Effects of Different Types of Exercise Training on Pulmonary Arterial Hypertension: A Systematic Review

Lena Waller, Karsten Krüger, Kerstin Conrad, Astrid Weiss, Katharina Alack, Lena Waller, Karsten Krüger, Kerstin Conrad, Astrid Weiss, Katharina Alack

Abstract

Pulmonary arterial hypertension (PAH) represents a chronic progressive disease characterized by high blood pressure in the pulmonary arteries leading to right heart failure. The disease has been a focus of medical research for many years due to its worse prognosis and limited treatment options. The aim of this study was to systematically assess the effects of different types of exercise interventions on PAH. Electronic databases were searched until July 2019. MEDLINE database was used as the predominant source for this paper. Studies with regards to chronic physical activity in adult PAH patients are compared on retrieving evidence on cellular, physiological, and psychological alterations in the PAH setting. Twenty human studies and 12 rat trials were identified. Amongst all studies, a total of 628 human subjects and 614 rats were examined. Regular physical activity affects the production of nitric oxygen and attenuates right ventricular hypertrophy. A combination of aerobic, anaerobic, and respiratory muscle training induces the strongest improvement in functional capacity indicated by an increase of 6 MWD and VO2peak. In human studies, an increase of quality of life was found. Exercise training has an overall positive effect on the physiological and psychological components of PAH. Consequently, PAH patients should be encouraged to take part in regular exercise training programs.

Keywords: exercise training; experimental models; human studies; pulmonary arterial hypertension.

Conflict of interest statement

The authors declare no conflicts of interests regarding the publication of this manuscript.

Figures

Figure 1
Figure 1
The multifactorial etiopathogenesis of PAH. The pathogenesis of PAH implicates several molecular and cellular factors such as an increased proliferation of SMCs and ECs in the tunica intima and media. Risk factors (e.g., drugs) and genetic factors (e.g., dysfunctions in BMPR2) are also discussed to be involved in pathogenesis. PAH is characterized by an increased PVR and mean PAP ≥ 20 mmHg at rest, progressively leading to right ventricular hypertrophy (RVH), further resulting in right heart failure, loss of functional capacity and premature death. BMPR2, bone morphogenetic protein receptor type II; EC, endothelial cell; HIV, human immunodeficiency viruses, QoL, quality of life; SMC, smooth muscle cells; PAP, pulmonary arterial pressure; PVR, pulmonary vascular resistance (↑ = increased; ↓ = decreased).
Figure 2
Figure 2
Flow chart of the study inclusion process. A total of 32 studies were finally included to be assessed in this review (modified according to Moher et al. [46]).
Figure 3
Figure 3
Scheme of exercise interventions in animal studies. The experimental PAH was induced by a monocrotaline (MCT) injection in all included animal studies. The MCT injections (red line) and training programs were scheduled for different time points to assess various effects of exercise training (ET). In all studies [42,45,74,75,79,80,81,82,83,84,85,86], an adaptation period, highlighted in grey, was provided for 1–5 weeks to familiarize the rats with the treadmill running and adjust a similar baseline level. The periods of the training interventions are marked in white boxes (modified according to Moreira-Gonçalves et al. [87]).

References

    1. Thenappan T., Ormiston M.L., Ryan J.J., Archer S.L. Pulmonary arterial hypertension: Pathogenesis and clinical management. BMJ. 2018;360:j5492. doi: 10.1136/bmj.j5492.
    1. Swinnen K., Quarck R., Godinas L., Belge C., Delcroix M. Learning from registries in pulmonary arterial hypertension: Pitfalls and recommendations. Eur. Respir. Rev. 2019;28 doi: 10.1183/16000617.0050-2019.
    1. Galiè N., Humbert M., Vachiery J.-L., Gibbs S., Lang I., Torbicki A., Simonneau G., Peacock A., Vonk Noordegraaf A., Beghetti M., et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT) Eur. Heart J. 2016;37:67–119. doi: 10.1093/eurheartj/ehv317.
    1. Hoeper M.M. Definition, classification, and epidemiology of pulmonary arterial hypertension. Semin. Respir. Crit. Care Med. 2009;30:369–375. doi: 10.1055/s-0029-1233306.
    1. Humbert M., Guignabert C., Bonnet S., Dorfmüller P., Klinger J.R., Nicolls M.R., Olschewski A.J., Pullamsetti S.S., Schermuly R.T., Stenmark K.R., et al. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur. Respir. J. 2019;53 doi: 10.1183/13993003.01887-2018.
    1. Simonneau G., Montani D., Celermajer D.S., Denton C.P., Gatzoulis M.A., Krowka M., Williams P.G., Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019;53 doi: 10.1183/13993003.01913-2018.
    1. Delcroix M., Howard L. Pulmonary arterial hypertension: The burden of disease and impact on quality of life. Eur. Respir. Rev. 2015;24:621–629. doi: 10.1183/16000617.0063-2015.
    1. Matura L.A., McDonough A., Carroll D.L. Cluster analysis of symptoms in pulmonary arterial hypertension: A pilot study. Eur. J. Cardiovasc. Nurs. 2012;11:51–61. doi: 10.1177/1474515111429649.
    1. Hoeper M.M., Markevych I., Spiekerkoetter E., Welte T., Niedermeyer J. Goal-oriented treatment and combination therapy for pulmonary arterial hypertension. Eur. Respir. J. 2005;26:858–863. doi: 10.1183/09031936.05.00075305.
    1. Pedersen B.K., Saltin B. Exercise as medicine—Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports. 2015;25(Suppl. 3):1–72. doi: 10.1111/sms.12581.
    1. Mereles D., Ehlken N., Kreuscher S., Ghofrani S., Hoeper M.M., Halank M., Meyer F.J., Karger G., Buss J., Juenger J., et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation. 2006;114:1482–1489. doi: 10.1161/CIRCULATIONAHA.106.618397.
    1. Grünig E., Lichtblau M., Ehlken N., Ghofrani H.A., Reichenberger F., Staehler G., Halank M., Fischer C., Seyfarth H.-J., Klose H., et al. Safety and efficacy of exercise training in various forms of pulmonary hypertension. Eur. Respir. J. 2012;40:84–92. doi: 10.1183/09031936.00123711.
    1. Galiè N., Hoeper M.M., Humbert M., Torbicki A., Vachiery J.-L., Barbera J.A., Beghetti M., Corris P., Gaine S., Gibbs J.S., et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT) Eur. Heart J. 2009;30:2493–2537. doi: 10.1093/eurheartj/ehp297.
    1. Humbert M., Lau E.M.T., Montani D., Jaïs X., Sitbon O., Simonneau G. Advances in therapeutic interventions for patients with pulmonary arterial hypertension. Circulation. 2014;130:2189–2208. doi: 10.1161/CIRCULATIONAHA.114.006974.
    1. Ehlken N., Verduyn C., Tiede H., Staehler G., Karger G., Nechwatal R., Opitz C.F., Klose H., Wilkens H., Rosenkranz S., et al. Economic evaluation of exercise training in patients with pulmonary hypertension. Lung. 2014;192:359–366. doi: 10.1007/s00408-014-9558-9.
    1. Hemnes A.R., Humbert M. Pathobiology of pulmonary arterial hypertension: Understanding the roads less travelled. Eur. Respir. Rev. 2017;26 doi: 10.1183/16000617.0093-2017.
    1. Simonneau G., Gatzoulis M.A., Adatia I., Celermajer D., Denton C., Ghofrani A., Gomez Sanchez M.A., Krishna Kumar R., Landzberg M., Machado R.F., et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 2013;62:D34–D41. doi: 10.1016/j.jacc.2013.10.029.
    1. Montani D., Günther S., Dorfmüller P., Perros F., Girerd B., Garcia G., Jaïs X., Savale L., Artaud-Macari E., Price L.C., et al. Pulmonary arterial hypertension. Orphanet. J. Rare Dis. 2013;8:97. doi: 10.1186/1750-1172-8-97.
    1. Naeije R., Vonk Noordegraaf A., Kovacs G. Exercise-induced pulmonary hypertension: At last! Eur. Respir. J. 2015;46:583–586. doi: 10.1183/09031936.00061015.
    1. Naeije R., Saggar R., Badesch D., Rajagopalan S., Gargani L., Rischard F., Ferrara F., Marra A.M., M D.A., Bull T.M., et al. Exercise-Induced Pulmonary Hypertension: Translating Pathophysiological Concepts Into Clinical Practice. Chest. 2018;154:10–15. doi: 10.1016/j.chest.2018.01.022.
    1. La Gerche A., Burns A.T., D’Hooge J., Macisaac A.I., Heidbuchel H., Prior D.L. Exercise strain rate imaging demonstrates normal right ventricular contractile reserve and clarifies ambiguous resting measures in endurance athletes. J. Am. Soc. Echocardiogr. 2012;25:253–262 e251. doi: 10.1016/j.echo.2011.11.023.
    1. Humbert M., Morrell N.W., Archer S.L., Stenmark K.R., MacLean M.R., Lang I.M., Christman B.W., Weir E.K., Eickelberg O., Voelkel N.F., et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2004;43:13S–24S. doi: 10.1016/j.jacc.2004.02.029.
    1. Pape H.-C., Kurtz A., Silbernagl S. Physiologie. 8th ed. Thieme; Stuttgart, Germany: 2018. pp. 319–323.
    1. Malenfant S., Neyron A.-S., Paulin R., Potus F., Meloche J., Provencher S., Bonnet S. Signal transduction in the development of pulmonary arterial hypertension. Pulm. Circ. 2013;3:278–293. doi: 10.4103/2045-8932.114752.
    1. Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J. Clin. Investig. 2012;122:4306–4313. doi: 10.1172/JCI60658.
    1. Voelkel N.F., Gomez-Arroyo J., Abbate A., Bogaard H.J., Nicolls M.R. Pathobiology of pulmonary arterial hypertension and right ventricular failure. Eur. Respir. J. 2012;40:1555–1565. doi: 10.1183/09031936.00046612.
    1. Lewis G.D., Bossone E., Naeije R., Grünig E., Saggar R., Lancellotti P., Ghio S., Varga J., Rajagopalan S., Oudiz R., et al. Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation. 2013;128:1470–1479. doi: 10.1161/CIRCULATIONAHA.112.000667.
    1. Vonk Noordegraaf A., Westerhof B.E., Westerhof N. The Relationship Between the Right Ventricle and its Load in Pulmonary Hypertension. J. Am. Coll. Cardiol. 2017;69:236–243. doi: 10.1016/j.jacc.2016.10.047.
    1. Tello K., Gall H., Richter M., Ghofrani A., Schermuly R. Right ventricular function in pulmonary (arterial) hypertension. Herz. 2019;44:509–516. doi: 10.1007/s00059-019-4815-6.
    1. Coons J.C., Pogue K., Kolodziej A.R., Hirsch G.A., George M.P. Pulmonary Arterial Hypertension: A Pharmacotherapeutic Update. Curr. Cardiol. Rep. 2019;21:141. doi: 10.1007/s11886-019-1235-4.
    1. Benza R.L., Gomberg-Maitland M., Miller D.P., Frost A., Frantz R.P., Foreman A.J., Badesch D.B., McGoon M.D. The REVEAL Registry risk score calculator in patients newly diagnosed with pulmonary arterial hypertension. Chest. 2012;141:354–362. doi: 10.1378/chest.11-0676.
    1. Chin K.M., Rubin L.J., Channick R., Di Scala L., Gaine S., Galiè N., Ghofrani H.-A., Hoeper M.M., Lang I.M., McLaughlin V.V., et al. Association of N-Terminal Pro Brain Natriuretic Peptide and Long-Term Outcome in Patients With Pulmonary Arterial Hypertension. Circulation. 2019;139:2440–2450. doi: 10.1161/CIRCULATIONAHA.118.039360.
    1. Farina S., Correale M., Bruno N., Paolillo S., Salvioni E., Badagliacca R., Agostoni P. The role of cardiopulmonary exercise tests in pulmonary arterial hypertension. Eur. Respir. Rev. 2018;27 doi: 10.1183/16000617.0134-2017.
    1. Callejo M., Barbera J.A., Duarte J., Perez-Vizcaino F. Impact of Nutrition on Pulmonary Arterial Hypertension. Nutrients. 2020;12:169. doi: 10.3390/nu12010169.
    1. Chia K.S.W., Wong P.K.K., Faux S.G., McLachlan C.S., Kotlyar E. The benefit of exercise training in pulmonary hypertension: A clinical review. Intern. Med. J. 2017;47:361–369. doi: 10.1111/imj.13159.
    1. Becker-Grünig T., Klose H., Ehlken N., Lichtblau M., Nagel C., Fischer C., Gorenflo M., Tiede H., Schranz D., Hager A., et al. Efficacy of exercise training in pulmonary arterial hypertension associated with congenital heart disease. Int. J. Cardiol. 2013;168:375–381. doi: 10.1016/j.ijcard.2012.09.036.
    1. Grünig E., Ehlken N., Ghofrani A., Staehler G., Meyer F.J., Juenger J., Opitz C.F., Klose H., Wilkens H., Rosenkranz S., et al. Effect of exercise and respiratory training on clinical progression and survival in patients with severe chronic pulmonary hypertension. Respiration. 2011;81:394–401. doi: 10.1159/000322475.
    1. Pandey A., Garg S., Khunger M., Garg S., Kumbhani D.J., Chin K.M., Berry J.D. Efficacy and Safety of Exercise Training in Chronic Pulmonary Hypertension: Systematic Review and Meta-Analysis. Circ. Heart Fail. 2015;8:1032–1043. doi: 10.1161/CIRCHEARTFAILURE.115.002130.
    1. Richter M.J., Grimminger J., Krüger B., Ghofrani H.A., Mooren F.C., Gall H., Pilat C., Krüger K. Effects of exercise training on pulmonary hemodynamics, functional capacity and inflammation in pulmonary hypertension. Pulm. Circ. 2017;7:20–37. doi: 10.1086/690553.
    1. Vonk-Noordegraaf A., Haddad F., Chin K.M., Forfia P.R., Kawut S.M., Lumens J., Naeije R., Newman J., Oudiz R.J., Provencher S., et al. Right heart adaptation to pulmonary arterial hypertension: Physiology and pathobiology. J. Am. Coll. Cardiol. 2013;62:D22–D33. doi: 10.1016/j.jacc.2013.10.027.
    1. Haykowsky M.J., Liang Y., Pechter D., Jones L.W., McAlister F.A., Clark A.M. A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: The benefit depends on the type of training performed. J. Am. Coll. Cardiol. 2007;49:2329–2336. doi: 10.1016/j.jacc.2007.02.055.
    1. Brown M.B., Neves E., Long G., Graber J., Gladish B., Wiseman A., Owens M., Fisher A.J., Presson R.G., Petrache I., et al. High-intensity interval training, but not continuous training, reverses right ventricular hypertrophy and dysfunction in a rat model of pulmonary hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017;312:R197–R210. doi: 10.1152/ajpregu.00358.2016.
    1. Mitchell T., Barlow C.E. Review of the role of exercise in improving quality of life in healthy individuals and in those with chronic diseases. Curr. Sports Med. Rep. 2011;10:211–216. doi: 10.1249/JSR.0b013e318223cc9e.
    1. Singh I., Rahaghi F.N., Naeije R., Oliveira R.K.F., Vanderpool R.R., Waxman A.B., Systrom D.M. Dynamic right ventricular-pulmonary arterial uncoupling during maximum incremental exercise in exercise pulmonary hypertension and pulmonary arterial hypertension. Pulm. Circ. 2019;9:2045894019862435. doi: 10.1177/2045894019862435.
    1. Zimmer A., Teixeira R.B., Bonetto J.H.P., Siqueira R., Carraro C.C., Donatti L.M., Hickmann A., Litvin I.E., Godoy A.E.G., Araujo A.S., et al. Effects of aerobic exercise training on metabolism of nitric oxide and endothelin-1 in lung parenchyma of rats with pulmonary arterial hypertension. Mol. Cell. Biochem. 2017;429:73–89. doi: 10.1007/s11010-016-2937-1.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Babu A.S., Padmakumar R., Nayak K., Shetty R., Mohapatra A.K., Maiya A.G. Effects of home-based exercise training on functional outcomes and quality of life in patients with pulmonary hypertension: A randomized clinical trial. Indian Heart J. 2019 doi: 10.1016/j.ihj.2019.03.002.
    1. Betancourt Pena J., Del Castillo N.T., Avila Valencia J.C., Enavides Cordoba V.B. Pulmonary rehabilitation in moderate pulmonary hypertension. Australas. Med. J. 2018;11 doi: 10.21767/AMJ.2018.3467.
    1. Brown M.B., Chingombe T.J., Zinn A.B., Reddy J.G., Novack R.A., Cooney S.A., Fisher A.J., Presson R.G., Lahm T., Petrache I. Novel assessment of haemodynamic kinetics with acute exercise in a rat model of pulmonary arterial hypertension. Exp. Physiol. 2015;100:742–754. doi: 10.1113/EP085182.
    1. Chia K.S.W., Faux S.G., Wong P.K.K., Holloway C., Assareh H., McLachlan C.S., Kotlyar E. Randomised controlled trial examining the effect of an outpatient exercise training programme on haemodynamics and cardiac MR parameters of right ventricular function in patients with pulmonary arterial hypertension: The ExPAH study protocol. BMJ Open. 2017;7:e014037. doi: 10.1136/bmjopen-2016-014037.
    1. Favret F., Henderson K.K., Allen J., Richalet J.-P., Gonzalez N.C. Exercise training improves lung gas exchange and attenuates acute hypoxic pulmonary hypertension but does not prevent pulmonary hypertension of prolonged hypoxia. J. Appl. Physiol. 2006;100:20–25. doi: 10.1152/japplphysiol.00673.2005.
    1. Fowler R.M., Maiorana A.J., Jenkins S.C., Gain K.R., O’Driscoll G., Gabbay E. A comparison of the acute haemodynamic response to aerobic and resistance exercise in subjects with exercise-induced pulmonary arterial hypertension. Eur. J. Prev. Cardiol. 2013;20:605–612. doi: 10.1177/2047487312445424.
    1. Ganderton L., Jenkins S., Gain K., Fowler R., Winship P., Lunt D., Gabbay E. Short term effects of exercise training on exercise capacity and quality of life in patients with pulmonary arterial hypertension: Protocol for a randomised controlled trial. BMC Pulm. Med. 2011;11:12. doi: 10.1186/1471-2466-11-25.
    1. Goret L., Reboul C., Tanguy S., Dauzat M., Obert P. Training does not affect the alteration in pulmonary artery vasoreactivity in pulmonary hypertensive rats. Eur. J. Pharmacol. 2005;527:121–128. doi: 10.1016/j.ejphar.2005.10.013.
    1. Harbaum L., Renk E., Yousef S., Glatzel A., Lüneburg N., Hennigs J.K., Oqueka T., Baumann H.J., Atanackovic D., Grünig E., et al. Acute effects of exercise on the inflammatory state in patients with idiopathic pulmonary arterial hypertension. BMC Pulm. Med. 2016;16:145. doi: 10.1186/s12890-016-0301-6.
    1. Hargett L.A., Hartman L.J., Scruggs A.K., McLendon J.M., Haven A.K., Bauer N.N. Severe pulmonary arterial hypertensive rats are tolerant to mild exercise. Pulm. Circ. 2015;5:349–355. doi: 10.1086/681267.
    1. Ihle F N.C. An Integrated Outpatient Training Program for Patients with Pulmonary Hypertension—The Munich Pilot Project. Int. J. Phys. Med. Rehabil. 2014;02 doi: 10.4172/2329-9096.1000204.
    1. Laoutaris I.D., Dritsas A., Kariofyllis P., Manginas A. Benefits of inspiratory muscle training in patients with pulmonary hypertension: A pilot study. Hellenic. J. Cardiol. 2016 doi: 10.1016/j.hjc.2016.05.008.
    1. Morris N.R., Louis M., Strugnell W., Harris J., Lin A., Feenstra J., Seale H. Study protocol for a randomised controlled trial of exercise training in pulmonary hypertension (ExTra_PH) BMC Pulm. Med. 2018;18:40. doi: 10.1186/s12890-018-0586-8.
    1. Postolache P., Cojocaru D.-C., Jimborean G., Ianosi E.-S. Outcomes of pulmonary rehabilitation in severe pulmonary hypertension—Case report. Rev. Med. Chir. Soc. Med. Nat. IASI. 2018;122:67–71.
    1. Saglam M., Arikan H., Vardar-Yagli N., Calik-Kutukcu E., Inal-Ince D., Savci S., Akdogan A., Yokusoglu M., Kaya E.B., Tokgozoglu L. Inspiratory muscle training in pulmonary arterial hypertension. J. Cardiopulm. Rehabil. Prev. 2015;35:198–206. doi: 10.1097/HCR.0000000000000117.
    1. Sanchis-Gomar F., González-Saiz L., Sanz-Ayan P., Fiuza-Luces C., Quezada-Loaiza C.A., Flox-Camacho A., Santalla A., Munguía-Izquierdo D., Santos-Lozano A., Pareja-Galeano H., et al. Rationale and Design of a Randomized Controlled Trial Evaluating Whole Muscle Exercise Training Effects in Outpatients with Pulmonary Arterial Hypertension (WHOLEi+12) Cardiovasc. Drugs Ther. 2015;29:543–550. doi: 10.1007/s10557-015-6623-4.
    1. Santos-Lozano A., Sanz-Ayan P., González-Saiz L., Quezada-Loaiza C.A., Fiuza-Luces C., Flox-Camacho A., Munguía-Izquierdo D., Santalla A., Morán M., Escribano-Subías P., et al. Effects of an 8-month exercise intervention on physical capacity, NT-proBNP, physical activity levels and quality of life data in patients with pulmonary arterial hypertension by NYHA class. Data Brief. 2017;12:37–41. doi: 10.1016/j.dib.2017.03.022.
    1. Spruijt O.A., Man F.S., Groepenhoff H., Oosterveer F., Westerhof N., Vonk-Noordegraaf A., Bogaard H.-J. The effects of exercise on right ventricular contractility and right ventricular-arterial coupling in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2015;191:1050–1057. doi: 10.1164/rccm.201412-2271OC.
    1. Uchi M., Saji T., Harada T. Feasibility of cardiopulmonary rehabilitation in patients with idiopathic pulmonary arterial hypertension treated with intravenous prostacyclin infusion therapy. J. Cardiol. 2005;46:183–193.
    1. Weissmann N., Peters D.M., Klöpping C., Krüger K., Pilat C., Katta S., Seimetz M., Ghofrani H.A., Schermuly R.T., Witzenrath M., et al. Structural and functional prevention of hypoxia-induced pulmonary hypertension by individualized exercise training in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014;306:L986–L995. doi: 10.1152/ajplung.00275.2013.
    1. Woolstenhulme J.G., Guccione A.A., Herrick J.E., Collins J.P., Nathan S.D., Chan L., Keyser R.E. Left Ventricular Function Before and After Aerobic Exercise Training in Women With Pulmonary Arterial Hypertension. J. Cardiopulm. Rehabil. Prev. 2019;39:118–126. doi: 10.1097/HCR.0000000000000397.
    1. Zöller D., Siaplaouras J., Apitz A., Bride P., Kaestner M., Latus H., Schranz D., Apitz C. Home Exercise Training in Children and Adolescents with Pulmonary Arterial Hypertension: A Pilot Study. Pediatr. Cardiol. 2017;38:191–198. doi: 10.1007/s00246-016-1501-9.
    1. Chan L., Chin L.M.K., Kennedy M., Woolstenhulme J.G., Nathan S.D., Weinstein A.A., Connors G., Weir N.A., Drinkard B., Lamberti J., et al. Benefits of intensive treadmill exercise training on cardiorespiratory function and quality of life in patients with pulmonary hypertension. Chest. 2013;143:333–343. doi: 10.1378/chest.12-0993.
    1. Downs S.H., Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health. 1998;52:377–384. doi: 10.1136/jech.52.6.377.
    1. Deeks J., Dinnes J., D’Amico R., Sowden A., Sakarovitch C., Song F., Petticrew M., Altman D. Evaluating non-randomised intervention studies. Health Technol. Assess. 2003;7 doi: 10.3310/hta7270.
    1. Babu A.S., Padmakumar R., Maiya A.G., Mohapatra A.K., Kamath R.L. Effects of Exercise Training on Exercise Capacity in Pulmonary Arterial Hypertension: A Systematic Review of Clinical Trials. Heart Lung Circ. 2016;25:333–341. doi: 10.1016/j.hlc.2015.10.015.
    1. Gerhardt F., Dumitrescu D., Gärtner C., Beccard R., Viethen T., Kramer T., Baldus S., Hellmich M., Schönau E., Rosenkranz S. Oscillatory whole-body vibration improves exercise capacity and physical performance in pulmonary arterial hypertension: A randomised clinical study. Heart. 2017;103:592–598. doi: 10.1136/heartjnl-2016-309852.
    1. Enache I., Favret F., Doutreleau S., Di Goette Marco P., Charles A.-L., Geny B., Charloux A. Downhill exercise training in monocrotaline-injected rats: Effects on echocardiographic and haemodynamic variables and survival. Arch. Cardiovasc. Dis. 2017;110:106–115. doi: 10.1016/j.acvd.2016.05.008.
    1. Natali A.J., Fowler E.D., Calaghan S.C., White E. Voluntary exercise delays heart failure onset in rats with pulmonary artery hypertension. Am. J. Physiol. Heart Circ. Physiol. 2015;309:H421–H424. doi: 10.1152/ajpheart.00262.2015.
    1. Shoemaker M.J., Wilt J.L., Dasgupta R., Oudiz R.J. Exercise Training in Patients with Pulmonary Arterial Hypertension: A Case Report. Cardiopulm. Phys. Ther. J. 2009;20:12–18. doi: 10.1097/01823246-200920040-00003.
    1. Brown M.B., Kempf A., Collins C.M., Long G.M., Owens M., Gupta S., Hellman Y., Wong V., Farber M., Lahm T. A prescribed walking regimen plus arginine supplementation improves function and quality of life for patients with pulmonary arterial hypertension: A pilot study. Pulm. Circ. 2018;8:2045893217743966. doi: 10.1177/2045893217743966.
    1. ACSM . ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Wolters Kluwer; Philadelphia, PA, USA: 2018.
    1. Souza-Rabbo M.P., Silva L.F.F., Auzani J.A.S., Picoral M., Khaper N., Belló-Klein A. Effects of a chronic exercise training protocol on oxidative stress and right ventricular hypertrophy in monocrotaline-treated rats. Clin. Exp. Pharmacol. Physiol. 2008;35:944–948. doi: 10.1111/j.1440-1681.2008.04936.x.
    1. Handoko M.L., Man F.S., Happé C.M., Schalij I., Musters R.J.P., Westerhof N., Postmus P.E., Paulus W.J., van der Laarse W.J., Vonk-Noordegraaf A. Opposite effects of training in rats with stable and progressive pulmonary hypertension. Circulation. 2009;120:42–49. doi: 10.1161/CIRCULATIONAHA.108.829713.
    1. Colombo R., Siqueira R., Becker C.U., Fernandes T.G., Pires K.M., Valença S.S., Souza-Rabbo M.P., Araujo A.S., Belló-Klein A. Effects of exercise on monocrotaline-induced changes in right heart function and pulmonary artery remodeling in rats. Can. J. Physiol. Pharmacol. 2013;91:38–44. doi: 10.1139/cjpp-2012-0261.
    1. Colombo R., Siqueira R., Conzatti A., Fernandes T.R.G., Tavares A.M.V., Araújo A.S.d.R., Belló-Klein A. Aerobic Exercise Promotes a Decrease in Right Ventricle Apoptotic Proteins in Experimental Cor Pulmonale. J. Cardiovasc. Pharmacol. 2015;66:246–253. doi: 10.1097/FJC.0000000000000272.
    1. Moreira-Gonçalves D., Ferreira R., Fonseca H., Padrão A.I., Moreno N., Silva A.F., Vasques-Nóvoa F., Gonçalves N., Vieira S., Santos M., et al. Cardioprotective effects of early and late aerobic exercise training in experimental pulmonary arterial hypertension. Basic Res. Cardiol. 2015;110:57. doi: 10.1007/s00395-015-0514-5.
    1. Colombo R., Siqueira R., Conzatti A., Lima Seolin B.G., Fernandes T.R.G., Godoy A.E.G., Litvin I.E., Silva J.M.A., Tucci P.J.F., da Rosa Araújo A.S., et al. Exercise training contributes to H2O2/VEGF signaling in the lung of rats with monocrotaline-induced pulmonary hypertension. Vascul. Pharmacol. 2016;87:49–59. doi: 10.1016/j.vph.2016.06.006.
    1. Nogueira-Ferreira R., Moreira-Gonçalves D., Silva A.F., Duarte J.A., Leite-Moreira A., Ferreira R., Henriques-Coelho T. Exercise preconditioning prevents MCT-induced right ventricle remodeling through the regulation of TNF superfamily cytokines. Int. J. Cardiol. 2016;203:858–866. doi: 10.1016/j.ijcard.2015.11.066.
    1. Pacagnelli F.L., Almeida Sabela A.K.D., Okoshi K., Mariano T.B., Campos D.H.S., Carvalho R.F., Cicogna A.C., Vanderlei L.C.M. Preventive aerobic training exerts a cardioprotective effect on rats treated with monocrotaline. Int. J. Exp. Pathol. 2016;97:238–247. doi: 10.1111/iep.12166.
    1. Moreira-Gonçalves D., Ferreira-Nogueira R., Santos M., Silva A.F., Ferreira R., Leite-Moreira A., Duarte J.A., Henriques-Coelho T. Exercise Training in Pulmonary Hypertension and Right Heart Failure: Insights from Pre-clinical Studies. Adv. Exp. Med. Biol. 2017;999:307–324. doi: 10.1007/978-981-10-4307-9_17.
    1. Weinstein A.A., Chin L.M.K., Keyser R.E., Kennedy M., Nathan S.D., Woolstenhulme J.G., Connors G., Chan L. Effect of aerobic exercise training on fatigue and physical activity in patients with pulmonary arterial hypertension. Respir. Med. 2013;107:778–784. doi: 10.1016/j.rmed.2013.02.006.
    1. Man F.S., Handoko M.L., Groepenhoff H., van ‘t Hul A.J., Abbink J., Koppers R.J.H., Grotjohan H.P., Twisk J.W.R., Bogaard H.-J., Boonstra A., et al. Effects of exercise training in patients with idiopathic pulmonary arterial hypertension. Eur. Respir. J. 2009;34:669–675. doi: 10.1183/09031936.00027909.
    1. Mainguy V., Maltais F., Saey D., Gagnon P., Martel S., Simon M., Provencher S. Effects of a rehabilitation program on skeletal muscle function in idiopathic pulmonary arterial hypertension. J. Cardiopulm. Rehabil. Prev. 2010;30:319–323. doi: 10.1097/HCR.0b013e3181d6f962.
    1. Martínez-Quintana E., Miranda-Calderín G., Ugarte-Lopetegui A., Rodríguez-González F. Rehabilitation program in adult congenital heart disease patients with pulmonary hypertension. Congenit. Heart Dis. 2010;5:44–50. doi: 10.1111/j.1747-0803.2009.00370.x.
    1. Fox B.D., Kassirer M., Weiss I., Raviv Y., Peled N., Shitrit D., Kramer M.R. Ambulatory rehabilitation improves exercise capacity in patients with pulmonary hypertension. J. Card. Fail. 2011;17:196–200. doi: 10.1016/j.cardfail.2010.10.004.
    1. Grünig E., Maier F., Ehlken N., Fischer C., Lichtblau M., Blank N., Fiehn C., Stöckl F., Prange F., Staehler G., et al. Exercise training in pulmonary arterial hypertension associated with connective tissue diseases. Arthritis Res. Ther. 2012;14:R148. doi: 10.1186/ar3883.
    1. Ley S., Fink C., Risse F., Ehlken N., Fischer C., Ley-Zaporozhan J., Kauczor H.-U., Klose H., Gruenig E. Magnetic resonance imaging to assess the effect of exercise training on pulmonary perfusion and blood flow in patients with pulmonary hypertension. Eur. Radiol. 2013;23:324–331. doi: 10.1007/s00330-012-2606-z.
    1. Kabitz H.-J., Bremer H.-C., Schwoerer A., Sonntag F., Walterspacher S., Walker D.J., Ehlken N., Staehler G., Windisch W., Grünig E. The combination of exercise and respiratory training improves respiratory muscle function in pulmonary hypertension. Lung. 2014;192:321–328. doi: 10.1007/s00408-013-9542-9.
    1. Ehlken N., Lichtblau M., Klose H., Weidenhammer J., Fischer C., Nechwatal R., Uiker S., Halank M., Olsson K., Seeger W., et al. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: A prospective, randomized, controlled trial. Eur. Heart J. 2016;37:35–44. doi: 10.1093/eurheartj/ehv337.
    1. Bussotti M., Gremigni P., Pedretti R.F.E., Kransinska P., Di Marco S., Corbo P., Marchese G., Totaro P., Sommaruga M. Effects of an Outpatient Service Rehabilitation Programme in Patients Affected by Pulmonary Arterial Hypertension: An Observational Study. Cardiovasc. Hematol. Disord. Drug Targets. 2017;17:3–10. doi: 10.2174/1871529X16666161130123937.
    1. González-Saiz L., Fiuza-Luces C., Sanchis-Gomar F., Santos-Lozano A., Quezada-Loaiza C.A., Flox-Camacho A., Munguía-Izquierdo D., Ara I., Santalla A., Morán M., et al. Benefits of skeletal-muscle exercise training in pulmonary arterial hypertension: The WHOLEi+12 trial. Int. J. Cardiol. 2017;231:277–283. doi: 10.1016/j.ijcard.2016.12.026.
    1. Ferrazza A.M., Martolini D., Valli G., Palange P. Cardiopulmonary exercise testing in the functional and prognostic evaluation of patients with pulmonary diseases. Respiration. 2009;77:3–17. doi: 10.1159/000186694.
    1. Park J., Omi N. The effects of different exercise modes for preventing endothelial dysfunction of arteries and bone loss in ovariectomized rats. J. Exerc. Nutr. Biochem. 2014;18:133–139. doi: 10.5717/jenb.2014.18.2.133.
    1. Lau E.M.T., Manes A., Celermajer D.S., Galiè N. Early detection of pulmonary vascular disease in pulmonary arterial hypertension: Time to move forward. Eur. Heart J. 2011;32:2489–2498. doi: 10.1093/eurheartj/ehr160.
    1. La Gerche A., Heidbüchel H., Burns A.T., Mooney D.J., Taylor A.J., Pfluger H.B., Inder W.J., Macisaac A.I., Prior D.L. Disproportionate exercise load and remodeling of the athlete’s right ventricle. Med. Sci. Sports Exerc. 2011;43:974–981. doi: 10.1249/MSS.0b013e31820607a3.
    1. Holland A.E., Spruit M.A., Troosters T., Puhan M.A., Pepin V., Saey D., McCormack M.C., Carlin B.W., Sciurba F.C., Pitta F., et al. An official European Respiratory Society/American Thoracic Society technical standard: Field walking tests in chronic respiratory disease. Eur. Respir. J. 2014;44:1428–1446. doi: 10.1183/09031936.00150314.
    1. Mathai S.C., Puhan M.A., Lam D., Wise R.A. The minimal important difference in the 6-minute walk test for patients with pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2012;186:428–433. doi: 10.1164/rccm.201203-0480OC.
    1. Hill N.S., Gillespie M.N., McMurtry I.F. Fifty Years of Monocrotaline-Induced Pulmonary Hypertension: What Has It Meant to the Field? Chest. 2017;152:1106–1108. doi: 10.1016/j.chest.2017.10.007.
    1. Lahm T., Frump A.L., Albrecht M.E., Fisher A.J., Cook T.G., Jones T.J., Yakubov B., Whitson J., Fuchs R.K., Liu A., et al. 17beta-Estradiol mediates superior adaptation of right ventricular function to acute strenuous exercise in female rats with severe pulmonary hypertension. Am. J. Physiol. (Lung Cell. Mol. Physiol.) 2016;311:L375–L388. doi: 10.1152/ajplung.00132.2016.
    1. Ryan J.J., Marsboom G., Fang Y.H., Toth P.T., Morrow E., Luo N., Piao L., Hong Z., Ericson K., Zhang H.J., et al. PGC1alpha-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2013;187:865–878. doi: 10.1164/rccm.201209-1687OC.
    1. Borgdorff M.A., Bartelds B., Dickinson M.G., Steendijk P., de Vroomen M., Berger R.M. Distinct loading conditions reveal various patterns of right ventricular adaptation. Am. J. Physiol. (Heart Circ. Physiol.) 2013;305:H354–H364. doi: 10.1152/ajpheart.00180.2013.
    1. Colvin K.L., Yeager M.E. Animal Models of Pulmonary Hypertension: Matching Disease Mechanisms to Etiology of the Human Disease. J. Pulm. Respir. Med. 2014;4 doi: 10.4172/2161-105X.1000198.
    1. Tuder R.M., Archer S.L., Dorfmuller P., Erzurum S.C., Guignabert C., Michelakis E., Rabinovitch M., Schermuly R., Stenmark K.R., Morrell N.W. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J. Am. Coll. Cardiol. 2013;62:D4–D12. doi: 10.1016/j.jacc.2013.10.025.

Source: PubMed

3
Subscribe