Do routine hospital data accurately record comorbidity in advanced kidney disease populations? A record linkage cohort study

Ailish Nimmo, Retha Steenkamp, Rommel Ravanan, Dominic Taylor, Ailish Nimmo, Retha Steenkamp, Rommel Ravanan, Dominic Taylor

Abstract

Background: Routine healthcare datasets capturing clinical and administrative information are increasingly being used to examine health outcomes. The accuracy of such data is not clearly defined. We examine the accuracy of diagnosis recording in individuals with advanced chronic kidney disease using a routine healthcare dataset in England with comparison to information collected by trained research nurses.

Methods: We linked records from the Access to Transplant and Transplant Outcome Measures study to the Hospital Episode Statistics dataset. International Classification of Diseases (ICD-10) and Office for Population Censuses and Surveys Classification of Interventions and Procedures (OPCS-4) codes were used to identify medical conditions from hospital data. The sensitivity, specificity, positive and negative predictive values were calculated for a range of diagnoses.

Results: Comorbidity information was available in 96% of individuals prior to starting kidney replacement therapy. There was variation in the accuracy of individual medical conditions identified from the routine healthcare dataset. Sensitivity and positive predictive values ranged from 97.7 and 90.4% for diabetes and 82.6 and 82.9% for ischaemic heart disease to 44.2 and 28.4% for liver disease.

Conclusions: Routine healthcare datasets accurately capture certain conditions in an advanced chronic kidney disease population. They have potential for use within clinical and epidemiological research studies but are unlikely to be sufficient as a single resource for identifying a full spectrum of comorbidities.

Keywords: Chronic kidney disease; Comorbidity; Record linkage; Routine healthcare datasets; Secondary care.

Conflict of interest statement

The authors, other than RS, received funding from the National Institute for Health Research (NIHR) under the Programme Grants for Applied Research scheme (RP-PG-0109-10116) for completion of the ATTOM study. RS declares no conflicts of interest.

Figures

Fig. 1
Fig. 1
Flow chart depicting individuals included in the study. There were 69 individuals without an admitted patient care episode prior to study recruitment, but 67 of these had a subsequent admitted patient care episode after recruitment
Fig. 2
Fig. 2
Prevalence of comorbidities derived from study and hospital datasets
Fig. 3
Fig. 3
Forest plot displaying sensitivity (%) with 95% confidence intervals for individual comorbidities derived from hospital data. Comorbidities are ordered by prevalence. ES: effect size, represents sensitivity (%)
Fig. 4
Fig. 4
Forest plot displaying positive predictive values (%) with 95% confidence intervals for individual comorbidities derived from hospital data. Comorbidities are ordered by prevalence. ES: effect size, represents positive predictive value (%)

References

    1. Rao A, Steenkamp R, Caskey F. UK Renal Registry 16th annual report: chapter 5 comorbidities and current smoking status amongst patients starting Renal replacement therapy in England, Wales and Northern Ireland from 2011 to 2012. Nephron Clin Pract. 2013;125(1–4):99–110. doi: 10.1159/000360024.
    1. McPhail SM. Multimorbidity in chronic disease: impact on health care resources and costs. Risk Manag Healthc Policy. 2016;9:143–156. doi: 10.2147/RMHP.S97248.
    1. Gijsen R, Hoeymans N, Schellevis FG, Ruwaard D, Satariano WA, van den Bos GAM. Causes and consequences of comorbidity: a review. J Clin Epidemiol. 2001;54(7):661–674. doi: 10.1016/S0895-4356(00)00363-2.
    1. Khan IH, Catto GRD, MacLeod AM, Edward N, Fleming LW, Henderson IS. Influence of coexisting disease on survival on renal-replacement therapy. Lancet. 1993;341(8842):415–418. doi: 10.1016/0140-6736(93)93003-J.
    1. Liu J, Huang Z, Gilbertson DT, Foley RN, Collins AJ. An improved comorbidity index for outcome analyses among dialysis patients. Kidney Int. 2010;77(2):141–151. doi: 10.1038/ki.2009.413.
    1. Fotheringham J, Jacques RM, Fogarty D, Tomson CRV, El Nahas M, Campbell MJ. Variation in Centre-specific survival in patients starting renal replacement therapy in England is explained by enhanced comorbidity information from hospitalization data. Nephrol Dial Transplant. 2013;29(2):422–430. doi: 10.1093/ndt/gft363.
    1. Karamadoukis L, Ansell D, Foley RN, McDonald SP, Tomson CRV, Trpeski L, Caskey FJ. Towards case-mix-adjusted international renal registry comparisons: how can we improve data collection practice? Nephrol Dial Transplant. 2009;24(8):2306–2311. doi: 10.1093/ndt/gfp096.
    1. Cook JA, Collins GS. The rise of big clinical databases. BJS (British Journal of Surgery) 2015;102(2):e93–e101. doi: 10.1002/bjs.9723.
    1. Grunau GL, Sheps S, Goldner EM, Ratner PA. Specific comorbidity risk adjustment was a better predictor of 5-year acute myocardial infarction mortality than general methods. J Clin Epidemiol. 2006;59(3):274–280. doi: 10.1016/j.jclinepi.2005.08.007.
    1. Fraccaro P, Kontopantelis E, Sperrin M, et al. Predicting mortality from change-over-time in the Charlson Comorbidity Index: A retrospective cohort study in a data-intensive UK health system. Medicine. 2016;95:43. doi: 10.1097/MD.0000000000004973.
    1. Herbert A, Wijlaars L, Zylbersztejn A, Cromwell D, Hardelid P. Data resource profile: hospital episode statistics admitted patient care (HES APC) Int J Epidemiol. 2017;46(4):1093–1093i. doi: 10.1093/ije/dyx015.
    1. Chaudhry Z, Mannan F, Gibson-White A, Syed U, Majeed A, Ahmed S. Research outputs of England’s Hospital Episode Statistics (HES) database: a bibliometric analysis. BMJ Health Care Inform. 2017;24(4):329. doi: 10.14236/jhi.v24i4.949.
    1. Sarween N, Hughes S, Evison F, Day C, Knox E, Lipkin G. SO012 pregnancy outcomes in renal transplant recipients in England over 15 years. Nephrol Dial Transplant. 2016;31(suppl_1):i6. doi: 10.1093/ndt/gfw119.01.
    1. Judge PK, Harper CHS, Storey BC, Haynes R, Wilcock MJ, Staplin N, Goldacre R, Baigent C, Collier J, Goldacre M, Landray MJ, Winearls CG, Herrington WG. Biliary tract and liver complications in polycystic kidney disease. J Am Soc Nephrol. 2017;28(9):2738–2748. doi: 10.1681/ASN.2017010084.
    1. Renal Registry UK. UK Renal Registry 21st annual report – data to 31/12/2017, Bristol, UK. 2019.
    1. Herrett E, Shah AD, Boggon R, Denaxas S, Smeeth L, van Staa T, Timmis A, Hemingway H. Completeness and diagnostic validity of recording acute myocardial infarction events in primary care, hospital care, disease registry, and national mortality records: cohort study. BMJ. 2013;346(may20 3):f2350. doi: 10.1136/bmj.f2350.
    1. Woodfield R, Grant I. UK biobank stroke outcomes group, UK biobank follow-up and outcomes working group, Sudlow CLM. Accuracy of electronic health record data for identifying stroke cases in large-scale epidemiological studies: a systematic review from the UK biobank stroke outcomes group. PLoS One. 2015;10(10):e0140533. doi: 10.1371/journal.pone.0140533.
    1. Yao RJR, Andrade JG, Deyell MW, Jackson H, McAlister FA, Hawkins NM. Sensitivity, specificity, positive and negative predictive values of identifying atrial fibrillation using administrative data: a systematic review and meta-analysis. Clin Epidemiol. 2019;11:753–767. doi: 10.2147/CLEP.S206267.
    1. Schneider KM, O’Donnell BE, Dean D. Prevalence of multiple chronic conditions in the United States’ Medicare population. Health Qual Life Outcomes. 2009;7(1):82. doi: 10.1186/1477-7525-7-82.
    1. Iimuro S, Kaneko T, Ohashi Y, et al. Analysis of 2897 hospitalization events for patients with chronic kidney disease: results from CKD-JAC study. Clin Exp Nephrol. 2019;23(7):956–968. doi: 10.1007/s10157-019-01730-9.
    1. Oniscu GC, Ravanan R, Wu D, Gibbons A, Li B, Tomson C, Forsythe JL, Bradley C, Cairns J, Dudley C, Watson CJ, Bolton EM, Draper H, Robb M, Bradbury L, Pruthi R, Metcalfe W, Fogarty D, Roderick P, Bradley JA, ATTOM Investigators Access to transplantation and transplant outcome measures (ATTOM): study protocol of a UK wide, in-depth, prospective cohort analysis. BMJ Open. 2016;6(2):e010377. doi: 10.1136/bmjopen-2015-010377.
    1. NHS Digital. Hospital Outpatient Activity, 2015/16: Primary Diagnosis. Published online December 1, 2016. Accessed December 9, 2019.
    1. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, Saunders LD, Beck CA, Feasby TE, Ghali WA. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130–1139. doi: 10.1097/01.mlr.0000182534.19832.83.
    1. Wang CY, Baldwin L-M, Saver BG, Dobie SA, Green PK, Cai Y, Klabunde CN. The contribution of longitudinal comorbidity measurements to survival analysis. Med Care. 2009;47(7):813–821. doi: 10.1097/MLR.0b013e318197929c.
    1. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 2012;22(3):276–282. doi: 10.11613/BM.2012.031.
    1. Hemmelgarn BR, Manns BJ, Quan H, Ghali WA. Adapting the charlson comorbidity index for use in patients with ESRD. Am J Kidney Dis. 2003;42(1):125–132. doi: 10.1016/S0272-6386(03)00415-3.
    1. House AA, Wanner C, Sarnak MJ, et al. Heart failure in chronic kidney disease: conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 2019;95(6):1304–1317. doi: 10.1016/j.kint.2019.02.022.
    1. Baecklund E, Iliadou A, Askling J, Ekbom A, Backlin C, Granath F, Catrina AI, Rosenquist R, Feltelius N, Sundström C, Klareskog L. Association of chronic inflammation, not its treatment, with increased lymphoma risk in rheumatoid arthritis. Arthritis Rheum. 2006;54(3):692–701. doi: 10.1002/art.21675.
    1. Millett ERC, Quint JK, De Stavola BL, Smeeth L, Thomas SL. Improved incidence estimates from linked vs. stand-alone electronic health records. J Clin Epidemiol. 2016;75:66–69. doi: 10.1016/j.jclinepi.2016.01.005.
    1. Ludvigsson JF, Olén O, Bell M, Ekbom A, Montgomery SM. Coeliac disease and risk of sepsis. Gut. 2008;57(8):1074–1080. doi: 10.1136/gut.2007.133868.
    1. Ludvigsson JF, Andersson E, Ekbom A, Feychting M, Kim JL, Reuterwall C, Heurgren M, Olausson PO. External review and validation of the Swedish national inpatient register. BMC Public Health. 2011;11(1):450. doi: 10.1186/1471-2458-11-450.
    1. Schmidt M, Schmidt SAJ, Adelborg K, Sundbøll J, Laugesen K, Ehrenstein V, Sørensen HT. The Danish health care system and epidemiological research: from health care contacts to database records. Clin Epidemiol. 2019;11:563–591. doi: 10.2147/CLEP.S179083.
    1. Norris CM, Ghali WA, Knudtson ML, Naylor CD, Saunders LD. Dealing with missing data in observational health care outcome analyses. J Clin Epidemiol. 2000;53(4):377–383. doi: 10.1016/S0895-4356(99)00181-X.
    1. Sarfati D, Hill S, Purdie G, Dennett E, Blakely T. How well does routine hospitalisation data capture information on comorbidity in New Zealand? New Zealand Med J. 2010;123(1310):50–61.
    1. Tang KL, Lucyk K, Quan H. Coder perspectives on physician-related barriers to producing high-quality administrative data: a qualitative study. CMAJ Open. 2017;5(3):E617–E622. doi: 10.9778/cmajo.20170036.
    1. Data Access Request Service (DARS) charges from 2020/2021. Published online November 9, 2020.
    1. Fotheringham J, Fogarty D, Jacques R, El Nahas M, Campbell M. Chapter 13 The Linkage of Incident Renal Replacement Therapy Patients in England (2002–2006) to Hospital Episodes and National Mortality Data: Improved Demography and Hospitalisation Data in Patients Undergoing Renal Replacement Therapy. Nephron Clin Pract. 2012;120(suppl 1):c247–c260. doi: 10.1159/000342857.
    1. Burns EM, Rigby E, Mamidanna R, Bottle A, Aylin P, Ziprin P, Faiz OD. Systematic review of discharge coding accuracy. J Public Health (Oxf) 2012;34(1):138–148. doi: 10.1093/pubmed/fdr054.

Source: PubMed

3
Subscribe