The Potential of Functional Near-Infrared Spectroscopy-Based Neurofeedback-A Systematic Review and Recommendations for Best Practice

Simon H Kohl, David M A Mehler, Michael Lührs, Robert T Thibault, Kerstin Konrad, Bettina Sorger, Simon H Kohl, David M A Mehler, Michael Lührs, Robert T Thibault, Kerstin Konrad, Bettina Sorger

Abstract

Background: The effects of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)-neurofeedback on brain activation and behaviors have been studied extensively in the past. More recently, researchers have begun to investigate the effects of functional near-infrared spectroscopy-based neurofeedback (fNIRS-neurofeedback). FNIRS is a functional neuroimaging technique based on brain hemodynamics, which is easy to use, portable, inexpensive, and has reduced sensitivity to movement artifacts. Method: We provide the first systematic review and database of fNIRS-neurofeedback studies, synthesizing findings from 22 peer-reviewed studies (including a total of N = 441 participants; 337 healthy, 104 patients). We (1) give a comprehensive overview of how fNIRS-neurofeedback training protocols were implemented, (2) review the online signal-processing methods used, (3) evaluate the quality of studies using pre-set methodological and reporting quality criteria and also present statistical sensitivity/power analyses, (4) investigate the effectiveness of fNIRS-neurofeedback in modulating brain activation, and (5) review its effectiveness in changing behavior in healthy and pathological populations. Results and discussion: (1-2) Published studies are heterogeneous (e.g., neurofeedback targets, investigated populations, applied training protocols, and methods). (3) Large randomized controlled trials are still lacking. In view of the novelty of the field, the quality of the published studies is moderate. We identified room for improvement in reporting important information and statistical power to detect realistic effects. (4) Several studies show that people can regulate hemodynamic signals from cortical brain regions with fNIRS-neurofeedback and (5) these studies indicate the feasibility of modulating motor control and prefrontal brain functioning in healthy participants and ameliorating symptoms in clinical populations (stroke, ADHD, autism, and social anxiety). However, valid conclusions about specificity or potential clinical utility are premature. Conclusion: Due to the advantages of practicability and relatively low cost, fNIRS-neurofeedback might provide a suitable and powerful alternative to EEG and fMRI neurofeedback and has great potential for clinical translation of neurofeedback. Together with more rigorous research and reporting practices, further methodological improvements may lead to a more solid understanding of fNIRS-neurofeedback. Future research will benefit from exploiting the advantages of fNIRS, which offers unique opportunities for neurofeedback research.

Keywords: brain-computer interfacing; clinical translation; functional near-infrared spectroscopy; neurofeedback; real-time data analysis; self-regulation; systematic review.

Copyright © 2020 Kohl, Mehler, Lührs, Thibault, Konrad and Sorger.

Figures

Figure 1
Figure 1
Search decision flow diagram according to preferred reporting items for systematic reviews and meta-analyses (PRISMA; Moher et al., 2009).
Figure 2
Figure 2
Structure of results and discussion. In the first two sections, we provide a comprehensive overview of how fNIRS-neurofeedback training is implemented, describing and discussing important features of neurofeedback-training protocols (1) and of the real-time signal-processing methods applied (2). In the third section, we critically evaluate the quality of published studies including experimental design and reporting quality as well as statistical power/sensitivity as an indicator of reliability of the reported findings (3). In the fourth section, we assess and discuss the effectiveness of fNIRS-neurofeedback to regulate and induce pre-post changes in brain activity (4). Finally, we assess and discuss its effectiveness in changing behavioral outcomes and we review the clinical potential of fNIRS-neurofeedback (5). The fNIRS illustration was created by Laura Bell.
Figure 3
Figure 3
(A) Number of participants from different target populations and (B) Number of studies targeting a certain brain region. ADHD, attention-deficit/hyperactivity disorder; dlPFC, dorsolateral prefrontal cortex; IFG, inferior frontal gyrus; OFC, orbitofrontal cortex; PFC, prefrontal cortex; SMA, supplementary motor area.
Figure 4
Figure 4
Statistical power curves to detect different effect sizes with 20 participants (median sample size) for different statistical tests. Dashed lines indicate smallest effect sizes detectable at 80% power. Note that the power curve for the 2 × 2 mixed ANOVA was based on liberal statistical assumptions (e.g., high correlation among repeated measures, sphericity, and uncorrected p-value of 0.05).
Figure 5
Figure 5
Quality of studies according to the CRED-nf and JBI checklist.
Figure 6
Figure 6
Neurofeedback regulation success. Overall regulation was classified “Yes” if a significant effect for one or more of the four measures were reported and “No” if no significant effect was reported. If both were reported, the overall regulation was classified “Yes/No.” Note that Kober et al. (2015, 2018) trained the regulation of HbO and HbR in different groups and found differential results for the groups. Therefore, the two studies were counted twice for the four measures. In overall regulation, the two studies were only counted once and were classified as “Yes/No”.

References

    1. Aczel B., Szaszi B., Sarafoglou A., Kekecs Z., Kucharský Š., Benjamin D., et al. . (2019). A consensus-based transparency checklist. Nat. Hum. Behav. 4, 4–6. 10.1038/s41562-019-0772-6
    1. Algermissen J., Mehler D. M. A. (2018). May the power be with you: are there highly powered studies in neuroscience, and how can we get more of them? J. Neurophysiol. 119, 2114–2117. 10.1152/jn.00765.2017
    1. Allen C. P. G., Mehler D. M. A. (2019). Open science challenges, benefits and tips in early career and beyond. PLoS Biol. 17:e3000246. 10.1371/journal.pbio.3000246
    1. Aranyi G., Pecune F., Charles F., Pelachaud C., Cavazza M. (2016). Affective interaction with a virtual character through an fNIRS brain-computer interface. Front. Comput. Neurosci. 10:70. 10.3389/fncom.2016.00070
    1. Arifler D., Zhu T., Madaan S., Tachtsidis I. (2015). Optimal wavelength combinations for near-infrared spectroscopic monitoring of changes in brain tissue hemoglobin and cytochrome c oxidase concentrations. Biomed. Opt. Express 6:933. 10.1364/BOE.6.000933
    1. Barnett S. M., Ceci S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychol. Bull. 128, 612–637. 10.1037/0033-2909.128.4.612
    1. Barth B., Strehl U., Fallgatter A. J., Ehlis A. C. (2016). Near-infrared spectroscopy based neurofeedback of prefrontal cortex activity: a proof-of-concept study. Front. Hum. Neurosci. 10:633. 10.3389/fnhum.2016.00633
    1. Birbaumer N., Ruiz S., Sitaram R. (2013). Learned regulation of brain metabolism. Trends Cogn. Sci. 17, 295–302. 10.1016/j.tics.2013.04.009
    1. Blume F., Hudak J., Dresler T., Ehlis A.-C., Kühnhausen J., Renner T. J., et al. . (2017). NIRS-based neurofeedback training in a virtual reality classroom for children with attention-deficit/hyperactivity disorder: study protocol for a randomized controlled trial. Trials 18:41. 10.1186/s13063-016-1769-3
    1. Bluschke A., Broschwitz F., Kohl S., Roessner V., Beste C. (2016). The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback. Sci. Rep. 6:31178. 10.1038/srep31178
    1. Brigadoi S., Cooper R. J. (2015). How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy. Neurophotonics 2:025005. 10.1117/1.NPh.2.2.025005
    1. Button K. S., Ioannidis J. P. A., Mokrysz C., Nosek B. A., Flint J., Robinson E. S. J., et al. . (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376. 10.1038/nrn3475
    1. Calamia M., Markon K., Tranel D. (2013). The robust reliability of neuropsychological measures: meta-analyses of test–retest correlations. Clin. Neuropsychol. 27, 1077–1105. 10.1080/13854046.2013.809795
    1. Caldwell M., Scholkmann F., Wolf U., Wolf M., Elwell C., Tachtsidis I. (2016). Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy. Neuroimage 143, 91–105. 10.1016/j.neuroimage.2016.08.058
    1. Cohen A., Keynan J. N., Jackont G., Green N., Rashap I., Shani O., et al. . (2016). Multi-modal virtual scenario enhances neurofeedback learning. Front. Robot. AI 3:52. 10.3389/frobt.2016.00052
    1. Cohen J. (1992). A power primer. Psychol. Bull. 112, 155–159. 10.1037/0033-2909.112.1.155
    1. Cox W. M., Subramanian L., Linden D. E. J., Lührs M., McNamara R., Playle R., et al. . (2016). Neurofeedback training for alcohol dependence versus treatment as usual: study protocol for a randomized controlled trial. Trials 17:480. 10.1186/s13063-016-1607-7
    1. Cui X., Bray S., Bryant D. M., Glover G. H., Reiss A. L. (2011). A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 54, 2808–2821. 10.1016/j.neuroimage.2010.10.069
    1. Cui X., Bray S., Reiss A. L. (2010). Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. Neuroimage 49, 3039–3046. 10.1016/j.neuroimage.2009.11.050
    1. Duan L., Liu W. J., Dai R. N., Li R., Lu C. M., Huang Y. X., et al. . (2013). Cross-brain neurofeedback: scientific concept and experimental platform. PLoS ONE 8:e64590. 10.1371/journal.pone.0064590
    1. Ehlis A. C., Barth B., Hudak J., Storchak H., Weber L., Kimmig A. C. S., et al. . (2018). Near-infrared spectroscopy as a new tool for neurofeedback training: applications in psychiatry and methodological considerations. Jpn. Psychol. Res. 60, 225–241. 10.1111/jpr.12225
    1. Emmert K., Kopel R., Sulzer J., Brühl A. B., Berman B. D., Linden D. E. J., et al. . (2016). Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: how is brain regulation mediated? Neuroimage 124, 806–812. 10.1016/j.neuroimage.2015.09.042
    1. Engel L., Beaton D. E., Touma Z. (2018). Minimal clinically important difference: a review of outcome measure score interpretation. Rheum. Dis. Clin. North Am. 44, 177–188. 10.1016/j.rdc.2018.01.011
    1. Faul F., Erdfelder E., Lang A. G., Buchner A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191. 10.3758/BF03193146
    1. Ferrari M., Quaresima V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63, 921–935. 10.1016/j.neuroimage.2012.03.049
    1. Fujimoto H., Mihara M., Hattori N., Hatakenaka M., Yagura H., Kawano T., et al. . (2017). Neurofeedback-induced facilitation of the supplementary motor area affects postural stability. Neurophotonics 4:045003. 10.1117/1.NPh.4.4.045003
    1. Gelman A. (2018). You need 16 times the sample size to estimate an interaction than to estimate a main effect. Retrieved from:
    1. Goldway N., Ablin J., Lubin O., Zamir Y., Keynan J. N., Or-Borichev A.. (2019). Volitional limbic neuromodulation exerts a beneficial clinical effect on fibromyalgia. Neuroimage 186, 758–770. 10.1016/j.neuroimage.2018.11.001
    1. Gruzelier J., Inoue A., Smart R., Steed A., Steffert T. (2010). Acting performance and flow state enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive VR and training screen scenarios. Neurosci. Lett. 480, 112–116. 10.1016/j.neulet.2010.06.019
    1. Hatakenaka M., Miyai I., Mihara M., Sakoda S., Kubota K. (2007). Frontal regions involved in learning of motor skill—a functional NIRS study. Neuroimage 34, 109–116. 10.1016/j.neuroimage.2006.08.014
    1. Haugg A., Sladky R., Skouras S., McDonald A., Craddock C., Kirschner M., et al. . (2020). Can we predict real-time fMRI neurofeedback learning success from pre-training brain activity? bioRxiv. 10.1101/2020.01.15.906388
    1. He K., Liang Y., Abdollahi F., Fisher Bittmann M., Kording K., Wei K. (2016). The statistical determinants of the speed of motor learning. PLoS Comput. Biol. 12:e1005023. 10.1371/journal.pcbi.1005023
    1. Heunis S., Lamerichs R., Zinger S., Caballero-Gaudes C., Jansen J. F. A., et al. . (2020). Quality and denoising in real-time functional magnetic resonance imaging neurofeedback: A methods review. Hum. Brain Mapp. 10.1002/hbm.25010
    1. Hinterberger T., Neumann N., Pham M., Kübler A., Grether A., Hofmayer N., et al. . (2004). A multimodal brain-based feedback and communication system. Exp. Brain Res. 154, 521–526. 10.1007/s00221-003-1690-3
    1. Hosseini S. M. H. H., Pritchard-Berman M., Sosa N., Ceja A., Kesler S. R. (2016). Task-based neurofeedback training: a novel approach toward training executive functions. Neuroimage 134, 153–159. 10.1016/j.neuroimage.2016.03.035
    1. Hudak J., Blume F., Dresler T., Haeussinger F. B., Renner T. J., Fallgatter A. J., et al. . (2017). Near-infrared spectroscopy-based frontal lobe neurofeedback integrated in virtual reality modulates brain and behavior in highly impulsive adults. Front. Hum. Neurosci. 11:425. 10.3389/fnhum.2017.00425
    1. Hudak J., Rosenbaum D., Barth B., Fallgatter A. J., Ehlis A. C. (2018). Functionally disconnected: a look at how study design influences neurofeedback data and mechanisms in attention-deficit/hyperactivity disorder. PLoS ONE 13:e0200931. 10.1371/journal.pone.0200931
    1. Hummer L. T., Singleton Thorn F., Nosek B. A., Errington T. M. (2019). Evaluating Registered reports: a naturalistic comparative study of article impact short. PsyArXiv. 1–34.
    1. Ioannidis J. P. A. (2008). Why most discovered true associations are inflated. Epidemiology 19, 640–648. 10.1097/EDE.0b013e31818131e7
    1. Jasper H. H. (1958). The ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 10, 371–375.
    1. Kamran M. A., Mannan M. M. N., Jeong M. Y. (2016). Cortical signal analysis and advances in functional near-infrared spectroscopy signal: a review. Front. Hum. Neurosci. 10:261. 10.3389/fnhum.2016.00261
    1. Kanoh S., Susila I., Miyamoto K. (2011). The Effect of neurofeedback training on cortical activity during motor imagery revealed by NIRS and fMRI. Int. J. Bioelectromagn 13, 82–83. Available online at:
    1. Kimmig A.-C. S. C. S., Dresler T., Hudak J., Haeussinger F. B., Wildgruber D., Fallgatter A. J., et al. . (2018). Feasibility of NIRS-based neurofeedback training in social anxiety disorder: behavioral and neural correlates. J. Neural Transm. (Vienna: ) 126, 1175–1185. 10.1007/s00702-018-1954-5
    1. Kinoshita A., Takizawa R., Yahata N., Homae F., Hashimoto R., Sakakibara E., et al. . (2016). Development of a neurofeedback protocol targeting the frontal pole using near-infrared spectroscopy. Psychiatry Clin. Neurosci. 70, 507–516. 10.1111/pcn.12427
    1. Kirilina E., Jelzow A., Heine A., Niessing M., Wabnitz H., Brühl R., et al. . (2012). The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy. Neuroimage 61, 70–81. 10.1016/j.neuroimage.2012.02.074
    1. Klein F., Kranczioch C. (2019). Signal processing in fNIRS: a case for the removal of systemic activity for single trial data. Front. Hum. Neurosci. 13:331. 10.3389/fnhum.2019.00331
    1. Kober S. E., Gressenberger B., Kurzmann J., Neuper C., Wood G. (2015). Voluntary modulation of hemodynamic responses in swallowing related motor areas: a near-infrared spectroscopy-based neurofeedback study. PLoS ONE 10:e0143314. 10.1371/journal.pone.0143314
    1. Kober S. E., Hinterleitner V., Bauernfeind G., Neuper C., Wood G. (2018). Trainability of hemodynamic parameters: a near-infrared spectroscopy based neurofeedback study. Biol. Psychol. 136, 168–180. 10.1016/j.biopsycho.2018.05.009
    1. Kober S. E., Wood G., Kurzmann J., Friedrich E. V. C., Stangl M., Wippel T., et al. . (2014). Near-infrared spectroscopy based neurofeedback training increases specific motor imagery related cortical activation compared to sham feedback. Biol. Psychol. 95, 21–30. 10.1016/j.biopsycho.2013.05.005
    1. Kohl S. H., Veit R., Spetter M. S., Günther A., Rina A., Lührs M., et al. . (2019). Real-time fMRI neurofeedback training to improve eating behavior by self-regulation of the dorsolateral prefrontal cortex: a randomized controlled trial in overweight and obese subjects. Neuroimage 191, 596–609. 10.1016/j.neuroimage.2019.02.033
    1. Koush Y., Meskaldji D.-E., Pichon S., Rey G., Rieger S. W., Linden D. E. J., et al. . (2015). Learning control over emotion networks through connectivity-based neurofeedback. Cereb. Cortex 27, 1193–1202. 10.1093/cercor/bhv311
    1. Lakens D., Scheel A. M., Isager P. (2018). Equivalence testing for psychological research: a tutorial. Adv. Methods Pract. Psychol. Sci. 1, 259–269. 10.1177/2515245918770963
    1. Lapborisuth P., Zhang X., Noah A., Hirsch J. (2017). Neurofeedback-based functional near-infrared spectroscopy upregulates motor cortex activity in imagined motor tasks. Neurophotonics 4:021107. 10.1117/1.NPh.4.2.021107
    1. Lee S. H., Jang G. H., Jin S. H., An J. (2015). Neuro-feedback using real-time near infrared spectroscopy enhances brain plasticity during treadmill walking: a pilot study, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM (Busan: IEEE; ), 437–440. 10.1109/AIM.2015.7222572
    1. Li K., Kendrick K. M., Becker B. (2019). Functional near-infrared spectroscopy-informed neurofeedback : regional-specific modulation of lateral orbitofrontal activation and cognitive flexibility. 6:025011. 10.1117/1.NPh.6.2.025011
    1. Liu N., Cliffer S., Pradhan A. H., Lightbody A., Hall S. S., Reiss A. L. (2016). Optical-imaging-based neurofeedback to enhance therapeutic intervention in adolescents with autism: methodology and initial data. Neurophotonics 4:011003. 10.1117/1.NPh.4.1.011003
    1. Lloyd-Fox S., Blasi A., Elwell C. E. (2010). Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci. Biobehav. Rev. 34, 269–284. 10.1016/j.neubiorev.2009.07.008
    1. Lubianiker N., Goldway N., Fruchtman-Steinbok T., Paret C., Keynan J. N., Singer N., et al. . (2019). Process-based framework for precise neuromodulation. Nat. Hum. Behav. 3, 436–445. 10.1038/s41562-019-0573-y
    1. Marx A.-M. M., Ehlis A.-C. C., Furdea A., Holtmann M., Banaschewski T., Brandeis D., et al. . (2015). Near-infrared spectroscopy (NIRS) neurofeedback as a treatment for children with attention deficit hyperactivity disorder (ADHD)–a pilot study. Front. Hum. Neurosci. 8:1038. 10.3389/fnhum.2014.01038
    1. Mathiak K. A., Alawi E. M., Koush Y., Dyck M., Cordes J. S., Gaber T. J., et al. . (2015). Social reward improves the voluntary control over localized brain activity in fMRI-based neurofeedback training. Front. Behav. Neurosci. 9:136. 10.3389/fnbeh.2015.00136
    1. Mayer K., Blume F., Wyckoff S. N., Brokmeier L. L., Strehl U. (2016). Neurofeedback of slow cortical potentials as a treatment for adults with attention deficit-/hyperactivity disorder. Clin. Neurophysiol. 127, 1374–1386. 10.1016/j.clinph.2015.11.013
    1. Mayer K., Wyckoff S. N., Fallgatter A. J., Ehlis A.-C. C., Strehl U. (2015). Neurofeedback as a nonpharmacological treatment for adults with attention-deficit/hyperactivity disorder (ADHD): study protocol for a randomized controlled trial. Trials 16:174. 10.1186/s13063-015-0683-4
    1. Mehler D. (2019). The replication challenge: Is brain imaging next?, in Casting Light on the Dark Side of Brain Imaging, eds Raz A., Thibault R. T. (London: Academic Press; ), 84–88. 10.1016/B978-0-12-816179-1.00010-4
    1. Mehler D. M. A., Edelsbrunner P. A., Matić K. (2019). Appreciating the significance of non-significant findings in psychology. J. Eur. Psychol. Students 10, 1–7. 10.5334/e2019a
    1. Mehler D. M. A., Williams A. N., Whittaker J. R., Krause F., Lührs M., Wise R. G., et al. (2017). Study Pre-Registration: Gradual Real-Time fMRI Neurofeedback Training of Motor Imagery in Middle Cerebral Artery Stroke Patients. Available online at: (accessed April 22, 2020).
    1. Meir-Hasson Y., Keynan J. N., Kinreich S., Jackont G., Cohen A., Podlipsky-Klovatch I., et al. . (2016). One-class FMRI-inspired EEG model for self-regulation training. PLoS ONE 11:e0154968. 10.1371/journal.pone.0154968
    1. Mihara M., Hattori N., Hatakenaka M., Yagura H., Kawano T., Hino T., et al. . (2013). Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study. Stroke 44, 1091–1098. 10.1161/STROKEAHA.111.674507
    1. Mihara M., Miyai I., Hattori N., Hatakenaka M., Yagura H., Kawano T., et al. . (2012). Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation. PLoS ONE 7:e32234. 10.1371/journal.pone.0032234
    1. Moher D., Liberati A., Tetzlaff J., Altman D. G., Group T. P. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6:e1000097. 10.1371/journal.pmed.1000097
    1. Narita N. (2015). Application of NIRS as a non-invasive and supportive tool for autism spectrum disorders. Trans. Jpn. Soc. Med. Biol. Eng. 53, S153_01. 10.11239/jsmbe.53.S153_01
    1. Naseer N., Hong K.-S. S. (2015). fNIRS-based brain-computer interfaces: a review. Front. Hum. Neurosci. 9:3. 10.3389/fnhum.2015.00003
    1. Nichols T. E., Das S., Eickhoff S. B., Evans A. C., Glatard T., Hanke M., et al. . (2016). Best practices in data analysis and sharing in neuroimaging using MRI. bioRxiv 054262. 10.1101/054262
    1. Nieuwenhuis S., Forstmann B. U., Wagenmakers E. J. (2011). Erroneous analyses of interactions in neuroscience: a problem of significance. Nat. Neurosci. 14, 1105–1107. 10.1038/nn.2886
    1. Ninaus M., Kober S. E., Witte M., Koschutnig K., Stangl M., Neuper C., et al. . (2013). Neural substrates of cognitive control under the belief of getting neurofeedback training. Front. Hum. Neurosci. 7:914. 10.3389/fnhum.2013.00914
    1. Ogawa S., Tank D. W., Menon R., Ellermann J. M., Kim S. G., Merkle H., et al. . (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A. 89, 5951–5955. 10.1073/pnas.89.13.5951
    1. Okamoto M., Dan H., Sakamoto K., Takeo K., Shimizu K., Kohno S., et al. . (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 21, 99–111. 10.1016/j.neuroimage.2003.08.026
    1. Orihuela-Espina F., Leff D. R., James D. R. C., Darzi A. W., Yang G. Z. (2010). Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation. Phys. Med. Biol. 55, 3701–3724. 10.1088/0031-9155/55/13/009
    1. Paret C., Goldway N., Zich C., Keynan J. N., Hendler T., Linden D., et al. . (2019). Current progress in real-time functional magnetic resonance-based neurofeedback: methodological challenges and achievements. Neuroimage 202:116107. 10.1016/j.neuroimage.2019.116107
    1. Pfeifer M. D., Scholkmann F., Labruyère R. (2018). Signal processing in functional near-infrared spectroscopy (fNIRS): methodological differences lead to different statistical results. 11:641. 10.3389/fnhum.2017.00641
    1. Pinti P., Aichelburg C., Gilbert S., Hamilton A., Hirsch J., Burgess P., et al. . (2018a). A review on the use of wearable functional near-infrared spectroscopy in naturalistic environments. Jpn. Psychol. Res. 60, 347–373. 10.1111/jpr.12206
    1. Pinti P., Tachtsidis I., Hamilton A., Hirsch J., Aichelburg C., Gilbert S., et al. . (2018b). The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. 1464, 5–29. 10.1111/nyas.13948
    1. Poldrack R. A., Baker C. I., Durnez J., Gorgolewski K. J., Matthews P. M., Munafò M. R., et al. . (2017). Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat. Rev. Neurosci. 18, 115–126. 10.1038/nrn.2016.167
    1. Poldrack R. A., Paré-Blagoev E. J., Grant P. E. (2002). Pediatric functional magnetic resonance imaging: progress and challenges. Top. Magn. Reson. Imaging 13, 61–70. 10.1097/00002142-200202000-00005
    1. Quaresima V., Ferrari M. (2019). A mini-review on functional near-infrared spectroscopy (fNIRS): where do we stand, and where should we go? Photonics 6:87. 10.3390/photonics6030087
    1. Ramot M., Kimmich S., Gonzalez-Castillo J., Roopchansingh V., Popal H., White E., et al. . (2017). Direct modulation of aberrant brain network connectivity through real-time neurofeedback. Elife 6:e28974. 10.7554/eLife.28974.021
    1. Rance M., Walsh C., Sukhodolsky D. G., Pittman B., Qiu M., Kichuk S. A., et al. . (2018). Time course of clinical change following neurofeedback. Neuroimage 181, 807–813. 10.1016/j.neuroimage.2018.05.001
    1. Ros T., Enriquez-Geppert S., Zotev V., Young K. D., Wood G., Whitfield-Gabrieli S., et al. . (2020). Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain. 10.1093/brain/awaa009
    1. Sato T., Nambu I., Takeda K., Aihara T., Yamashita O., Isogaya Y., et al. . (2016). Reduction of global interference of scalp-hemodynamics in functional near-infrared spectroscopy using short distance probes. Neuroimage 141, 120–132. 10.1016/j.neuroimage.2016.06.054
    1. Schabus M., Griessenberger H., Gnjezda M.-T., Heib D. P. J., Wislowska M., Hoedlmoser K. (2017). Better than sham? A double-blind placebo-controlled neurofeedback study in primary insomnia. Brain 140, 1041–1052. 10.1093/brain/awx011
    1. Schäfer T., Schwarz M. A. (2019). The meaningfulness of effect sizes in psychological research : differences between sub-disciplines and the impact of potential biases. Front. Psychol. 10:813. 10.3389/fpsyg.2019.00813
    1. Scharnowski F., Veit R., Zopf R., Studer P., Bock S., Diedrichsen J., et al. . (2015). Manipulating motor performance and memory through real-time fMRI neurofeedback. Biol. Psychol. 108, 85–97. 10.1016/j.biopsycho.2015.03.009
    1. Scheel A. M., Schijen M., Lakens D. (2020). An excess of positive results: comparing the standard psychology literature with registered reports. PsyArXiv 1–14. 10.31234/
    1. Scholkmann F., Kleiser S., Metz A. J., Zimmermann R., Mata Pavia J., Wolf U., et al. . (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 85, 6–27. 10.1016/j.neuroimage.2013.05.004
    1. Schönbrodt F. D., Wagenmakers E. J. (2018). Bayes factor design analysis: planning for compelling evidence. Psychon. Bull. Rev. 25, 128–142. 10.3758/s13423-017-1230-y
    1. Schönenberg M., Wiedemann E., Schneidt A., Scheeff J., Logemann A., Keune P. M., et al. . (2017). Neurofeedback, sham neurofeedback, and cognitive-behavioural group therapy in adults with attention-deficit hyperactivity disorder: a triple-blind, randomised, controlled trial. Lancet Psychiatry 4, 673–684. 10.1016/S2215-0366(17)30291-2
    1. Schulz K. F., Altman D. G., Moher D., CONSORT Group (2010). CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ 340:c332. 10.1136/bmj.c332
    1. Sepulveda P., Sitaram R., Rana M., Montalba C., Tejos C., Ruiz S. (2016). How feedback, motor imagery, and reward influence brain self-regulation using real-time fMRI. Hum. Brain Mapp. 37, 3153–3171. 10.1002/hbm.23228
    1. Sherlin L. H., Arns M., Lubar J., Heinrich H., Kerson C., Strehl U., et al. . (2011). Neurofeedback and basic learning theory: implications for research and practice. J. Neurother. 15, 292–304. 10.1080/10874208.2011.623089
    1. Shibata K., Lisi G., Cortese A., Watanabe T., Sasaki Y., Kawato M. (2019). Toward a comprehensive understanding of the neural mechanisms of decoded neurofeedback. Neuroimage 188, 539–556. 10.1016/j.neuroimage.2018.12.022
    1. Simmons J. P., Nelson L. D., Simonsohn U. (2011). False-positive psychology. Psychol. Sci. 22, 1359–1366. 10.1177/0956797611417632
    1. Singh A. K., Okamoto M., Dan H., Jurcak V., Dan I. (2005). Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI. Neuroimage 27, 842–851. 10.1016/j.neuroimage.2005.05.019
    1. Sitaram R., Ros T., Stoeckel L., Haller S., Scharnowski F., Lewis-Peacock J., et al. . (2017). Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18, 86–100. 10.1038/nrn.2016.164
    1. Skinner B. F. (1963). Operant behavior. Am. Psychol. 18, 503–515. 10.1037/h0045185
    1. Sorger B., Scharnowski F., Linden D. E. J., Hampson M., Young K. D. (2019). Control freaks: towards optimal selection of control conditions for fMRI neurofeedback studies. Neuroimage 186, 256–265. 10.1016/j.neuroimage.2018.11.004
    1. Spetter M. S., Malekshahi R., Birbaumer N., Lührs M., van der Veer A. H., Scheffler K., et al. . (2017). Volitional regulation of brain responses to food stimuli in overweight and obese subjects: a real-time fMRI feedback study. Appetite 112, 188–195. 10.1016/j.appet.2017.01.032
    1. Stangl M., Bauernfeind G., Kurzmann J., Scherer R., Neuper C. (2013). A haemodynamic brain-computer interface based on real-time classification of near infrared spectroscopy signals during motor imagery and mental arithmetic. J. Near Infrared Spectrosc. 21, 157–171. 10.1255/jnirs.1048
    1. Stone W. L., Lemanek K. L. (1990). Developmental issues in children's self-reports, in Through the Eyes of the Child: Obtaining Self-Reports from Children and Adolescents, ed La Greca A. M. (Boston, MA: Allyn and Bacon; ), 18–56.
    1. Storchak H., Hudak J., Haeussinger F. B., Rosenbaum D., Fallgatter A. J., Ehlis A. C. (2018). Reducing auditory verbal hallucinations by means of fNIRS neurofeedback–a case study with a paranoid schizophrenic patient. Schizophr. Res. 204, 401–403. 10.1016/j.schres.2018.09.018
    1. Strehl U., Aggensteiner P., Wachtlin D., Brandeis D., Albrecht B., Arana M., et al. . (2017). Neurofeedback of slow cortical potentials in children with attention-deficit/hyperactivity disorder: a multicenter randomized trial controlling for unspecific effects. Front. Hum. Neurosci. 11:135. 10.3389/fnhum.2017.00135
    1. Szucs D., Ioannidis J. P. A. A. (2017). Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. PLoS Biol. 15:e2000797. 10.1371/journal.pbio.2000797
    1. Tachtsidis I., Scholkmann F. (2016). False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward. Neurophotonics 3:031405. 10.1117/1.NPh.3.3.031405
    1. Thibault R. T., Lifshitz M., Raz A. (2016). The self-regulating brain and neurofeedback: experimental science and clinical promise. Cortex 74, 247–261. 10.1016/j.cortex.2015.10.024
    1. Thibault R. T., MacPherson A., Lifshitz M., Roth R. R., Raz A. (2018). Neurofeedback with fMRI: a critical systematic review. Neuroimage 172, 786–807. 10.1016/j.neuroimage.2017.12.071
    1. Thibault R. T., Raz A. (2016). Neurofeedback: the power of psychosocial therapeutics. Lancet Psychiatry 3:e18. 10.1016/S2215-0366(16)30326-1
    1. Trambaiolli L. R., Biazoli C. E., Cravo A. M., Falk T. H., Sato J. R. (2018). Functional near-infrared spectroscopy-based affective neurofeedback: feedback effect, illiteracy phenomena, and whole-connectivity profiles. Neurophotonics 5:035009. 10.1117/1.NPh.5.3.035009
    1. Tsuzuki D., Dan I. (2014). Spatial registration for functional near-infrared spectroscopy: From channel position on the scalp to cortical location in individual and group analyses. Neuroimage 85, 92–103. 10.1016/J.NEUROIMAGE.2013.07.025
    1. Tsuzuki D., Jurcak V., Singh A. K., Okamoto M., Watanabe E., Dan I. (2007). Virtual spatial registration of stand-alone fNIRS data to MNI space. Neuroimage 34, 1506–1518. 10.1016/j.neuroimage.2006.10.043
    1. Tufanaru C., Munn Z., Aromataris E., Campbell J., Hopp L. (2017). Chapter 3: Systematic reviews of effectiveness, in Joanna Briggs Institute Reviewer's Manual, eds Aromataris E., Munn Z. (The Joanna Briggs Institute; ). Available online at:
    1. Van Doren J., Arns M., Heinrich H., Vollebregt M. A., Strehl U., Loo S. K. (2019). Sustained effects of neurofeedback in ADHD: a systematic review and meta-analysis. Eur. Child Adolesc. Psychiatry 28, 293–305. 10.1007/s00787-018-1121-4
    1. Veenman M. V. J. (2011). Alternative assessment of strategy use with self-report instruments: a discussion. Metacogn. Learn. 6, 205–211. 10.1007/s11409-011-9080-x
    1. von Lühmann A., Herff C., Heger D., Schultz T. (2015). Toward a wireless open source instrument: functional near-infrared spectroscopy in mobile neuroergonomics and BCI applications. Front. Hum. Neurosci. 9:617. 10.3389/fnhum.2015.00617
    1. von Lühmann A., Ortega-Martinez A., Boas D. A., Yücel M. A. (2020). Using the general linear model to improve performance in fNIRS single trial analysis and classification: a perspective. Front. Hum. Neurosci. 14:30. 10.3389/fnhum.2020.00030
    1. Weyand S., Takehara-Nishiuchi K., Chau T. (2015). Weaning off mental tasks to achieve voluntary self-regulatory control of a near-infrared spectroscopy brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 548–561. 10.1109/TNSRE.2015.2399392
    1. Yamashita A., Hayasaka S., Kawato M., Imamizu H. (2017). Connectivity neurofeedback training can differentially change functional connectivity and cognitive performance. Cereb. Cortex 27, 4960–4970. 10.1093/cercor/bhx177
    1. Zhang X., Noah J. A., Hirsch J. (2016). Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering. Neurophotonics 3:015004. 10.1117/1.NPh.3.1.015004
    1. Zhao Z., Yao S., Li K., Sindermann C., Zhou F., Zhao W., et al. . (2019). Real-time functional connectivity-informed neurofeedback of amygdala-frontal pathways reduces anxiety. Psychother. Psychosom. 88, 5–15. 10.1159/000496057

Source: PubMed

3
Subscribe