Evaluation of a Navigated 3D Ultrasound Integration for Brain Tumor Surgery: First Results of an Ongoing Prospective Study

Danilo Aleo, Ziad Elshaer, Andreas Pfnür, Patrick J Schuler, Marco Maria Fontanella, Christian Rainer Wirtz, Andrej Pala, Jan Coburger, Danilo Aleo, Ziad Elshaer, Andreas Pfnür, Patrick J Schuler, Marco Maria Fontanella, Christian Rainer Wirtz, Andrej Pala, Jan Coburger

Abstract

The aim of the study was to assess the quality, accuracy and benefit of navigated 2D and 3D ultrasound for intra-axial tumor surgery in a prospective study. Patients intended for gross total resection were consecutively enrolled. Intraoperatively, a 2D and 3D iUS-based resection was performed. During surgery, the image quality, clinical benefit and navigation accuracy were recorded based on a standardized protocol using Likert’s scales. A total of 16 consecutive patients were included. Mean ratings of image quality in 2D iUS were significantly higher than in 3D iUS (p < 0.001). There was no relevant decrease in rating during the surgery in 2D and 3D iUS (p > 0.46). The benefit was rated 2.2 in 2D iUS and 2.6 in 3D iUS (p = 0.08). The benefit remained stable in 2D, while there was a slight decrease in the benefit in 3D after complete tumor resection (p = 0.09). The accuracy was similar in both (mean 2.2 p = 0.88). Seven patients had a small tumor remnant in intraoperative MRT (mean 0.98 cm3) that was not appreciated with iUS. Crucially, 3D iUS allows for an accurate intraoperative update of imaging with slightly lower image quality than 2D iUS. Our preliminary data suggest that the benefit and accuracy of 2D and 3D iUS navigation do not undergo significant variations during tumor resection.

Keywords: extent of resection; glioma surgery; image quality; intraoperative 3D ultrasound; navigation.

Conflict of interest statement

A.P. (Andrej Pala) and J.C. are working as Brainlab consultants.

Figures

Figure 1
Figure 1
Flow chart designed for patient enrollment.
Figure 2
Figure 2
Box plot showing the overall values for quality, benefit and accuracy (Likert scale). White circles = low potential outlier (more than 1.5 inter-quartile range at most 3 inter-quartile range.)
Figure 3
Figure 3
Box plot showing 2D and 3D quality variations during the different stages of resection.
Figure 4
Figure 4
Box plot showing 2D and 3D benefit variations during different stages of resection. White circles = low potential outlier (more than 1.5 inter-quartile range at most 3 inter-quartile range.)
Figure 5
Figure 5
Box plot showing 2D and 3D benefit variations for the three main categories of tumors: HGG = high-grade gliomas, LGG = low-grade gliomas, MTX = metastases. White circles = White circles = low potential outlier (more than 1.5 inter-quartile range at most 3 inter-quartile range. * = high potential outliers of more than 3 inter-quartile ranges).
Figure 6
Figure 6
Box plot showing 2D and 3D accuracy variations during different stages of resection.
Figure 7
Figure 7
Axial contrast enhanced T1-weighted MRI (left) and coronal T2 flair (right) sequences showing a frontal left mass.
Figure 8
Figure 8
2D iUS scan after dura opening.
Figure 9
Figure 9
“live” iUS-guided resection before iMRI scan. Note how the cortical spinal bundle highlighted in violet was spared from the resection area.
Figure 10
Figure 10
“live” iUS-guided resection at 50% of tumor removal showing the mismatch between the pointer and the real position on iUS (white arrow).
Figure 11
Figure 11
Preoperative (left) and intraoperative (right) MRI. Note the residual tumor outlined in violet along the edges of the surgical cavity on iMRI.
Figure 12
Figure 12
2D iUS scan performed at the 100% surgical resection stage. No obvious residual disease was found.

References

    1. Marko N.F., Weil R.J., Schroeder J.L., Lang F.F., Suki D., Sawaya R.E. Extent of Resection of Glioblastoma Revisited: Personalized Survival Modeling Facilitates More Accurate Survival Prediction and Supports a Maximum-Safe-Resection Approach to Surgery. J. Clin. Oncol. 2014;32:774. doi: 10.1200/JCO.2013.51.8886.
    1. Wykes V., Zisakis A., Irimia M., Ughratdar I., Sawlani V., Watts C. Importance and Evidence of Extent of Resection in Glioblastoma. J. Neurol. Surg. Part A Cent. Eur. Neurosurg. 2021;82:75–86. doi: 10.1055/s-0040-1701635.
    1. Jakola A.S., Myrmel K.S., Kloster R., Torp S.H., Lindal S., Unsgård G., Solheim O. Comparison of a Strategy Favoring Early Surgical Resection vs a Strategy Favoring Watchful Waiting in Low-Grade Gliomas. JAMA. 2012;308:1881. doi: 10.1001/jama.2012.12807.
    1. Eyüpoglu I.Y., Buchfelder M., Savaskan N.E. Surgical Resection of Malignant Gliomas—Role in Optimizing Patient Outcome. Nat. Rev. Neurol. 2013;9:141–151. doi: 10.1038/nrneurol.2012.279.
    1. Wijnenga M.M.J., French P.J., Dubbink H.J., Dinjens W.N.M., Atmodimedjo P.N., Kros J.M., Smits M., Gahrmann R., Rutten G.-J., Verheul J.B. The Impact of Surgery in Molecularly Defined Low-Grade Glioma: An Integrated Clinical, Radiological, and Molecular Analysis. Neuro-Oncol. 2018;20:103–112. doi: 10.1093/neuonc/nox176.
    1. Winther R.R., Hjermstad M.J., Skovlund E., Aass N., Helseth E., Kaasa S., Yri O.E., Vik-Mo E.O. Surgery for Brain Metastases—Impact of the Extent of Resection. Acta Neurochir. 2022:1–8. doi: 10.1007/s00701-021-05104-7.
    1. Nimsky C., Ganslandt O., Cerny S., Hastreiter P., Greiner G., Fahlbusch R. Quantification of, Visualization of, and Compensation for Brain Shift Using Intraoperative Magnetic Resonance Imaging. Neurosurgery. 2000;47:1070–1080. doi: 10.1097/00006123-200011000-00008.
    1. Nabavi A., Black P.M., Gering D.T., Westin C.-F., Mehta V., Pergolizzi Jr R.S., Ferrant M., Warfield S.K., Hata N., Schwartz R.B. Serial Intraoperative Magnetic Resonance Imaging of Brain Shift. Neurosurgery. 2001;48:787–798.
    1. Nimsky C. Intraoperative MRI in Glioma Surgery: Proof of Benefit? Lancet Oncol. 2011;11:982–983. doi: 10.1016/S1470-2045(11)70219-4.
    1. Coburger J., Nabavi A., König R., Wirtz C.R., Pala A. Contemporary Use of Intraoperative Imaging in Glioma Surgery: A Survey among EANS Members. Clin. Neurol. Neurosurg. 2017;163:133–141. doi: 10.1016/j.clineuro.2017.10.033.
    1. Rubin J.M., Mirfakhraee M., Duda E.E., Dohrmann G.J., Brown F. Intraoperative Ultrasound Examination of the Brain. Radiology. 1980;137:831–832. doi: 10.1148/radiology.137.3.6255514.
    1. Chandler W.F., Rubin J.M. The Application of Ultrasound during Brain Surgery. World J. Surg. 1987;11:558–569. doi: 10.1007/BF01655829.
    1. Prada F., Solbiati L.E., Martegani A.E., DiMeco F.E. From Standard B-mode to Elastosonography. Springer International Publishing; Berlin, Germany: 2016. Intraoperative Ultrasound (IOUS) in Neurosurgery.
    1. Šteňo A., Buvala J., Babkova V., Kiss A., Toma D., Lysak A. Current Limitations of Intraoperative Ultrasound in Brain Tumor Surgery. Front. Oncol. 2021;11:659048. doi: 10.3389/fonc.2021.659048.
    1. Selbekk T., Jakola A.S., Solheim O., Johansen T.F., Lindseth F., Reinertsen I., Unsgård G. Ultrasound Imaging in Neurosurgery: Approaches to Minimize Surgically Induced Image Artefacts for Improved Resection Control. Acta Neurochir. 2013;155:973–980. doi: 10.1007/s00701-013-1647-7.
    1. Mair R., Heald J., Poeata I., Ivanov M. A Practical Grading System of Ultrasonographic Visibility for Intracerebral Lesions. Acta Neurochir. 2013;155:2293–2298. doi: 10.1007/s00701-013-1868-9.
    1. Schlaier J.R., Warnat J., Dorenbeck U., Proescholdt M., Schebesch K.-M., Brawanski A. Image Fusion of MR Images and Real-Time Ultrasonography: Evaluation of Fusion Accuracy Combining Two Commercial Instruments, a Neuronavigation System and a Ultrasound System. Acta Neurochir. 2004;146:271–277. doi: 10.1007/s00701-003-0155-6.
    1. Lindseth F., Kaspersen J.H., Ommedal S., Langø T., Bang J., Hokland J., Unsgaard G., Nagelhus Hemes T.A. Multimodal Image Fusion in Ultrasound-Based Neuronavigation: Improving Overview and Interpretation by Integrating Preoperative MRI with Intraoperative 3D Ultrasound. Comput. Aided Surg. 2003;8:49–69. doi: 10.3109/10929080309146040.
    1. Coburger J., Scheuerle A., Kapapa T., Engelke J., Thal D.R., Wirtz C.R., König R. Sensitivity and Specificity of Linear Array Intraoperative Ultrasound in Glioblastoma Surgery: A Comparative Study with High Field Intraoperative MRI and Conventional Sector Array Ultrasound. Neurosurg. Rev. 2015;38:499–509. doi: 10.1007/s10143-015-0627-1.
    1. Coburger J., Scheuerle A., Thal D.R., Engelke J., Hlavac M., Wirtz C.R., König R. Linear Array Ultrasound in Low-Grade Glioma Surgery: Histology-Based Assessment of Accuracy in Comparison to Conventional Intraoperative Ultrasound and Intraoperative MRI. Acta Neurochir. 2015;157:195–206. doi: 10.1007/s00701-014-2314-3.
    1. Moiyadi A. V Linear Intraoperative Ultrasound Probes and Phased-Array Probes: Two Sides of the Same Coin. Acta Neurochir. 2015;157:957–958. doi: 10.1007/s00701-015-2386-8.
    1. Tronnier V.M., Bonsanto M.M., Staubert A., Knauth M., Kunze S., Wirtz C.R. Comparison of Intraoperative MR Imaging and 3D-Navigated Ultrasonography in the Detection and Resection Control of Lesions. Neurosurg. Focus. 2001;10:1–5. doi: 10.3171/foc.2001.10.2.4.
    1. Moiyadi A.V., Unsgård G. Intraoperative Ultrasound (IOUS) in Neurosurgery. Springer; Berlin, Germany: 2016. Navigable Ultrasound, 3D Ultrasound and Fusion Imaging in Neurosurgery; pp. 135–145.
    1. Gronningsaeter A., Kleven A., Ommedal S., Aarseth T.E., Lie T., Lindseth F., Langø T., Unsgård G. SonoWand, an Ultrasound-Based Neuronavigation System. Neurosurgery. 2000;47:1373–1380. doi: 10.1097/00006123-200012000-00021.
    1. Solheim O., Selbekk T., Jakola A.S., Unsgård G. Ultrasound-Guided Operations in Unselected High-Grade Gliomas—Overall Results, Impact of Image Quality and Patient Selection. Acta Neurochir. 2010;152:1873–1886. doi: 10.1007/s00701-010-0731-5.
    1. Knauth M., Wirtz C.R., Tronnier V.M., Aras N., Kunze S., Sartor K. Intraoperative MR Imaging Increases the Extent of Tumor Resection in Patients with High-Grade Gliomas. Am. J. Neuroradiol. 1999;20:1642–1646.
    1. Rainer Wirtz W.S., Albert F.K., Schwaderer M., Heuer C., Staubert A., Tronnier V.M., Knauth M., Kunze S. The Benefit of Neuronavigation for Neurosurgery Analyzed by Its Impact on Glioblastoma Surgery. Neurol. Res. 2000;22:354–360. doi: 10.1080/01616412.2000.11740684.
    1. Bohinski R.J., Kokkino A.K., Gaskill-Shipley M.F., Kormos D.W., Tew J.M. Glioma Resection in a Shared-Resource Magnetic Resonance Operating Room after Optimal Image-Guided Frameless Stereotactic Resection. Neurosurgery. 2001;48:731–744. doi: 10.1227/00006123-200104000-00007.
    1. Hirschberg H., Samset E., Hol P.K., Tillung T., Lote K. Impact of Intraoperative MRI on the Surgical Results for High-Grade Gliomas. min-Minim. Invasive Neurosurg. 2005;48:77–84. doi: 10.1055/s-2004-830225.
    1. Schneider J.P., Trantakis C., Rubach M., Schulz T., Dietrich J., Winkler D., Renner C., Schober R., Geiger K., Brosteanu O. Intraoperative MRI to Guide the Resection of Primary Supratentorial Glioblastoma Multiforme—a Quantitative Radiological Analysis. Neuroradiology. 2005;47:489–500. doi: 10.1007/s00234-005-1397-1.
    1. Hatiboglu M.A., Weinberg J.S., Suki D., Tummala S., Rao G., Sawaya R., Prabhu S.S. Utilization of Intraoperative Motor Mapping in Glioma Surgery with High-Field Intraoperative Magnetic Resonance Imaging. Stereotact. Funct. Neurosurg. 2010;88:345–352. doi: 10.1159/000319837.
    1. Pamir M.N., Özduman K., Dinçer A., Yildiz E., Peker S., Özek M.M. First Intraoperative, Shared-Resource, Ultrahigh-Field 3-Tesla Magnetic Resonance Imaging System and Its Application in Low-Grade Glioma Resection. J. Neurosurg. 2010;112:57–69. doi: 10.3171/2009.3.JNS081139.
    1. Senft C., Bink A., Franz K., Vatter H., Gasser T., Seifert V. Intraoperative MRI Guidance and Extent of Resection in Glioma Surgery: A Randomised, Controlled Trial. Lancet Oncol. 2011;12:997–1003. doi: 10.1016/S1470-2045(11)70196-6.
    1. Lothes T.E., Siekmann M., König R.W., Wirtz C.R., Coburger J. Surgical Workflow Analysis: Ideal Application of Navigated Linear Array Ultrasound in Low-Grade Glioma Surgery. J. Neurol. Surg. Part A Cent. Eur. Neurosurg. 2016;77:466–473.
    1. Uneri A., Otake Y., Wang A.S., Kleinszig G., Vogt S., Khanna A.J., Siewerdsen J.H. 3D–2D Registration for Surgical Guidance: Effect of Projection View Angles on Registration Accuracy. Phys. Med. Biol. 2013;59:271. doi: 10.1088/0031-9155/59/2/271.
    1. Jakola A.S., Jørgensen A., Selbekk T., Michler R.-P., Solheim O., Torp S.H., Sagberg L.M., Aadahl P., Unsgård G. Animal Study Assessing Safety of an Acoustic Coupling Fluid That Holds the Potential to Avoid Surgically Induced Artifacts in 3D Ultrasound Guided Operations. BMC Med. Imaging. 2014;14:1–9. doi: 10.1186/1471-2342-14-11.
    1. Unsgård G., Sagberg L.M., Müller S., Selbekk T. A New Acoustic Coupling Fluid with Ability to Reduce Ultrasound Imaging Artefacts in Brain Tumour Surgery—a Phase I Study. Acta Neurochir. 2019;161:1475–1486. doi: 10.1007/s00701-019-03945-x.
    1. Bastos D.C.D.A., Juvekar P., Tie Y., Jowkar N., Pieper S., Wells W.M., Bi W.L., Golby A., Frisken S., Kapur T. Challenges and Opportunities of Intraoperative 3D Ultrasound with Neuronavigation in Relation to Intraoperative MRI. Front. Oncol. 2021;11:656519. doi: 10.3389/fonc.2021.656519.
    1. Incekara F., Smits M., Dirven L., Bos E.M., Balvers R.K., Haitsma I.K., Schouten J.W., Vincent A.J.P.E. Intraoperative B-Mode Ultrasound Guided Surgery and the Extent of Glioblastoma Resection: A Randomized Controlled Trial. Front. Oncol. 2021;11:649797. doi: 10.3389/fonc.2021.649797.
    1. Giammalva G.R., Ferini G., Musso S., Salvaggio G., Pino M.A., Gerardi R.M., Brunasso L., Costanzo R., Paolini F., Di Bonaventura R., et al. Intraoperative Ultrasound: Emerging Technology and Novel Applications in Brain Tumor Surgery. Front. Oncol. 2022;12:818446. doi: 10.3389/fonc.2022.818446.
    1. Saß B., Zivkovic D., Pojskic M., Nimsky C., Bopp M.H.A. Navigated Intraoperative 3D Ultrasound in Glioblastoma Surgery: Analysis of Imaging Features and Impact on Extent of Resection. Front. Neurosci. 2022;16:883584. doi: 10.3389/fnins.2022.883584.
    1. Della Pepa G.M., Ius T., La Rocca G., Gaudino S., Isola M., Pignotti F., Rapisarda A., Mazzucchi E., Giordano C., Dragonetti V., et al. 5-Aminolevulinic Acid and Contrast-Enhanced Ultrasound: The Combination of the Two Techniques to Optimize the Extent of Resection in Glioblastoma Surgery. Neurosurgery. 2020;86:E529–E540. doi: 10.1093/neuros/nyaa037.

Source: PubMed

3
Subscribe