Dual-Task Tests Predict Conversion to Dementia-A Prospective Memory-Clinic-Based Cohort Study

Hanna B Åhman, Lars Berglund, Ylva Cedervall, Lena Kilander, Vilmantas Giedraitis, Kevin J McKee, Martin Ingelsson, Erik Rosendahl, Anna Cristina Åberg, Hanna B Åhman, Lars Berglund, Ylva Cedervall, Lena Kilander, Vilmantas Giedraitis, Kevin J McKee, Martin Ingelsson, Erik Rosendahl, Anna Cristina Åberg

Abstract

The aim of this study was to investigate whether Timed Up-and-Go (TUG) dual-task (TUGdt) tests predict dementia incidence among patients with subjective or mild cognitive impairment (SCI; MCI). Other study objectives were to determine whether TUGdt improves dementia prediction compared to a) demographic characteristics and standard cognitive tests alone; and b) TUG and Verbal Fluency performed separately. Patients (n = 172, age range 39-91 years, 78 women) with SCI or MCI performed TUGdt tests, including 1) naming animals and 2) reciting months backwards, and clinical cognitive tests at baseline. Diagnoses were identified at follow-up after 2.5 years. Logistic regression was used to predict dementia incidence, receiver operating characteristic (ROC) curves and c-statistics for predictive capacity. Analyses were stratified by age and gender. At follow-up, 51 patients had developed dementia. The TUGdt result "animals/10 s" was associated with dementia incidence (standardized odds ratio (OR) = 4.06, 95% confidence interval (CI) 2.28-7.23, p < 0.001), more so among patients under the median age of 72 years (standardized OR = 19.4, 95% CI 3.53-106.17, p < 0.001). TUGdt "animals/10 s" improved dementia prediction compared to demographic characteristics and standard tests alone (c-statistics 0.88 to 0.94) and single-task tests (c-statistics 0.86 to 0.89), but only in the younger patient group. TUGdt has the potential to become a useful tool for dementia prediction.

Keywords: dementia; dual-task; gait; mild cognitive impairment; subjective cognitive impairment.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Standardized odds ratios for conversion to dementia among participants younger than 72 years. Forest plot presenting standardized odds ratios (A) unadjusted (Model 1), (B) adjusted for age, gender, and educational level (Model 2), and (C) adjusted for age, gender, educational level, Mini Mental State Examination, and Clock Drawing score (Model 3). Standardized odds ratios measure the increase of odds per one standard deviation increase of the predictor. * Standardized odds ratios measure the increase of odds per one standard deviation decrease of the predictor.
Figure 1
Figure 1
Standardized odds ratios for conversion to dementia among participants younger than 72 years. Forest plot presenting standardized odds ratios (A) unadjusted (Model 1), (B) adjusted for age, gender, and educational level (Model 2), and (C) adjusted for age, gender, educational level, Mini Mental State Examination, and Clock Drawing score (Model 3). Standardized odds ratios measure the increase of odds per one standard deviation increase of the predictor. * Standardized odds ratios measure the increase of odds per one standard deviation decrease of the predictor.
Figure 2
Figure 2
Prediction of dementia incidence. Receiver operating characteristic (ROC) curves presenting the predicting capacity (c-statistics) of “animals/10 s” (blue curve) added to a base model of age, gender, educational level, Mini Mental State Examination score, and Clock Drawing score (red curve) in (A) the total sample, (B) participants aged less than 72 years, and (C) participants aged 72 years and older.

References

    1. Alzheimer’s Disease International World Alzheimer Report 2015: The Global Impact of Dementia. [(accessed on 26 August 2019)]; Available online: .
    1. Fiest K.M., Jetté N., Roberts J.I., Maxwell C.J., Smith E.E., Black S.E., Blaikie L., Cohen A., Day L., Holroyd-Leduc J., et al. The Prevalence and Incidence of Dementia: A Systematic Review and Meta-analysis. Can. J. Neurol. Sci. Neurol. 2016;43:S3–S50. doi: 10.1017/cjn.2016.18.
    1. Harvey R.J., Skelton-Robinson M., Rossor M.N. The prevalence and causes of dementia in people under the age of 65 years. J. Neurol. Neurosurg. Psychiatry. 2003;74:1206–1209. doi: 10.1136/jnnp.74.9.1206.
    1. Van Vliet D., De Vugt M.E., Bakker C., Pijnenburg Y.A.L., Vernooij-Dassen M.J.F.J., Koopmans R.T.C.M., Verhey F.R.J. Time to diagnosis in young-onset dementia as compared with late-onset dementia. Psychol. Med. 2012;43:423–432. doi: 10.1017/S0033291712001122.
    1. Mendez M.F. The accurate diagnosis of early-onset dementia. Int. J. Psychiatry Med. 2006;36:401–412. doi: 10.2190/Q6J4-R143-P630-KW41.
    1. Reisberg B.S. Current evidence for subjective cognitive impairment (SCI) as the pre-mild cognitive impairment (MCI) stage of subsequently manifest Alzheimer’s disease. Int. Psychogeriatr. 2008;20:1–16. doi: 10.1017/S1041610207006412.
    1. Petersen R.C. Mild cognitive impairment as a diagnostic entity. J. Int. Med. 2004;256:183–194. doi: 10.1111/j.1365-2796.2004.01388.x.
    1. Colijn M.A., Grossberg G.T. Amyloid and Tau Biomarkers in Subjective Cognitive Impairment. J. Alzheimer’s Dis. 2015;47:1–8. doi: 10.3233/JAD-150180.
    1. Winblad B., Palmer K., Kivipelto M., Jelic V., Fratiglioni L., Wahlund L.-O., Nordberg A., Backman L., Albert M., Almkvist O., et al. Mild cognitive impairment-beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004;256:240–246. doi: 10.1111/j.1365-2796.2004.01380.x.
    1. Mitchell A.J., Beaumont H., Ferguson D.M., Stubbs B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: Meta-analysis. Acta Psychiatr. Scand. 2014;130:439–451. doi: 10.1111/acps.12336.
    1. Mitchell A.J., Shiri M. Temporal trends in the long term risk of progression of mild cognitive impairment: A pooled analysis. J. Neurol. Neurosurg. Psychiatry. 2008;79:1386–1391. doi: 10.1136/jnnp.2007.142679.
    1. Barnes D.E.K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10:819–828.
    1. Folstein M.F., Folstein S.E., McHugh P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Park J., Jeong E.G. The clock drawing test: A systematic review and meta-analysis of diagnostic accuracy. J. Adv. Nurs. 2018;74:2742–2754. doi: 10.1111/jan.13810.
    1. Socialstyrelsen Nationella Riktlinjer för Vård Och Omsorg vid Demenssjukdom (National Guidelines for Dementia Care) [(accessed on 1 May 2020)]; Available online: .
    1. Creavin S.T., Wisniewski S., Noel-Storr A.H., Trevelyan C.M., Hampton T., Rayment D., Thom V.M., Nash K.J.E., Elhamoui H., Milligan R., et al. Mini-Mental State Examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations. Cochrane Database Syst. Rev. 2016;1:CD011145.
    1. Laske C., Sohrabi H.R., Frost S.M., López-de-Ipiña K., Garrard P., Buscema M., Dauwels J., Soekadar S.R., Mueller S., Linnemann C., et al. Innovative diagnostic tools for early detection of Alzheimer’s disease. Alzheimer’s Dement. 2015;11:561–578. doi: 10.1016/j.jalz.2014.06.004.
    1. Montero-Odasso M.M., Sarquis-Adamson Y., Speechley M., Borrie M.J., Hachinski V.C., Wells J., Riccio P.M., Schapira M., Sejdic E., Camicioli R.M., et al. Association of Dual-Task Gait With Incident Dementia in Mild Cognitive Impairment. JAMA Neurol. 2017;74:857–865. doi: 10.1001/jamaneurol.2017.0643.
    1. Montero-Odasso M., Verghese J.O., Hausdorff J.M. Gait and cognition: A complementary approach to understanding brain function and the risk of falling. J. Am. Geriatr. Soc. 2012;60:2127–2136.
    1. Montero-Odasso M., Oteng-Amoako A., Speechley M., Gopaul K., Beauchet O., Annweiler C., Muir-Hunter S.W. The Motor Signature of Mild Cognitive Impairment: Results from the Gait and Brain Study. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2014;69:1415–1421.
    1. Beurskens R., Bock O. Age-related deficits of dual-task walking: A review. J. Neural. Transplant. Plast. 2012;2012:131608.
    1. Beauchet O., Kressig R.W., Najafi B., Aminian K., Dubost V., Mourey F. Age-related decline of gait control under a dual-task condition. J. Am. Geriatr. Soc. 2003;51:1187–1188.
    1. Srygley J.M., Mirelman A., Herman T., Giladi N., Hausdorff J.M. When does walking alter thinking? Age and task associated findings. Brain Res. 2009;1253:92–99. doi: 10.1016/j.brainres.2008.11.067.
    1. Brustio P.R., Magistro D., Zecca M., Rabaglietti E., Liubicich M.E. Age-related decrements in dual-task performance: Comparison of different mobility and cognitive tasks. A cross sectional study. PLoS ONE. 2017;12:1–15. doi: 10.1371/journal.pone.0181698.
    1. Gillain S., Dramé M., Lekeu F., Wojtasik V., Ricour C., Croisier J.-L., Salmon E., Petermans J. Gait speed or gait variability, which one to use as a marker of risk to develop Alzheimer disease? A pilot study. Aging Clin. Exp. Res. 2015;28:249–255.
    1. Nielsen M.S., Simonsen A.H., Siersma V., Hasselbalch S.G., Hoegh P. The Diagnostic and Prognostic Value of a Dual-Tasking Paradigm in a Memory Clinic. J. Alzheimer’s Dis. 2018;61:1189–1199. doi: 10.3233/JAD-161310.
    1. Borges S.M., Radanovic M., Forlenza O.V. Functional mobility in a divided attention task in older adults with cognitive impairment. J. Mot. Behav. 2015;47:378–385.
    1. Åhman H.B., Giedraitis V., Cedervall Y., Lennhed B., Berglund L., McKee K., Kilander L., Rosendahl E., Ingelsson M., Åberg A.C. Dual-Task Performance and Neurodegeneration: Correlations Between Timed Up-and-Go Dual-Task Test Outcomes and Alzheimer’s Disease Cerebrospinal Fluid Biomarkers. J. Alzheimer’s Dis. 2019;71:S75–S83.
    1. Cedervall Y., Kilander L., Aberg A.C. Declining physical capacity but maintained aerobic activity in early Alzheimer’s disease. Am. J. Alzheimer’s Dis. Other Demen. 2012;27:180–187.
    1. Podsiadlo D., Richardson S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991;39:142–148.
    1. Tallberg I.M., Ivachova E., Jones T.K., Ostberg P. Swedish norms for word fluency tests: FAS, animals and verbs. Scand. J. Psychol. 2008;49:479–485.
    1. Åhman H.B., Cedervall Y., Kilander L., Giedraitis V., Berglund L., McKee K.J., Rosendahl E., Ingelsson M., Åberg A.C. Dual-task tests discriminate between dementia, mild cognitive impairment, subjective cognitive impairment, and healthy controls—A cross-sectional cohort study. BMC Geriatr. 2020;20:1–10.
    1. Cedervall Y., Stenberg A.M., Åhman H.B., Giedraitis V., Tinmark F., Berglund L., Halvorsen K., Ingelsson M., Rosendahl E., Åberg A.C. Timed Up-and-Go Dual-Task Testing in the Assessment of Cognitive Function: A Mixed Methods Observational Study for Development of the UDDGait Protocol. Int. J. Environ. Res. Public Health. 2020;17:1715. doi: 10.3390/ijerph17051715.
    1. Aberg A.C., Lindmark B., Lithell H. Development and reliability of the General Motor Function Assessment Scale (GMF)—A performance-based measure of function-related dependence, pain and insecurity. Disabil. Rehabil. 2003;25:462–472. doi: 10.1080/0963828031000069762.
    1. Bohannon R.W., Larkin P.A., Cook A.C., Gear J., Singer J. Decrease in timed balance test scores with aging. Phys. Ther. 1984;64:1067–1070. doi: 10.1093/ptj/64.7.1067.
    1. Bohannon R.W. Test-Retest Reliability of Measurements of Hand-Grip Strength Obtained by Dynamometry from Older Adults: A Systematic Review of Research in the PubMed Database. J. Frailty Aging. 2017;6:83–87.
    1. Almeida O.P., Almeida S.A. Short versions of the geriatric depression scale: A study of their validity for the diagnosis of a major depressive episode according to ICD-10 and DSM-IV. Int. J. Geriatr. Psychiatry. 1999;14:858–865. doi: 10.1002/(SICI)1099-1166(199910)14:10<858::AID-GPS35>;2-8.
    1. Solomon P.R., Brush M., Calvo V., Adams F., Deveaux R.D., Pendlebury W.W., Sullivan D.M. Identifying dementia in the primary care practice. Int. Psychogeriatr. 2000;12:483–493. doi: 10.1017/S1041610200006608.
    1. Shulman K.I. Clock-drawing: Is it the ideal cognitive screening test? Int. J. Geriatr. Psychiatry. 2000;15:548–561. doi: 10.1002/1099-1166(200006)15:6<548::AID-GPS242>;2-U.
    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. 4th ed. American Psychiatric Assoc; Washington, DC, USA: 1994.
    1. McKhann G.M., Albert M.S., Grossman M., Miller B., Dickson D., Trojanowski J.Q. Clinical and Pathological Diagnosis of Frontotemporal Dementia: Report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch. Neurol. 2001;58:1803–1809. doi: 10.1001/archneur.58.11.1803.
    1. Chui H.C., Victoroff J.I., Margolin D., Jagust W., Shankle R., Katzman R. Criteria for the diagnosis of ischemic vascular dementia proposed by the State of California Alzheimer’s Disease Diagnostic and Treatment Centers. Neurology. 1992;42:473–480. doi: 10.1212/WNL.42.3.473.
    1. McKeith I.G. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): Report of the Consortium on DLB International Workshop. J. Alzheimer’s Dis. 2006;9:417–423. doi: 10.3233/JAD-2006-9S347.
    1. McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R., et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:263–269.
    1. Hensel A., Luck T., Luppa M., Glaesmer H., Angermeyer M.C., Riedel-Heller S.G. Does a reliable decline in Mini Mental State Examination total score predict dementia? Diagnostic accuracy of two reliable change indices. Dement. Geriatr. Cogn. Disord. 2009;27:50–58.
    1. Hosmer J.D.W., Lemeshow S., Sturdivant R.X. Applied Logistic Regression. 3rd ed. John Wiley & Sons, Incorporated; New York, NY, USA: 2013. p. 177.
    1. Holtzer R., Epstein N., Mahoney J.R., Izzetoglu M., Blumen H.M. Neuroimaging of Mobility in Aging: A Targeted Review. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2014;69:1375–1388.
    1. Theill N., Martin M., Schumacher V., Bridenbaugh S., Kressig R.W. Simultaneously Measuring Gait and Cognitive Performance in Cognitively Healthy and Cognitively Impaired Older Adults: The Basel Motor-Cognition Dual-Task Paradigm. J. Am. Geriatr. Soc. 2011;59:1012–1018.
    1. Gillain S., Warzee E., Lekeu F., Wojtasik V., Maquet D., Croisier J.-L., Salmon E., Petermans J. The value of instrumental gait analysis in elderly healthy, MCI or Alzheimer’s disease subjects and a comparison with other clinical tests used in single and dual-task conditions. Ann. Phys. Rehabil. Med. 2009;52:453–474.
    1. Yogev-Seligmann G., Hausdorff J.M., Giladi N. The role of executive function and attention in gait. Mov. Disord. 2008;23:329–342.
    1. Nasreddine Z.S., Phillips N.A., Bedirian V., Charbonneau S., Whitehead V., Collin I., Cummings J.L., Chertkow H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005;53:695–699.
    1. Kim K.W., Woo S.Y., Kim S., Jang H., Kim Y., Cho S.H., Kim S.E., Kim S.J., Shin B.-S., Kim H.J., et al. Disease progression modeling of Alzheimer’s disease according to education level. Sci. Rep. 2020;10:16808.

Source: PubMed

3
Subscribe