Eleftheriou I., A Bromiley P., Brass A. Artificial intelligence projects in healthcare: 10 practical tips for success in a clinical environment. BMJ Health Care Inform. 2021;28:e100323. doi: 10.1136/bmjhci-2021-100323.
    1. Akoum N., Zelnick L.R., de Boer I.H., Hirsch I.B., Trence D., Henry C., Robinson N., Bansal N. Rates of Cardiac Rhythm Abnormalities in Patients with CKD and Diabetes. Clin. J. Am. Soc. Nephrol. 2019;14:549–556. doi: 10.2215/CJN.09420818.
    1. Tsai D.-J., Tsai S.-H., Chiang H.-H., Lee C.-C., Chen S.-J. Development and Validation of an Artificial Intelligence Electrocardiogram Recommendation System in the Emergency Department. J. Pers. Med. 2022;12:700. doi: 10.3390/jpm12050700.
    1. Exarchos T.P., Tsipouras M.G., Exarchos C.P., Papaloukas C., Fotiadis D.I., Michalis L.K. A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree. Artif. Intell. Med. 2007;40:187–200. doi: 10.1016/j.artmed.2007.04.001.
    1. Malik J., Devecioglu O.C., Kiranyaz S., Ince T., Gabbouj M. Real-Time Patient-Specific ECG Classification by 1D Self-Operational Neural Networks. IEEE Trans. Biomed. Eng. 2021;69:1788–1801. doi: 10.1109/TBME.2021.3135622.
    1. Li P., Wang Y., He J., Wang L., Tian Y., Zhou T.-S., Li T., Li J.-S. High-Performance Personalized Heartbeat Classification Model for Long-Term ECG Signal. IEEE Trans. Biomed. Eng. 2016;64:78–86. doi: 10.1109/tbme.2016.2539421.
    1. Quartieri F., Marina-Breysse M., Pollastrelli A., Paini I., Lizcano C., Lillo-Castellano J.M., Grammatico A. Artificial intelligence augments detection accuracy of cardiac insertable cardiac monitors: Results from a pilot prospective observational study. Cardiovasc. Digit. Health J. 2022;3:201–211. doi: 10.1016/j.cvdhj.2022.07.071.
    1. Frohnert P.P., Gluliani E.R., Friedberg M., Johnson W.J., Tauxe W.N. Statistical Investigation of Correlations Between Serum Potassium Levels and Electrocardiographic Findings in Patients on Intermittent Hemodialysis Therapy. Circulation. 1970;41:667–676. doi: 10.1161/01.CIR.41.4.667.
    1. Ahsan M., Siddique Z. Machine learning-based heart disease diagnosis: A systematic literature review. Artif. Intell. Med. 2022;128:102289. doi: 10.1016/j.artmed.2022.102289.
    1. Li G., Tan Z., Xu W., Xu F., Wang L., Chen J., Wu K. A particle swarm optimization improved BP neural network intelligent model for electrocardiogram classification. BMC Med. Inform. Decis. Mak. 2021;21((Suppl. 2)):99. doi: 10.1186/s12911-021-01453-6.
    1. Zhang J., Liu A., Gao M., Chen X., Zhang X., Chen X. ECG-based multi-class arrhythmia detection using spatio-temporal attention-based convolutional recurrent neural network. Artif. Intell. Med. 2020;106:101856. doi: 10.1016/j.artmed.2020.101856.
    1. Haseena H.H., Mathew A.T., Paul J.K. Fuzzy Clustered Probabilistic and Multi Layered Feed Forward Neural Networks for Electrocardiogram Arrhythmia Classification. J. Med. Syst. 2009;35:179–188. doi: 10.1007/s10916-009-9355-9.
    1. Sayantan G., Kien P.T., Kadambari K.V. Classification of ECG beats using deep belief network and active learning. Med. Biol. Eng. Comput. 2018;56:1887–1898. doi: 10.1007/s11517-018-1815-2.
    1. Oh S.L., Ng E.Y., San Tan R., Acharya U.R. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol. Med. 2018;102:278–287. doi: 10.1016/j.compbiomed.2018.06.002.
    1. Taggar J.S., Coleman T., Lewis S., Heneghan C., Jones M. Accuracy of methods for diagnosing atrial fibrillation using 12-lead ECG: A systematic review and meta-analysis. Int. J. Cardiol. 2015;184:175–183. doi: 10.1016/j.ijcard.2015.02.014.
    1. I Attia Z., A Noseworthy P., Lopez-Jimenez F., Asirvatham S.J., Deshmukh A.J., Gersh B.J., E Carter R., Yao X., A Rabinstein A., Erickson B.J., et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. Lancet. 2019;394:861–867. doi: 10.1016/S0140-6736(19)31721-0.
    1. Jo Y.-Y., Kwon J.-M., Jeon K.-H., Cho Y.-H., Shin J.-H., Lee Y.-J., Jung M.-S., Ban J.-H., Kim K.-H., Lee S.Y., et al. Detection and classification of arrhythmia using an explainable deep learning model. J. Electrocardiol. 2021;67:124–132. doi: 10.1016/j.jelectrocard.2021.06.006.
    1. Hannun A.Y., Rajpurkar P., Haghpanahi M., Tison G.H., Bourn C., Turakhia M.P., Ng A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019;25:65–69. doi: 10.1038/s41591-018-0268-3. Erratum in 2019, 25, 530.
    1. Chang K.-C., Hsieh P.-H., Wu M.-Y., Wang Y.-C., Chen J.-Y., Tsai F.-J., Shih E.S., Hwang M.-J., Huang T.-C. Usefulness of Machine Learning-Based Detection and Classification of Cardiac Arrhythmias With 12-Lead Electrocardiograms. Can. J. Cardiol. 2020;37:94–104. doi: 10.1016/j.cjca.2020.02.096.
    1. Hughes J.W., Olgin J.E., Avram R., Abreau S.A., Sittler T., Radia K., Hsia H., Walters T., Lee B., Gonzalez J.E., et al. Performance of a Convolutional Neural Network and Explainability Technique for 12-Lead Electrocardiogram Interpretation. JAMA Cardiol. 2021;6:1285. doi: 10.1001/jamacardio.2021.2746.
    1. Ribeiro A.H., Ribeiro M.H., Paixão G.M.M., Oliveira D.M., Gomes P.R., Canazart J.A., Ferreira M.P.S., Andersson C.R., Macfarlane P.W., Meira W., et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat. Commun. 2020;11:1760. doi: 10.1038/s41467-020-15432-4. Erratum in 2020, 11, 2227.
    1. Xu S.S., Mak M.-W., Cheung C.-C. Towards End-to-End ECG Classification with Raw Signal Extraction and Deep Neural Networks. IEEE J. Biomed. Health Inform. 2018;23:1574–1584. doi: 10.1109/JBHI.2018.2871510.
    1. Zhu Z., Lan X., Zhao T., Guo Y., Kojodjojo P., Xu Z., Liu Z., Liu S., Wang H., Sun X., et al. Identification of 27 abnormalities from multi-lead ECG signals: An ensembled SE_ResNet framework with Sign Loss function. Physiol. Meas. 2021;42:065008. doi: 10.1088/1361-6579/ac08e6.
    1. Xu Z., Guo Y., Zhao T., Zhao Y., Liu Z., Sun X., Xie G., Li Y. Abnormality classification from electrocardiograms with various lead combinations. Physiol. Meas. 2022;43:074002. doi: 10.1088/1361-6579/ac70a4.
    1. Fiorina L., Maupain C., Gardella C., Manenti V., Salerno F., Socie P., Li J., Henry C., Plesse A., Narayanan K., et al. Evaluation of an Ambulatory ECG Analysis Platform Using Deep Neural Networks in Routine Clinical Practice. J. Am. Heart Assoc. 2022;11:e026196. doi: 10.1161/JAHA.122.026196.
    1. Acharya U.R., Oh S.L., Hagiwara Y., Tan J.H., Adam M., Gertych A., San Tan R. A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 2017;89:389–396. doi: 10.1016/j.compbiomed.2017.08.022.
    1. Puszkarski B., Hryniów K., Sarwas G. Comparison of neural basis expansion analysis for interpretable time series (N-BEATS) and recurrent neural networks for heart dysfunction classification. Physiol. Meas. 2022;43:064006. doi: 10.1088/1361-6579/ac6e55.
    1. Badertscher P., Lischer M., Mannhart D., Knecht S., Isenegger C., Lavallaz J.D.F.D., Schaer B., Osswald S., Kühne M., Sticherling C. Clinical validation of a novel smartwatch for automated detection of atrial fibrillation. Heart Rhythm. O2. 2022;3:208–210. doi: 10.1016/j.hroo.2022.02.004.
    1. Shah A.P., Rubin S.A. Errors in the computerized electrocardiogram interpretation of cardiac rhythm. J. Electrocardiol. 2007;40:385–390. doi: 10.1016/j.jelectrocard.2007.03.008.
    1. Sabut S., Pandey O., Mishra B.S.P., Mohanty M. Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network. Phys. Eng. Sci. Med. 2021;44:135–145. doi: 10.1007/s13246-020-00964-2.
    1. Chang T.-Y., Chen K.-W., Liu C.-M., Chang S.-L., Lin Y.-J., Lo L.-W., Hu Y.-F., Chung F.-P., Lin C.-Y., Kuo L., et al. A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias. J. Pers. Med. 2022;12:764. doi: 10.3390/jpm12050764.
    1. Shen C.P., Freed B.C., Walter D.P., Perry J.C., Barakat A.F., Elashery A.R.A., Shah K.S., Kutty S., McGillion M., Ng F.S., et al. Convolution Neural Network Algorithm for Shockable Arrhythmia Classification Within a Digitally Connected Automated External Defibrillator. J. Am. Heart Assoc. 2023;21:e026974. doi: 10.1161/JAHA.122.026974.
    1. Hajeb-M S., Cascella A., Valentine M., Chon K.H. Deep Neural Network Approach for Continuous ECG-Based Automated External Defibrillator Shock Advisory System During Cardiopulmonary Resuscitation. J. Am. Heart Assoc. 2021;10:e019065. doi: 10.1161/JAHA.120.019065.
    1. Krasteva V., Ménétré S., Didon J.-P., Jekova I. Fully Convolutional Deep Neural Networks with Optimized Hyperparameters for Detection of Shockable and Non-Shockable Rhythms. Sensors. 2020;20:2875. doi: 10.3390/s20102875.
    1. Irusta U., Aramendi E., Chicote B., Alonso D., Corcuera C., Veintemillas J., Larrea A., Olabarria M. Deep learning approach for a shock advise algorithm using short electrocardiogram analysis intervals. Resuscitation. 2019;142:e85. doi: 10.1016/j.resuscitation.2019.06.206.
    1. Picon A., Irusta U., Álvarez-Gila A., Aramendi E., Alonso-Atienza F., Figuera C., Ayala U., Garrote E., Wik L., Kramer-Johansen J., et al. Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia. PLoS ONE. 2019;14:e0216756. doi: 10.1371/journal.pone.0216756.
    1. Jekova I., Krasteva V. Optimization of end-to-end convolutional neural networks for analysis of out-of-hospital cardiac arrest rhythms during cardiopulmonary resuscitation. Sensors. 2021;21:4105. doi: 10.3390/s21124105.
    1. Gong Y., Wei L., Yan S., Zuo F., Zhang H., Li Y. Transfer learning based deep network for signal restoration and rhythm analysis during cardiopulmonary resuscitation using only the ECG waveform. Inf. Sci. 2023;626:754–772. doi: 10.1016/j.ins.2023.01.055.
    1. Isasi I., Irusta U., Aramendi E., Eftestøl T., Kramer-Johansen J., Wik L. Rhythm Analysis during Cardiopulmonary Resuscitation Using Convolutional Neural Networks. Entropy. 2020;22:595. doi: 10.3390/e22060595.
    1. Clifford G.D., Liu C., Moody B., Lehman L.H., Silva I., Li Q., Johnson A.E., Mark R.G. AF classification from a short single lead ECG recording: The PhysioNet/Computing in Cardiology Challenge 2017; Proceedings of the 2017 Computing in Cardiology (CinC); Rennes, France. 24–27 September 2017; pp. 1–4.
    1. Perez Alday E.A., Gu A., Shah A., Liu C., Sharma A., Seyedi S., Bahrami Rad A., Reyna M., Clifford G. Classi-Fication of 12-Lead ECGs: The PhysioNet/Computing in Cardiology Challenge 2020 (Version 1.0.2) PhysioNet; 2022.
    1. Alday E.A.P., Gu A., Shah A.J., Robichaux C., Wong A.-K.I., Liu C., Liu F., Rad A.B., Elola A., Seyedi S., et al. Classification of 12-lead ECGs: The PhysioNet/Computing in Cardiology Challenge 2020. Physiol. Meas. 2020;41:124003. doi: 10.1088/1361-6579/abc960.
    1. Ren Y., Liu F., Xia S., Shi S., Chen L., Wang Z. Dynamic ECG signal quality evaluation based on persistent homology and GoogLeNet method. Front Neurosci. 2023;17:1153386. doi: 10.3389/fnins.2023.1153386.
    1. Reyna M., Sadr N., Alday E.A.P., Gu A., Shah A.J., Robichaux C., Rad A.B., Elola A., Seyedi S., Ansari S., et al. Will Two Do? Varying Dimensions in Electrocardiography: The PhysioNet/Computing in Cardiology Challenge 2021. Comput. Cardiol. 2021;48:1–4. doi: 10.23919/cinc53138.2021.9662687.
    1. Reyna M., Sadr N., Alday E.A.P., Gu A., Shah A.J., Robichaux C., Rad A.B., Elola A., Seyedi S., Ansari S., et al. Issues in the automated classification of multilead ecgs using heterogeneous labels and populations. Physiol. Meas. 2022;43:084001. doi: 10.1088/1361-6579/ac79fd.
    1. Liu C.-W., Wu F.-H., Hu Y.-L., Pan R.-H., Lin C.-H., Chen Y.-F., Tseng G.-S., Chan Y.-K., Wang C.-L. Left ventricular hypertrophy detection using electrocardiographic signal. Sci. Rep. 2023;13:2556. doi: 10.1038/s41598-023-28325-5.
    1. Attia Z.I., Kapa S., Lopez-Jimenez F., McKie P.M., Ladewig D.J., Satam G., Pellikka P.A., Enriquez-Sarano M., Noseworthy P.A., Munger T.M., et al. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nat. Med. 2019;25:70–74. doi: 10.1038/s41591-018-0240-2.
    1. Cho J., Lee B., Kwon J.-M., Lee Y., Park H., Oh B.-H., Jeon K.-H., Park J., Kim K.-H. Artificial Intelligence Algorithm for Screening Heart Failure with Reduced Ejection Fraction Using Electrocardiography. ASAIO J. 2020;67:314–321. doi: 10.1097/MAT.0000000000001218.
    1. Attia Z.I., Harmon D.M., Dugan J., Manka L., Lopez-Jimenez F., Lerman A., Siontis K.C., Noseworthy P.A., Yao X., Klavetter E.W., et al. Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction. Nat. Med. 2022;28:2497–2503. doi: 10.1038/s41591-022-02053-1.
    1. Kwon J.-M., Jo Y.-Y., Lee S.Y., Kang S., Lim S.-Y., Lee M.S., Kim K.-H. Artificial Intelligence-Enhanced Smartwatch ECG for Heart Failure-Reduced Ejection Fraction Detection by Generating 12-Lead ECG. Diagnostics. 2022;12:654. doi: 10.3390/diagnostics12030654.
    1. Grün D., Rudolph F., Gumpfer N., Hannig J., Elsner L.K., von Jeinsen B., Hamm C.W., Rieth A., Guckert M., Keller T. Identifying Heart Failure in ECG Data with Artificial Intelligence—A Meta-Analysis. Front. Digit. Health. 2021;2:584555. doi: 10.3389/fdgth.2020.584555.
    1. Grogan M., Lopez-Jimenez F., Cohen-Shelly M., Dispenzieri A., Attia Z.I., Ezzedine O.F.A., Lin G., Kapa S., Borgeson D.D., Friedman P.A., et al. Artificial Intelligence–Enhanced Electrocardiogram for the Early Detection of Cardiac Amyloidosis. Mayo Clin. Proc. 2021;96:2768–2778. doi: 10.1016/j.mayocp.2021.04.023. Erratum in 2023, 98, 211.
    1. Tison G., Zhang J., Delling F.N., Deo R.C. Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery. Circ. Cardiovasc. Qual. Outcomes. 2019;12:e005289. doi: 10.1161/CIRCOUTCOMES.118.005289.
    1. Ulloa-Cerna A.E., Jing L., Pfeifer J.M., Raghunath S., Ruhl J.A., Rocha D.B., Leader J.B., Zimmerman N., Lee G., Steinhubl S.R., et al. rECHOmmend: An ECG-Based Machine Learning Approach for Identifying Patients at Increased Risk of Undiagnosed Structural Heart Disease Detectable by Echocardiography. Circulation. 2022;146:36–47. doi: 10.1161/CIRCULATIONAHA.121.057869.
    1. Kwon J., Lee S.Y., Jeon K., Lee Y., Kim K., Park J., Oh B., Lee M. Deep Learning–Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography. J. Am. Heart Assoc. 2020;9:e014717. doi: 10.1161/JAHA.119.014717.
    1. Kwon J.-M., Kim K.-H., Akkus Z., Jeon K.-H., Park J., Oh B.-H. Artificial intelligence for detecting mitral regurgitation using electrocardiography. J. Electrocardiol. 2020;59:151–157. doi: 10.1016/j.jelectrocard.2020.02.008.
    1. Makimoto H., Höckmann M., Lin T., Glöckner D., Gerguri S., Clasen L., Schmidt J., Assadi-Schmidt A., Bejinariu A., Müller P., et al. Performance of a convolutional neural network derived from an ECG database in recognizing myocardial infarction. Sci. Rep. 2020;10:8445. doi: 10.1038/s41598-020-65105-x.
    1. Zhang D., Yang S., Yuan X., Zhang P. Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram. iScience. 2021;24:102373. doi: 10.1016/j.isci.2021.102373.
    1. Krasteva V., Christov I., Naydenov S., Stoyanov T., Jekova I. Application of Dense Neural Networks for Detection of Atrial Fibrillation and Ranking of Augmented ECG Feature Set. Sensors. 2021;21:6848. doi: 10.3390/s21206848.
    1. Lillo-Castellano J.M., González-Ferrer J.J., Marina-Breysse M., Martínez-Ferrer J.B., Pérez-Álvarez L., Alzueta J., Martínez J.G., Rodríguez A., Rodríguez-Pérez J.C., Anguera I., et al. Personalized monitoring of electrical remodelling during atrial fibrillation progression via remote transmissions from implantable devices. Europace. 2019;22:704–715. doi: 10.1093/europace/euz331.
    1. Raghunath S., Pfeifer J.M., Ulloa-Cerna A.E., Nemani A., Carbonati T., Jing L., Vanmaanen D.P., Hartzel D.N., Ruhl J.A., Lagerman B.F., et al. Deep Neural Networks Can Predict New-Onset Atrial Fibrillation From the 12-Lead ECG and Help Identify Those at Risk of Atrial Fibrillation–Related Stroke. Circulation. 2021;143:1287–1298. doi: 10.1161/CIRCULATIONAHA.120.047829.
    1. Lip G.Y.H., Tran G., Genaidy A., Marroquin P., Estes C., Landsheftl J. Improving dynamic stroke risk prediction in non-anticoagulated patients with and without atrial fibrillation: Comparing common clinical risk scores and machine learning algorithms. Eur. Heart J. -Qual. Care Clin. Outcomes. 2021;8:548–556. doi: 10.1093/ehjqcco/qcab037.
    1. Anh D., Krishnan S., Bogun F. Accuracy of electrocardiogram interpretation by cardiologists in the setting of incorrect computer analysis. J. Electrocardiol. 2006;39:343–345. doi: 10.1016/j.jelectrocard.2006.02.002.
    1. Filgueiras-Rama D., Calvo C.J., Salvador-Montañés Ó., Cádenas R., Ruiz-Cantador J., Armada E., Rey J.R., Merino J., Peinado R., Pérez-Castellano N., et al. Spectral analysis-based risk score enables early prediction of mortality and cerebral performance in patients undergoing therapeutic hypothermia for ventricular fibrillation and comatose status. Int. J. Cardiol. 2015;186:250–258. doi: 10.1016/j.ijcard.2015.03.074.
    1. Palacios-Rubio J., Marina-Breysse M., Quintanilla J.G., Gil-Perdomo J.M., Juárez-Fernández M., Garcia-Gonzalez I., Rial-Bastón V., Corcobado M.C., Espinosa M.C., Ruiz F., et al. Early prognostic value of an Algorithm based on spectral Variables of Ventricular fibrillAtion from the EKG of patients with suddEn cardiac death: A multicentre observational study (AWAKE) Arch. Cardiol. Mex. 2018;88:460–467. doi: 10.1016/j.acmx.2018.05.003.
    1. Akbilgic O., Butler L., Karabayir I., Chang P.P., Kitzman D.W., Alonso A., Chen L.Y., Soliman E.Z. ECG-AI: Electrocardiographic artificial intelligence model for prediction of heart failure. Eur. Heart J. -Digit. Health. 2021;2:626–634. doi: 10.1093/ehjdh/ztab080.
    1. Stehlik J., Schmalfuss C., Bozkurt B., Nativi-Nicolau J., Wohlfahrt P., Wegerich S., Rose K., Ray R., Schofield R., Deswal A., et al. Continuous Wearable Monitoring Analytics Predict Heart Failure Hospitalization. Circ. Heart Fail. 2020;13:e006513. doi: 10.1161/CIRCHEARTFAILURE.119.006513.
    1. Lin C., Chau T., Shang H.-S., Fang W.-H., Lee D.-J., Lee C.-C., Tsai S.-H., Wang C.-H., Lin S.-H. Point-of-care artificial intelligence-enabled ECG for dyskalemia: A retrospective cohort analysis for accuracy and outcome prediction. NPJ Digit. Med. 2022;5:8. doi: 10.1038/s41746-021-00550-0.
    1. Raghunath S., Cerna A.E.U., Jing L., Vanmaanen D.P., Stough J., Hartzel D.N., Leader J.B., Kirchner H.L., Stumpe M.C., Hafez A., et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat. Med. 2020;26:886–891. doi: 10.1038/s41591-020-0870-z.
    1. Rogovoy N.M., Howell S.J., Lee T.L., Hamilton C., Alday E.A.P., Kabir M.M., Zhang Y., Kim E.D., Fitzpatrick J., Monroy-Trujillo J.M., et al. Hemodialysis Procedure–Associated Autonomic Imbalance and Cardiac Arrhythmias: Insights From Continuous 14-Day ECG Monitoring. J. Am. Heart Assoc. 2019;8:e013748. doi: 10.1161/JAHA.119.013748.
    1. Maille B., Wilkin M., Million M., Rességuier N., Franceschi F., Koutbi-Franceschi L., Hourdain J., Martinez E., Zabern M., Gardella C., et al. Smartwatch Electrocardiogram and Artificial Intelligence for Assessing Cardiac-Rhythm Safety of Drug Therapy in the COVID-19 Pandemic. The QT-logs study. Int. J. Cardiol. 2021;331:333–339. doi: 10.1016/j.ijcard.2021.01.002.
    1. Mazidi M.H., Eshghi M., Raoufy M.R. Premature Ventricular Contraction (PVC) Detection System Based on Tunable Q-Factor Wavelet Transform. J. Biomed. Phys. Eng. 2022;12:61–74. doi: 10.31661/jbpe.v0i0.1235.
    1. Abdou A., Krishnan S. Horizons in Single-Lead ECG Analysis from Devices to Data. Front. Signal Process. 2022;2:866047. doi: 10.3389/frsip.2022.866047.
    1. Barrett P.M., Komatireddy R., Haaser S., Topol S., Sheard J., Encinas J., Fought A.J., Topol E.J. Comparison of 24-hour Holter Monitoring with 14-day Novel Adhesive Patch Electrocardiographic Monitoring. Am. J. Med. 2014;127:95.e11–95.e17. doi: 10.1016/j.amjmed.2013.10.003.
    1. Mannhart D., Lischer M., Knecht S., Lavallaz J.D.F.D., Strebel I., Serban T., Vögeli D., Schaer B., Osswald S., Mueller C., et al. Clinical Validation of 5 Direct-to-Consumer Wearable Smart Devices to Detect Atrial Fibrillation. JACC Clin. Electrophysiol. 2023;9:232–242. doi: 10.1016/j.jacep.2022.09.011.
    1. Kim J., Shin H. Simple and Robust Realtime QRS Detection Algorithm Based on Spatiotemporal Characteristic of the QRS Complex. PLoS ONE. 2016;11:e0150144. doi: 10.1371/journal.pone.0150144.
    1. Herraiz H., Martínez-Rodrigo A., Bertomeu-González V., Quesada A., Rieta J.J., Alcaraz R. A Deep Learning Approach for Featureless Robust Quality Assessment of Intermittent Atrial Fibrillation Recordings from Portable and Wearable Devices. Entropy. 2020;22:733. doi: 10.3390/e22070733.
    1. Tison G., Sanchez J.M., Ballinger B., Singh A., Olgin J.E., Pletcher M.J., Vittinghoff E., Lee E.S., Fan S.M., Gladstone R.A., et al. Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch. JAMA Cardiol. 2018;3:409–416. doi: 10.1001/jamacardio.2018.0136.
    1. Deevi S.A., Kaniraja C.P., Mani V.D., Mishra D., Ummar S., Satheesh C. HeartNetEC: A deep representation learning approach for ECG beat classification. Biomed. Eng. Lett. 2021;11:69–84. doi: 10.1007/s13534-021-00184-x.
    1. Bollepalli S.C., Sevakula R.K., Au-Yeung W.M., Kassab M.B., Merchant F.M., Bazoukis G., Boyer R., Isselbacher E.M., Armoundas A.A. Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks. J. Am. Heart Assoc. 2021;10:e023222. doi: 10.1161/JAHA.121.023222.
    1. Nurmaini S., Darmawahyuni A., Mukti A.N.S., Rachmatullah M.N., Firdaus F., Tutuko B. Deep Learning-Based Stacked Denoising and Autoencoder for ECG Heartbeat Classification. Electronics. 2020;9:135. doi: 10.3390/electronics9010135.
    1. Pravin C., Ojha V. A Novel ECG Signal Denoising Filter Selection Algorithm Based on Conventional Neural Networks; Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA); Miami, FL, USA. 7–8 June 2020; pp. 1094–1100.
    1. Liu C., Lehman L., Moody B., Li Q., Clifford G. Focus on Detection of Arrhythmia and Noise from Cardiovascular Data. [(accessed on 3 March 2023)];Physiol. Meas. 2018 Available online: .
    1. Lou Y.-S., Lin C.-S., Fang W.-H., Lee C.-C., Wang C.-H. Development and validation of a dynamic deep learning algorithm using electrocardiogram to predict dyskalaemias in patients with multiple visits. Eur. Heart J. -Digit. Health. 2022;4:22–32. doi: 10.1093/ehjdh/ztac072.
    1. Choi B., Jang J.H., Son M., Lee M.S., Jo Y.Y., Jeon J.Y., Jin U., Soh M., Park R.W., Kwon J.M. Electrocardiographic biomarker based on machine learning for detecting overt hyperthyroidism. Eur. Heart J. -Digit. Health. 2022;3:255–264. doi: 10.1093/ehjdh/ztac013.
    1. Kwon J.-M., Cho Y., Jeon K.-H., Cho S., Kim K.-H., Baek S.D., Jeung S., Park J., Oh B.-H. A deep learning algorithm to detect anaemia with ECGs: A retrospective, multicentre study. Lancet Digit. Health. 2020;2:e358–e367. doi: 10.1016/S2589-7500(20)30108-4.
    1. Ahn J.C., Attia Z.I., Rattan P., Mullan A.F., Buryska S., Allen A.M., Kamath P.S., Friedman P.A., Shah V.H., Noseworthy P.A., et al. Development of the AI-Cirrhosis-ECG Score: An Electrocardiogram-Based Deep Learning Model in Cirrhosis. Am. J. Gastroenterol. 2021;117:424–432. doi: 10.14309/ajg.0000000000001617.
    1. Shrivastava S., Cohen-Shelly M., Attia Z.I., Rosenbaum A.N., Wang L., Giudicessi J.R., Redfield M., Bailey K., Lopez-Jimenez F., Lin G., et al. Artificial Intelligence-Enabled Electrocardiography to Screen Patients with Dilated Cardiomyopathy. Am. J. Cardiol. 2021;155:121–127. doi: 10.1016/j.amjcard.2021.06.021.
    1. Tison G.H., Siontis K.C., Abreau S., Attia Z., Agarwal P., Balasubramanyam A., Li Y., Sehnert A.J., Edelberg J.M., Friedman P.A., et al. Assessment of Disease Status and Treatment Response with Artificial Intelligence−Enhanced Electrocardiography in Obstructive Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2022;79:1032–1034. doi: 10.1016/j.jacc.2022.01.005.
    1. Hatem S.N., Cohen A. Atrial fibrillation and stroke: Are we looking in the right direction? Cardiovasc. Res. 2021;118:e4–e5. doi: 10.1093/cvr/cvab341.
    1. Attia Z.I., Kapa S., Dugan J., Pereira N., Noseworthy P.A., Jimenez F.L., Cruz J., Carter R.E., DeSimone D.C., Signorino J., et al. Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram. Mayo Clin. Proc. 2021;96:2081–2094. doi: 10.1016/j.mayocp.2021.05.027.
    1. Prifti E., Fall A., Davogustto G., Pulini A., Denjoy I., Funck-Brentano C., Khan Y., Durand-Salmon A., Badilini F., Wells Q.S., et al. Deep learning analysis of electrocardiogram for risk prediction of drug-induced arrhythmias and diagnosis of long QT syndrome. Eur. Heart J. 2021;42:3948–3961. doi: 10.1093/eurheartj/ehab588.
    1. McLaren J.T., Meyers H.P., Smith S.W. Kenichi Harumi Plenary Address at Annual Meeting of the International Society of Computers in Electrocardiology: “What Should ECG Deep Learning Focus on? The diagnosis of acute coronary occlusion!”. J. Electrocardiol. 2023;76:39–44. doi: 10.1016/j.jelectrocard.2022.10.010.
    1. Martínez-Sellés M., Juárez M., Marina-Breysse M., Lillo-Castellano J.M., Ariza A. Rational and design of ST-segment elevation not associated with acute cardiac necrosis (LESTONNAC). A prospective registry for validation of a deep learning system assisted by artificial intelligence. J. Electrocardiol. 2021;69:140–144. doi: 10.1016/j.jelectrocard.2021.10.009.
    1. Chen K.-W., Wang Y.-C., Liu M.-H., Tsai B.-Y., Wu M.-Y., Hsieh P.-H., Wei J.-T., Shih E.S.C., Shiao Y.-T., Hwang M.-J., et al. Artificial intelligence-assisted remote detection of ST-elevation myocardial infarction using a mini-12-lead electrocardiogram device in prehospital ambulance care. Front. Cardiovasc. Med. 2022;9:1001982. doi: 10.3389/fcvm.2022.1001982. Erratum in 2022, 9, 1078223.
    1. Cho Y., Kwon J.-M., Kim K.-H., Medina-Inojosa J.R., Jeon K.-H., Cho S., Lee S.Y., Park J., Oh B.-H. Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography. Sci. Rep. 2020;10:20495. doi: 10.1038/s41598-020-77599-6.
    1. Gustafsson S., Gedon D., Lampa E., Ribeiro A.H., Holzmann M.J., Schön T.B., Sundström J. Development and validation of deep learning ECG-based prediction of myocardial infarction in emergency department patients. Sci. Rep. 2022;12:19615. doi: 10.1038/s41598-022-24254-x.
    1. Su H.-Y., Tsai J.-L., Hsu Y.-C., Lee K.-H., Chang C.-S., Sun C.-K., Wang Y.-H., Chi S.-C., Hsu C.-W. A modified cardiac triage strategy reduces door to ECG time in patients with ST elevation myocardial infarction. Sci. Rep. 2021;11:6358. doi: 10.1038/s41598-021-86013-8.
    1. Antoniades C., Asselbergs F.W., Vardas P. The year in cardiovascular medicine 2020: Digital health and innovation. Eur. Heart J. 2021;42:732–739. doi: 10.1093/eurheartj/ehaa1065.
    1. Bachtiger P., Plymen C.M., A Pabari P., Howard J.P., I Whinnett Z., Opoku F., Janering S., A Faisal A., Francis D.P., Peters N.S. Artificial Intelligence, Data Sensors and Interconnectivity: Future Opportunities for Heart Failure. Card. Fail. Rev. 2020;6:e11. doi: 10.15420/cfr.2019.14.
    1. Li Y.-H., Harfiya L.N., Purwandari K., Lin Y.-D. Real-Time Cuffless Continuous Blood Pressure Estimation Using Deep Learning Model. Sensors. 2020;20:5606. doi: 10.3390/s20195606.
    1. Karpiel I., Richter-Laskowska M., Feige D., Gacek A., Sobotnicki A. An Effective Method of Detecting Characteristic Points of Impedance Cardiogram Verified in the Clinical Pilot Study. Sensors. 2022;22:9872. doi: 10.3390/s22249872.
    1. Ganti V.G., Gazi A.H., An S., Srivatsa A.V., Nevius B.N., Nichols C.J., Carek A.M., Fares M., Abdulkarim M., Hussain T., et al. Wearable Seismocardiography-Based Assessment of Stroke Volume in Congenital Heart Disease. J. Am. Heart Assoc. 2022;11:e026067. doi: 10.1161/JAHA.122.026067.
    1. Sivanandarajah P., Wu H., Bajaj N., Khan S., Ng F.S. Is machine learning the future for atrial fibrillation screening? Cardiovasc. Digit. Health J. 2022;3:136–145. doi: 10.1016/j.cvdhj.2022.04.001.
    1. Harmon D.M., Witt D.R., Friedman P.A., Attia Z.I. Diagnosis and treatment of new heart failure with reduced ejection fraction by the artificial intelligence–enhanced electrocardiogram. Cardiovasc. Digit. Health J. 2021;2:282–284. doi: 10.1016/j.cvdhj.2021.08.002. Erratum in 2021, 2, 336.
    1. Yamaguchi S., Hamano T., Oka T., Doi Y., Kajimoto S., Yasuda S., Shimada K., Matsumoto A., Sakaguchi Y., Inoue K., et al. Electrocardiogram findings at the initiation of hemodialysis and types of subsequent cardiovascular events. Hypertens. Res. 2021;44:571–580. doi: 10.1038/s41440-020-00592-z.
    1. Chen T.-M., Huang C.-H., Shih E.S., Hu Y.-F., Hwang M.-J. Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model. iScience. 2020;23:100886. doi: 10.1016/j.isci.2020.100886.
    1. Goldberger A., Amaral L., Glass L., Hausdorff J., Ivanov P.C., Mark R., Mietus J.E., Moody G.B., Peng C.-K., Stanley H.E. PhysioBank, Phys-ioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation. 2000;101:e215–e220. doi: 10.1161/01.CIR.101.23.e215.

Source: PubMed

3
Subscribe