Prevention of surgical site infection under different ventilation systems in operating room environment

Zhijian Liu, Haiyang Liu, Hang Yin, Rui Rong, Guoqing Cao, Qihong Deng, Zhijian Liu, Haiyang Liu, Hang Yin, Rui Rong, Guoqing Cao, Qihong Deng

Abstract

Biological particles in the operating room (OR) air environment can cause surgical site infections (SSIs). Various ventilation systems have been employed in ORs to ensure an ultraclean environment. However, the effect ofdifferent ventilation systems on the control ofbacteria-carrying particles (BCPs) released from the surgical staff during surgery is unclear. In this study, the performance of four different ventilation systems (vertical laminar airflow ventilation (VLAF), horizontal laminar airflow ventilation (HLAF), differential vertical airflow ventilation (DVAF), and temperature-controlled airflow ventilation (TAF)) used in an OR was evaluated and compared based on the spatial BCP concentration. The airflow field in the OR was solved by the Renormalization Group (RNG) k-ε turbulence model, and the BCP phase was calculated by Lagrangian particle tracking (LPT) and the discrete random walk (DRW) model. It was found that the TAF system was the most effective ventilation system among the four ventilation systems for ensuring air cleanliness in the operating area. This study also indicated that air cleanliness in the operating area depended not only on the airflow rate of the ventilation system but also on the airflow distribution, which was greatly affected by obstacles such as surgical lamps and surgical staff.

Keywords: Bacteria-carrying particles (BCPs); Operating room (OR); Surgical site infections (SSIs); Ventilation.

© Higher Education Press 2020.

References

    1. Ahl T, Dalen N, Jörbeck H, Hobom J. Air contamination during hip and knee arthroplasties: horizontal laminar flow randomized vs. conventional ventilation. Acta Orthopaedica Scandinavica. 1995;66(1):17–20.
    1. Allegranzi B, Bischoff P, de Jonge S, Kubilay N Z, Zayed B, Gomes S M, Abbas M, Atema J J, Gans S, van Rijen M, Boermeester M A, Egger M, Kluytmans J, Pittet D, Solomkin J S. New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet. Infectious Diseases. 2016;16(12):e276–e287.
    1. Alsved M, Civilis A, Ekolind P, Tammelin A, Andersson A E, Jakobsson J, Svensson T, Ramstorp M, Sadrizadeh S, Larsson P A, Bohgard M, Šantl-Temkiv T, Löndahl J. Temperature-controlled airflow ventilation in operating rooms compared with laminar airflow and turbulent mixed airflow. Journal of Hospital Infection. 2018;98(2):181–190.
    1. Awad S S. Adherence to surgical care improvement project measures and post-operative surgical site infections. Surgical Infections. 2012;13(4):234–237.
    1. Cao G, Storås M C, Aganovic A, Stenstad L I, Skogås J G. Do surgeons and surgical facilities disturb the clean air distribution close to a surgical patient in an orthopedic operating room with laminar airflow? American Journal of Infection Control. 2018;46(10):1115–1122.
    1. Chen F, Yu S C M, Lai A C K. Modeling particle distribution and deposition in indoor environments with a new drift-flux model. Atmospheric Environment. 2006;40(2):357–367.
    1. Chen Q. Comparison of different k-ϵ models for indoor air flow computations. Numerical Heat Transfer, Part B: Fundamentals. 1995;28(3):353–369.
    1. Chow T T, Lin Z, Bai W. The integrated effect of medical lamp position and diffuser discharge velocity on ultra-clean ventilation performance in an operating theatre. Indoor and Built Environment. 2006;15(4):315–331.
    1. Chow T T, Wang J. Dynamic simulation on impact of surgeon bending movement on bacteria-carrying particles distribution in operating theatre. Building and Environment. 2012;57:68–80.
    1. Chow T T, Yang X Y. Performance of ventilation system in a non-standard operating room. Building and Environment. 2003;38(12):1401–1411.
    1. Chow T T, Yang X Y. Ventilation performance in operating theatres against airborne infection: review of research activities and practical guidance. Journal of Hospital Infection. 2004;56(2):85–92.
    1. Chow T T, Yang X Y. Ventilation performance in the operating theatre against airborne infection: numerical study on an ultra-clean system. Journal of Hospital Infection. 2005;59(2):138–147.
    1. Diab-Elschahawi M, Berger J, Blacky A, Kimberger O, Oguz R, Kuelpmann R, Kramer A, Assadian O. Impact of different-sized laminar air flow versus no laminar air flow on bacterial counts in the operating room during orthopedic surgery. American Journal of Infection Control. 2011;39(7):e25–e29.
    1. Fischer S, Thieves M, Hirsch T, Fischer K D, Hubert H, Beppler S, Seipp H M. Reduction of airborne bacterial burden in the OR by installation of unidirectional displacement airflow (UDF) Systems. Medical Science Monitor. 2015;21:2367–2374.
    1. Friberg B, Friberg S. Aerobiology in the operating room and its implications for working standards. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine. 2005;219(2):153–160.
    1. Gao R, Zhang H, Li A, Wen S, Du W, Deng B. A new evaluation indicator of air distribution in buildings. Sustainable Cities and Society. 2020;53:101836.
    1. Hansen D, Krabs C, Benner D, Brauksiepe A, Popp W. Laminar air flow provides high air quality in the operating field even during real operating conditions, but personal protection seems to be necessary in operations with tissue combustion. International Journal of Hygiene and Environmental Health. 2005;208(6):455–460.
    1. He C, Mackay I M, Ramsay K, Liang Z, Kidd T, Knibbs L D, Johnson G, McNeale D, Stockwell R, Coulthard M G, Long D G, Williams T J, Duchaine C, Smith N, Wainwright C, Morawska L. Particle and bioaerosol characteristics in a paediatric intensive care unit. Environment International. 2017;107:89–99.
    1. Hinds W C. Aerosol technology: properties, behavior, and measurement of airborne particles. New York: John Wiley & Sons; 1999. p. 1999.
    1. Hirsch T, Hubert H, Fischer S, Lahmer A, Lehnhardt M, Steinau H U, Steinstraesser L, Seipp H M. Bacterial burden in the operating room: Impact of airflow systems. American Journal of Infection Control. 2012;40(7):e228–e232.
    1. Hoffman P N, Williams J, Stacey A, Bennett A M, Ridgway G L, Dobson C, Fraser I, Humphreys H. Microbiological commissioning and monitoring of operating theatre suites. Journal of Hospital Infection. 2002;52(1):1–28.
    1. Hughes S P, Anderson F M. Infection in the operating room. Journal of Bone and Joint Surgery. British Volume. 1999;81-B(5):754–755.
    1. Humbal C, Gautam S, Trivedi U. A review on recent progress in observations, and health effects of bioaerosols. Environment International. 2018;118:189–193.
    1. Lidwell O M, Lowbury E J, Whyte W, Blowers R, Stanley S J, Lowe D. Airborne contamination of wounds in joint replacement operations: the relationship to sepsis rates. Journal of Hospital Infection. 1983;4(2):111–131.
    1. de Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn B B. Surgical site infection: Incidence and impact on hospital utilization and treatment costs. American Journal of Infection Control. 2009;37(5):387–397.
    1. Liu J, Wang H, Wen W. Numerical simulation on a horizontal airflow for airborne particles control in hospital operating room. Building and Environment. 2009;44(11):2284–2289.
    1. Memarzadeh F, Manning A P. Comparison of operating room ventilation systems in the protection of the surgical site/discussion. ASHRAE Transactions. 2002;108(2):3–15.
    1. Memarzadeh F, Manning A P. Reducing risks of surgery. ASHRAE Journal. 2003;45:28–33.
    1. Noble W C. Dispersal of skin microorganisms. British Journal of Dermatology. 1975;93(4):477–485.
    1. Noble W C, Lidwell O M, Kingston D. The size distribution of airborne particles carrying micro-organisms. Epidemiology and Infection. 1963;61(4):385–391.
    1. Oguz R, Diab-Elschahawi M, Berger J, Auer N, Chiari A, Assadian O, Kimberger O. Airborne bacterial contamination during orthopedic surgery: A randomized controlled pilot trial. Journal of Clinical Anesthesia. 2017;38:160–164.
    1. Reponen T, Nevalainen A, Raunemaa T. Bioaerosol and particle mass levels and ventilation in Finnish homes. Environment International. 1989;15(1–6):203–208.
    1. Romano F, Marocco L, Gustén J, Joppolo C M. Numerical and experimental analysis of airborne particles control in an operating theater. Building and Environment. 2015;89:369–379.
    1. Rui Z, Guangbei T, Jihong L. Study on biological contaminant control strategies under different ventilation models in hospital operating room. Building and Environment. 2008;43(5):793–803.
    1. Sadrizadeh S, Afshari A, Karimipanah T, Håkansson U, Nielsen P V. Numerical simulation of the impact of surgeon posture on airborne particle distribution in a turbulent mixing operating theatre. Building and Environment. 2016;110:140–147.
    1. Sadrizadeh S, Holmberg S, Tammelin A. A numerical investigation of vertical and horizontal laminar airflow ventilation in an operating room. Building and Environment. 2014;82:517–525.
    1. Sadrizadeh S, Tammelin A, Ekolind P, Holmberg S. Influence of staff number and internal constellation on surgical site infection in an operating room. Particuology. 2014;13:42–51.
    1. Skaaret E. Contaminant removal performance in terms of ventilation effectiveness. Environment International. 1986;12(1–4):419–427.
    1. Stacey A, Humphreys H. A UK historical perspective on operating theatre ventilation. Journal of Hospital Infection. 2002;52(2):77–80.
    1. Tammelin A, Ljungqvist B, Reinmüller B. Comparison of three distinct surgical clothing systems for protection from air-borne bacteria: A prospective observational study. Patient Safety in Surgery. 2012;6(1):23–28.
    1. Tammelin A, Ljungqvist B, Reinmüller B. Single-use surgical clothing system for reduction of airborne bacteria in the operating room. Journal of Hospital Infection. 2013;84(3):245–247.
    1. Wang C, Holmberg S, Sadrizadeh S. Numerical study of temperature-controlled airflow in comparison with turbulent mixing and laminar airflow for operating room ventilation. Building and Environment. 2018;144:45–56.
    1. Woods J E, Braymen D T, Rasmussen R W, Reynolds P E, Montag G M. Ventilation requirements in hospital operating rooms—Part I: Control of airborne particles. ASHRAE Transactions. 1986;92(2):396–426.
    1. Yang C, Yang X, Zhao B. The ventilation needed to control thermal plume and particle dispersion from manikins in a unidirectional ventilated protective isolation room. Building Simulation. 2015;8(5):551–565.

Source: PubMed

3
Subscribe