Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies

Miguel A Sanchez-Garrido, Manuel Tena-Sempere, Miguel A Sanchez-Garrido, Manuel Tena-Sempere

Abstract

Background: Polycystic ovary syndrome (PCOS) is the most common endocrinopathy among reproductive age women. Although its cardinal manifestations include hyperandrogenism, oligo/anovulation, and/or polycystic ovarian morphology, PCOS women often display also notable metabolic comorbidities. An array of pathogenic mechanisms have been implicated in the etiology of this heterogeneous endocrine disorder; hyperandrogenism at various developmental periods is proposed as a major driver of the metabolic and reproductive perturbations associated with PCOS. However, the current understanding of the pathophysiology of PCOS-associated metabolic disease is incomplete, and therapeutic strategies used to manage this syndrome's metabolic complications remain limited.

Scope of review: This study is a systematic review of the potential etiopathogenic mechanisms of metabolic dysfunction frequently associated with PCOS, with special emphasis on the metabolic impact of androgen excess on different metabolic tissues and the brain. We also briefly summarize the therapeutic approaches currently available to manage metabolic perturbations linked to PCOS, highlighting current weaknesses and future directions.

Major conclusions: Androgen excess plays a prominent role in the development of metabolic disturbances associated with PCOS, with a discernible impact on key peripheral metabolic tissues, including the adipose, liver, pancreas, and muscle, and very prominently the brain, contributing to the constellation of metabolic complications of PCOS, from obesity to insulin resistance. However, the current understanding of the pathogenic roles of hyperandrogenism in metabolic dysfunction of PCOS and the underlying mechanisms remain largely incomplete. In addition, the development of more efficient, even personalized therapeutic strategies for the metabolic management of PCOS patients persists as an unmet need that will certainly benefit from a better comprehension of the molecular basis of this heterogeneous syndrome.

Keywords: Androgen excess; GLP-1; Insulin resistance; Obesity; PCOS; Poly-agonists.

Copyright © 2020 The Authors. Published by Elsevier GmbH.. All rights reserved.

Figures

Figure 1
Figure 1
Potential pathogenic factors of PCOS. During gestation, multiple factors including increased AMH levels, growth restriction, endocrine disruptors such as BPA, and androgen excess may predispose to the development of a PCOS-like phenotype in adulthood. During the postnatal period, exposure to endocrine disruptors and androgen excess and the development of obesity and insulin resistance are considered pathogenic factors that may also cause PCOS. Genetic and epigenetic factors may also increase the risk of developing PCOS. The figure was designed using tools provided by Servier Medical Art (https://smart.servier.com).
Figure 2
Figure 2
Metabolic impact of androgen excess in PCOS. In women with PCOS, androgen excess has a detrimental impact on different metabolic tissues, including the adipose tissue (white and brown), liver, pancreas, and skeletal muscle. Androgen excess also impairs systemic metabolism via the brain, primarily increasing adiposity and reducing insulin sensitivity. The figure was created using tools provided by Servier Medical Art (https://smart.servier.com).

References

    1. Yildiz B.O., Bozdag G., Yapici Z., Esinler I., Yarali H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Human Reproduction. 2012;27(10):3067–3073.
    1. Lim S.S., Davies M.J., Norman R.J., Moran L.J. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Human Reproduction Update. 2012;18(6):618–637.
    1. Ding T., Hardiman P.J., Petersen I., Wang F.F., Qu F., Baio G. The prevalence of polycystic ovary syndrome in reproductive-aged women of different ethnicity: a systematic review and meta-analysis. OncoTarget. 2017;8(56):96351–96358.
    1. Rotterdam, E.A.-S.P.C.W.G. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS) Human Reproduction. 2004;19(1):41–47.
    1. Franks S. Assessment and management of anovulatory infertility in polycystic ovary syndrome. Endocrinology and Metabolism Clinics of North America. 2003;32(3):639–651.
    1. Gilbert E.W., Tay C.T., Hiam D.S., Teede H., Moran L.J. Comorbidities and complications of polycystic ovary syndrome: an overview of systematic reviews. Clinical Endocrinology (Oxf) 2018
    1. Moran C., Arriaga M., Rodriguez G., Moran S. Obesity differentially affects phenotypes of polycystic ovary syndrome. The Internet Journal of Endocrinology. 2012:317241. 2012.
    1. Legro R.S., Castracane V.D., Kauffman R.P. Detecting insulin resistance in polycystic ovary syndrome: purposes and pitfalls. Obstetrical and Gynecological Survey. 2004;59(2):141–154.
    1. Marshall J.C., Dunaif A. Should all women with PCOS be treated for insulin resistance? Fertility and Sterility. 2012;97(1):18–22.
    1. Bednarska S., Siejka A. The pathogenesis and treatment of polycystic ovary syndrome: what's new? Advances in Clinical and Experimental Medicine. 2017;26(2):359–367.
    1. Moran L.J., Misso M.L., Wild R.A., Norman R.J. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Human Reproduction Update. 2010;16(4):347–363.
    1. Yang R., Yang S., Li R., Liu P., Qiao J., Zhang Y. Effects of hyperandrogenism on metabolic abnormalities in patients with polycystic ovary syndrome: a meta-analysis. Reproductive Biology and Endocrinology. 2016;14(1):67.
    1. Pasquali R., Gambineri A., Pagotto U. The impact of obesity on reproduction in women with polycystic ovary syndrome. BJOG. 2006;113(10):1148–1159.
    1. Rojas J., Chavez M., Olivar L., Rojas M., Morillo J., Mejias J. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth. International Journal of Reproductive Medicine. 2014;2014:719050.
    1. Sirmans S.M., Pate K.A. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clinical Epidemiology. 2013;6:1–13.
    1. Badawy A., Elnashar A. Treatment options for polycystic ovary syndrome. International Journal of Womens Health. 2011;3:25–35.
    1. Fenichel P., Rougier C., Hieronimus S., Chevalier N. Which origin for polycystic ovaries syndrome: genetic, environmental or both? Annales d'Endocrinologie. 2017;78(3):176–185.
    1. Escobar-Morreale H.F. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nature Reviews Endocrinology. 2018;14(5):270–284.
    1. Nelson V.L., Legro R.S., Strauss J.F., 3rd, McAllister J.M. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Molecular Endocrinology. 1999;13(6):946–957.
    1. Crespo R.P., Bachega T., Mendonca B.B., Gomes L.G. An update of genetic basis of PCOS pathogenesis. Archives Endocrinology Metabol. 2018;62(3):352–361.
    1. Dharia S., Slane A., Jian M., Conner M., Conley A.J., Parker C.R., Jr. Colocalization of P450c17 and cytochrome b5 in androgen-synthesizing tissues of the human. Biology of Reproduction. 2004;71(1):83–88.
    1. Rosenfield R.L., Ehrmann D.A. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocrine Reviews. 2016;37(5):467–520.
    1. Parakh T.N., Hernandez J.A., Grammer J.C., Weck J., Hunzicker-Dunn M., Zeleznik A.J. Follicle-stimulating hormone/cAMP regulation of aromatase gene expression requires beta-catenin. Proceedings of the National Academy of Sciences of the U S A. 2006;103(33):12435–12440.
    1. Franks S. The ubiquitous polycystic ovary. Journal of Endocrinology. 1991;129(3):317–319.
    1. Wajchenberg B.L., Achando S.S., Okada H., Czeresnia C.E., Peixoto S., Lima S.S. Determination of the source(s) of androgen overproduction in hirsutism associated with polycystic ovary syndrome by simultaneous adrenal and ovarian venous catheterization. Comparison with the dexamethasone suppression test. Journal of Clinical Endocrinology & Metabolism. 1986;63(5):1204–1210.
    1. Franks S., Gilling-Smith C., Watson H., Willis D. Insulin action in the normal and polycystic ovary. Endocrinology and Metabolism Clinics of North America. 1999;28(2):361–378.
    1. Moran C., Reyna R., Boots L.S., Azziz R. Adrenocortical hyperresponsiveness to corticotropin in polycystic ovary syndrome patients with adrenal androgen excess. Fertility and Sterility. 2004;81(1):126–131.
    1. Kumar A., Woods K.S., Bartolucci A.A., Azziz R. Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (PCOS) Clinical Endocrinology (Oxf) 2005;62(6):644–649.
    1. Gilling-Smith C., Story H., Rogers V., Franks S. Evidence for a primary abnormality of thecal cell steroidogenesis in the polycystic ovary syndrome. Clinical Endocrinology (Oxf) 1997;47(1):93–99.
    1. Wickenheisser J.K., Nelson-DeGrave V.L., McAllister J.M. Human ovarian theca cells in culture. Trends in Endocrinology and Metabolism. 2006;17(2):65–71.
    1. Goodarzi M.O., Dumesic D.A., Chazenbalk G., Azziz R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nature Reviews Endocrinology. 2011;7(4):219–231.
    1. Blank S.K., McCartney C.R., Marshall J.C. The origins and sequelae of abnormal neuroendocrine function in polycystic ovary syndrome. Human Reproduction Update. 2006;12(4):351–361.
    1. Walters K.A., Gilchrist R.B., Ledger W.L., Teede H.J., Handelsman D.J., Campbell R.E. New perspectives on the pathogenesis of PCOS: neuroendocrine origins. Trends in Endocrinology and Metabolism. 2018
    1. Cimino I., Casoni F., Liu X., Messina A., Parkash J., Jamin S.P. Novel role for anti-Mullerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nature Communications. 2016;7:10055.
    1. Kim H.H., DiVall S.A., Deneau R.M., Wolfe A. Insulin regulation of GnRH gene expression through MAP kinase signaling pathways. Molecular and Cellular Endocrinology. 2005;242(1–2):42–49.
    1. Nestler J.E. Metformin for the treatment of the polycystic ovary syndrome. New England Journal of Medicine. 2008;358(1):47–54.
    1. Baillargeon J.P., Carpentier A. Role of insulin in the hyperandrogenemia of lean women with polycystic ovary syndrome and normal insulin sensitivity. Fertility and Sterility. 2007;88(4):886–893.
    1. Baillargeon J.P., Nestler J.E. Commentary: polycystic ovary syndrome: a syndrome of ovarian hypersensitivity to insulin? Journal of Clinical Endocrinology & Metabolism. 2006;91(1):22–24.
    1. Nestler J.E., Jakubowicz D.J., de Vargas A.F., Brik C., Quintero N., Medina F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. Journal of Clinical Endocrinology & Metabolism. 1998;83(6):2001–2005.
    1. Poretsky L. On the paradox of insulin-induced hyperandrogenism in insulin-resistant states. Endocrine Reviews. 1991;12(1):3–13.
    1. Nestler J.E., Powers L.P., Matt D.W., Steingold K.A., Plymate S.R., Rittmaster R.S. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. Journal of Clinical Endocrinology & Metabolism. 1991;72(1):83–89.
    1. Plymate S.R., Matej L.A., Jones R.E., Friedl K.E. Inhibition of sex hormone-binding globulin production in the human hepatoma (Hep G2) cell line by insulin and prolactin. Journal of Clinical Endocrinology & Metabolism. 1988;67(3):460–464.
    1. Adashi E.Y., Hsueh A.J., Yen S.S. Insulin enhancement of luteinizing hormone and follicle-stimulating hormone release by cultured pituitary cells. Endocrinology. 1981;108(4):1441–1449.
    1. Velazquez E.M., Mendoza S., Hamer T., Sosa F., Glueck C.J. Metformin therapy in polycystic ovary syndrome reduces hyperinsulinemia, insulin resistance, hyperandrogenemia, and systolic blood pressure, while facilitating normal menses and pregnancy. Metabolism. 1994;43(5):647–654.
    1. Dunaif A., Scott D., Finegood D., Quintana B., Whitcomb R. The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. Journal of Clinical Endocrinology & Metabolism. 1996;81(9):3299–3306.
    1. Katsiki N., Hatzitolios A.I. Insulin-sensitizing agents in the treatment of polycystic ovary syndrome: an update. Current Opinion in Obstetrics and Gynecology. 2010;22(6):466–476.
    1. Dunaif A. Drug insight: insulin-sensitizing drugs in the treatment of polycystic ovary syndrome--a reappraisal. Nature Clinical Practice Endocrinology & Metabolism. 2008;4(5):272–283.
    1. Froment P., Touraine P. Thiazolidinediones and fertility in polycystic ovary syndrome (PCOS) PPAR Research. 2006;2006:73986.
    1. Nathan N., Sullivan S.D. The utility of metformin therapy in reproductive-aged women with polycystic ovary syndrome (PCOS) Current Pharmaceutical Biotechnology. 2014;15(1):70–83.
    1. Barker D.J., Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1(8489):1077–1081.
    1. Barker D.J., Gluckman P.D., Godfrey K.M., Harding J.E., Owens J.A., Robinson J.S. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341(8850):938–941.
    1. Filippou P., Homburg R. Is foetal hyperexposure to androgens a cause of PCOS? Human Reproduction Update. 2017;23(4):421–432.
    1. Abbott D.H., Tarantal A.F., Dumesic D.A. Fetal, infant, adolescent and adult phenotypes of polycystic ovary syndrome in prenatally androgenized female rhesus monkeys. American Journal of Primatology. 2009;71(9):776–784.
    1. Abbott D.H., Barnett D.K., Bruns C.M., Dumesic D.A. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Human Reproduction Update. 2005;11(4):357–374.
    1. Demissie M., Lazic M., Foecking E.M., Aird F., Dunaif A., Levine J.E. Transient prenatal androgen exposure produces metabolic syndrome in adult female rats. American Journal of Physiology. Endocrinology and Metabolism. 2008;295(2):E262–E268.
    1. Foecking E.M., Szabo M., Schwartz N.B., Levine J.E. Neuroendocrine consequences of prenatal androgen exposure in the female rat: absence of luteinizing hormone surges, suppression of progesterone receptor gene expression, and acceleration of the gonadotropin-releasing hormone pulse generator. Biology of Reproduction. 2005;72(6):1475–1483.
    1. Cernea M., Padmanabhan V., Goodman R.L., Coolen L.M., Lehman M.N. Prenatal testosterone treatment leads to changes in the morphology of KNDy neurons, their inputs, and projections to GnRH cells in female sheep. Endocrinology. 2015;156(9):3277–3291.
    1. Abbott D.H., Zhou R., Bird I.M., Dumesic D.A., Conley A.J. Fetal programming of adrenal androgen excess: lessons from a nonhuman primate model of polycystic ovary syndrome. Endocrine Development. 2008;13:145–158.
    1. Nohara K., Waraich R.S., Liu S., Ferron M., Waget A., Meyers M.S. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice. American Journal of Physiology. Endocrinology and Metabolism. 2013;304(12):E1321–E1330.
    1. Ehrmann D.A., Barnes R.B., Rosenfield R.L. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocrine Reviews. 1995;16(3):322–353.
    1. Barnes R.B., Rosenfield R.L., Ehrmann D.A., Cara J.F., Cuttler L., Levitsky L.L. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. Journal of Clinical Endocrinology & Metabolism. 1994;79(5):1328–1333.
    1. Palomba S., Marotta R., Di Cello A., Russo T., Falbo A., Orio F. Pervasive developmental disorders in children of hyperandrogenic women with polycystic ovary syndrome: a longitudinal case-control study. Clinical Endocrinology. 2012;77(6):898–904.
    1. Sir-Petermann T., Maliqueo M., Angel B., Lara H.E., Perez-Bravo F., Recabarren S.E. Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. Human Reproduction. 2002;17(10):2573–2579.
    1. Puttabyatappa M., Cardoso R.C., Padmanabhan V. Effect of maternal PCOS and PCOS-like phenotype on the offspring's health. Molecular and Cellular Endocrinology. 2016;435:29–39.
    1. Maliqueo M., Lara H.E., Sanchez F., Echiburu B., Crisosto N., Sir-Petermann T. Placental steroidogenesis in pregnant women with polycystic ovary syndrome. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2013;166(2):151–155.
    1. Tata B., Mimouni N.E.H., Barbotin A.L., Malone S.A., Loyens A., Pigny P. Elevated prenatal anti-Mullerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nature Medicine. 2018;24(6):834–846.
    1. Cresswell J.L., Barker D.J., Osmond C., Egger P., Phillips D.I., Fraser R.B. Fetal growth, length of gestation, and polycystic ovaries in adult life. Lancet. 1997;350(9085):1131–1135.
    1. Ibanez L., de Zegher F., Potau N. Premature pubarche, ovarian hyperandrogenism, hyperinsulinism and the polycystic ovary syndrome: from a complex constellation to a simple sequence of prenatal onset. Journal of Endocrinological Investigation. 1998;21(9):558–566.
    1. Pandolfi C., Zugaro A., Lattanzio F., Necozione S., Barbonetti A., Colangeli M.S. Low birth weight and later development of insulin resistance and biochemical/clinical features of polycystic ovary syndrome. Metabolism. 2008;57(7):999–1004.
    1. Melo A.S., Vieira C.S., Barbieri M.A., Rosa E.S.A.C., Silva A.A., Cardoso V.C. High prevalence of polycystic ovary syndrome in women born small for gestational age. Human Reproduction. 2010;25(8):2124–2131.
    1. Diamanti-Kandarakis E., Kandarakis H., Legro R.S. The role of genes and environment in the etiology of PCOS. Endocrine. 2006;30(1):19–26.
    1. Huber-Buchholz M.M., Carey D.G., Norman R.J. Restoration of reproductive potential by lifestyle modification in obese polycystic ovary syndrome: role of insulin sensitivity and luteinizing hormone. Journal of Clinical Endocrinology & Metabolism. 1999;84(4):1470–1474.
    1. Kiddy D.S., Hamilton-Fairley D., Bush A., Short F., Anyaoku V., Reed M.J. Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clinical Endocrinology (Oxf) 1992;36(1):105–111.
    1. Fernandez M., Bourguignon N., Lux-Lantos V., Libertun C. Neonatal exposure to bisphenol a and reproductive and endocrine alterations resembling the polycystic ovarian syndrome in adult rats. Environmental Health Perspectives. 2010;118(9):1217–1222.
    1. Collet S.H., Picard-Hagen N., Viguie C., Lacroix M.Z., Toutain P.L., Gayrard V. Estrogenicity of bisphenol a: a concentration-effect relationship on luteinizing hormone secretion in a sensitive model of prepubertal lamb. Toxicological Sciences. 2010;117(1):54–62.
    1. Kurian J.R., Keen K.L., Kenealy B.P., Garcia J.P., Hedman C.J., Terasawa E. Acute influences of bisphenol A exposure on hypothalamic release of gonadotropin-releasing hormone and Kisspeptin in female rhesus monkeys. Endocrinology. 2015;156(7):2563–2570.
    1. Rezg R., El-Fazaa S., Gharbi N., Mornagui B. Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environment International. 2014;64:83–90.
    1. Hu Y., Wen S., Yuan D., Peng L., Zeng R., Yang Z. The association between the environmental endocrine disruptor bisphenol A and polycystic ovary syndrome: a systematic review and meta-analysis. Gynecological Endocrinology. 2018;34(5):370–377.
    1. Franks S., Webber L.J., Goh M., Valentine A., White D.M., Conway G.S. Ovarian morphology is a marker of heritable biochemical traits in sisters with polycystic ovaries. Journal of Clinical Endocrinology & Metabolism. 2008;93(9):3396–3402.
    1. Legro R.S., Driscoll D., Strauss J.F., 3rd, Fox J., Dunaif A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proceedings of the National Academy of Sciences of the U S A. 1998;95(25):14956–14960.
    1. Vink J.M., Sadrzadeh S., Lambalk C.B., Boomsma D.I. Heritability of polycystic ovary syndrome in a Dutch twin-family study. Journal of Clinical Endocrinology & Metabolism. 2006;91(6):2100–2104.
    1. Hiam D., Moreno-Asso A., Teede H.J., Laven J.S.E., Stepto N.K., Moran L.J. The genetics of polycystic ovary syndrome: an overview of candidate gene systematic reviews and genome-wide association studies. Journal of Clinical Medicine. 2019;8(10)
    1. Salehi Jahromi M., Hill J.W., Ramezani Tehrani F., Zadeh-Vakili A. Hypomethylation of specific CpG sites in the promoter region of steroidogeneic genes (GATA6 and StAR) in prenatally androgenized rats. Life Sciences. 2018;207:105–109.
    1. Zhang D., Cong J., Shen H., Wu Q., Wu X. Genome-wide identification of aberrantly methylated promoters in ovarian tissue of prenatally androgenized rats. Fertility and Sterility. 2014;102(5):1458–1467.
    1. Guo X., Puttabyatappa M., Thompson R.C., Padmanabhan V. Developmental programming: contribution of epigenetic enzymes to antral follicular defects in the sheep model of PCOS. Endocrinology. 2019;160(10):2471–2484.
    1. Xu N., Kwon S., Abbott D.H., Geller D.H., Dumesic D.A., Azziz R. Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS)-like phenotypes in prenatally androgenized rhesus monkeys. PloS One. 2011;6(11)
    1. Zhu J.Q., Zhu L., Liang X.W., Xing F.Q., Schatten H., Sun Q.Y. Demethylation of LHR in dehydroepiandrosterone-induced mouse model of polycystic ovary syndrome. Molecular Human Reproduction. 2010;16(4):260–266.
    1. Qu F., Wang F.F., Yin R., Ding G.L., El-Prince M., Gao Q. A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa cells. Journal of Molecular Medicine (Berlin) 2012;90(8):911–923.
    1. Bouchard C., Despres J.P., Mauriege P. Genetic and nongenetic determinants of regional fat distribution. Endocrine Reviews. 1993;14(1):72–93.
    1. Evans D.J., Barth J.H., Burke C.W. Body fat topography in women with androgen excess. International Journal of Obesity. 1988;12(2):157–162.
    1. Borruel S., Fernandez-Duran E., Alpanes M., Marti D., Alvarez-Blasco F., Luque-Ramirez M. Global adiposity and thickness of intraperitoneal and mesenteric adipose tissue depots are increased in women with polycystic ovary syndrome (PCOS) Journal of Clinical Endocrinology & Metabolism. 2013;98(3):1254–1263.
    1. Elbers J.M., Asscheman H., Seidell J.C., Megens J.A., Gooren L.J. Long-term testosterone administration increases visceral fat in female to male transsexuals. Journal of Clinical Endocrinology & Metabolism. 1997;82(7):2044–2047.
    1. Gambineri A., Patton L., Vaccina A., Cacciari M., Morselli-Labate A.M., Cavazza C. Treatment with flutamide, metformin, and their combination added to a hypocaloric diet in overweight-obese women with polycystic ovary syndrome: a randomized, 12-month, placebo-controlled study. Journal of Clinical Endocrinology & Metabolism. 2006;91(10):3970–3980.
    1. Kwon H., Kim D., Kim J.S. Body fat distribution and the risk of incident metabolic syndrome: a longitudinal Cohort study. Scientific Reports. 2017;7(1):10955.
    1. Nohara K., Laque A., Allard C., Munzberg H., Mauvais-Jarvis F. Central mechanisms of adiposity in adult female mice with androgen excess. Obesity (Silver Spring) 2014;22(6):1477–1484.
    1. Dimitriadis G.K., Kyrou I., Randeva H.S. Polycystic ovary syndrome as a proinflammatory state: the role of adipokines. Current Pharmaceutical Design. 2016;22(36):5535–5546.
    1. Echiburu B., Perez-Bravo F., Galgani J.E., Sandoval D., Saldias C., Crisosto N. Enlarged adipocytes in subcutaneous adipose tissue associated to hyperandrogenism and visceral adipose tissue volume in women with polycystic ovary syndrome. Steroids. 2018;130:15–21.
    1. Escobar-Morreale H.F., Luque-Ramirez M., Gonzalez F. Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and metaanalysis. Fertility and Sterility. 2011;95(3):1048–1058. e1041-1042.
    1. Carmina E., Chu M.C., Moran C., Tortoriello D., Vardhana P., Tena G. Subcutaneous and omental fat expression of adiponectin and leptin in women with polycystic ovary syndrome. Fertility and Sterility. 2008;89(3):642–648.
    1. Manneras L., Cajander S., Holmang A., Seleskovic Z., Lystig T., Lonn M. A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome. Endocrinology. 2007;148(8):3781–3791.
    1. Perello M., Castrogiovanni D., Giovambattista A., Gaillard R.C., Spinedi E. Impairment in insulin sensitivity after early androgenization in the post-pubertal female rat. Life Sciences. 2007;80(19):1792–1798.
    1. Puttabyatappa M., Lu C., Martin J.D., Chazenbalk G., Dumesic D., Padmanabhan V. Developmental programming: impact of prenatal testosterone excess on steroidal machinery and cell differentiation markers in visceral adipocytes of female sheep. Reproductive Sciences. 2018;25(7):1010–1023.
    1. Keller E., Chazenbalk G.D., Aguilera P., Madrigal V., Grogan T., Elashoff D. Impaired preadipocyte differentiation into adipocytes in subcutaneous abdominal adipose of PCOS-like female rhesus monkeys. Endocrinology. 2014;155(7):2696–2703.
    1. Dieudonne M.N., Pecquery R., Leneveu M.C., Giudicelli Y. Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: evidence for sex and site-related specificities and possible involvement of insulin-like growth factor 1 receptor and peroxisome proliferator-activated receptor gamma2. Endocrinology. 2000;141(2):649–656.
    1. Gupta V., Bhasin S., Guo W., Singh R., Miki R., Chauhan P. Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Molecular and Cellular Endocrinology. 2008;296(1–2):32–40.
    1. Blouin K., Nadeau M., Perreault M., Veilleux A., Drolet R., Marceau P. Effects of androgens on adipocyte differentiation and adipose tissue explant metabolism in men and women. Clinical Endocrinology. 2010;72(2):176–188.
    1. Bennett C.N., Ross S.E., Longo K.A., Bajnok L., Hemati N., Johnson K.W. Regulation of Wnt signaling during adipogenesis. Journal of Biological Chemistry. 2002;277(34):30998–31004.
    1. Ross S.E., Hemati N., Longo K.A., Bennett C.N., Lucas P.C., Erickson R.L. Inhibition of adipogenesis by Wnt signaling. Science. 2000;289(5481):950–953.
    1. Singh R., Artaza J.N., Taylor W.E., Braga M., Yuan X., Gonzalez-Cadavid N.F. Testosterone inhibits adipogenic differentiation in 3T3-L1 cells: nuclear translocation of androgen receptor complex with beta-catenin and T cell factor 4 may bypass canonical Wnt signaling to down-regulate adipogenic transcription factors. Endocrinology. 2006;147(1):141–154.
    1. Kliewer S.A., Lenhard J.M., Willson T.M., Patel I., Morris D.C., Lehmann J.M. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell. 1995;83(5):813–819.
    1. Forman B.M., Tontonoz P., Chen J., Brun R.P., Spiegelman B.M., Evans R.M. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell. 1995;83(5):803–812.
    1. Heinlein C.A., Ting H.J., Yeh S., Chang C. Identification of ARA70 as a ligand-enhanced coactivator for the peroxisome proliferator-activated receptor gamma. Journal of Biological Chemistry. 1999;274(23):16147–16152.
    1. Chazenbalk G., Singh P., Irge D., Shah A., Abbott D.H., Dumesic D.A. Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation. Steroids. 2013;78(9):920–926.
    1. Dicker A., Ryden M., Naslund E., Muehlen I.E., Wiren M., Lafontan M. Effect of testosterone on lipolysis in human pre-adipocytes from different fat depots. Diabetologia. 2004;47(3):420–428.
    1. Anderson L.A., McTernan P.G., Harte A.L., Barnett A.H., Kumar S. The regulation of HSL and LPL expression by DHT and flutamide in human subcutaneous adipose tissue. Diabetes, Obesity and Metabolism. 2002;4(3):209–213.
    1. Varlamov O., Chu M.P., McGee W.K., Cameron J.L., O'Rourke R.W., Meyer K.A. Ovarian cycle-specific regulation of adipose tissue lipid storage by testosterone in female nonhuman primates. Endocrinology. 2013;154(11):4126–4135.
    1. Varlamov O., Bishop C.V., Handu M., Takahashi D., Srinivasan S., White A. Combined androgen excess and Western-style diet accelerates adipose tissue dysfunction in young adult, female nonhuman primates. Human Reproduction. 2017;32(9):1892–1902.
    1. Zang H., Ryden M., Wahlen K., Dahlman-Wright K., Arner P., Linden Hirschberg A. Effects of testosterone and estrogen treatment on lipolysis signaling pathways in subcutaneous adipose tissue of postmenopausal women. Fertility and Sterility. 2007;88(1):100–106.
    1. O'Reilly M.W., Kempegowda P., Walsh M., Taylor A.E., Manolopoulos K.N., Allwood J.W. AKR1C3-Mediated adipose androgen generation drives lipotoxicity in women with polycystic ovary syndrome. Journal of Clinical Endocrinology & Metabolism. 2017;102(9):3327–3339.
    1. Nishizawa H., Shimomura I., Kishida K., Maeda N., Kuriyama H., Nagaretani H. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes. 2002;51(9):2734–2741.
    1. Manneras-Holm L., Leonhardt H., Kullberg J., Jennische E., Oden A., Holm G. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. Journal of Clinical Endocrinology & Metabolism. 2011;96(2):E304–E311.
    1. van Houten E.L., Kramer P., McLuskey A., Karels B., Themmen A.P., Visser J.A. Reproductive and metabolic phenotype of a mouse model of PCOS. Endocrinology. 2012;153(6):2861–2869.
    1. Benrick A., Chanclon B., Micallef P., Wu Y., Hadi L., Shelton J.M. Adiponectin protects against development of metabolic disturbances in a PCOS mouse model. Proceedings of the National Academy of Sciences of the U S A. 2017;114(34):E7187–E7196.
    1. Ozgen I.T., Oruclu S., Selek S., Kutlu E., Guzel G., Cesur Y. Omentin-1 level in adolescents with polycystic ovarian syndrome. Pediatrics International. 2019;61(2):147–151.
    1. Sacks H., Symonds M.E. Anatomical locations of human brown adipose tissue: functional relevance and implications in obesity and type 2 diabetes. Diabetes. 2013;62(6):1783–1790.
    1. M. U.D., Saari T., Raiko J., Kudomi N., Maurer S.F., Lahesmaa M. Postprandial oxidative metabolism of human Brown fat indicates thermogenesis. Cell Metabolism. 2018;28(2):207–216 e203.
    1. Marzetti E., D'Angelo E., Savera G., Leeuwenburgh C., Calvani R. Integrated control of brown adipose tissue. Heart Metabolism. 2016;69:9–14.
    1. Shorakae S., Jona E., de Courten B., Lambert G.W., Lambert E.A., Phillips S.E. Brown adipose tissue thermogenesis in polycystic ovary syndrome. Clinical Endocrinology (Oxf) 2019;90(3):425–432.
    1. Monjo M., Rodriguez A.M., Palou A., Roca P. Direct effects of testosterone, 17 beta-estradiol, and progesterone on adrenergic regulation in cultured brown adipocytes: potential mechanism for gender-dependent thermogenesis. Endocrinology. 2003;144(11):4923–4930.
    1. Rodriguez-Cuenca S., Monjo M., Gianotti M., Proenza A.M., Roca P. Expression of mitochondrial biogenesis-signaling factors in brown adipocytes is influenced specifically by 17beta-estradiol, testosterone, and progesterone. American Journal of Physiology. Endocrinology and Metabolism. 2007;292(1):E340–E346.
    1. Yuan X., Hu T., Zhao H., Huang Y., Ye R., Lin J. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome. Proceedings of the National Academy of Sciences of the U S A. 2016;113(10):2708–2713.
    1. Hu T., Yuan X., Ye R., Zhou H., Lin J., Zhang C. Brown adipose tissue activation by rutin ameliorates polycystic ovary syndrome in rat. The Journal of Nutritional Biochemistry. 2017;47:21–28.
    1. Liu X., Cervantes C., Liu F. Common and distinct regulation of human and mouse brown and beige adipose tissues: a promising therapeutic target for obesity. Protein Cell. 2017;8(6):446–454.
    1. van Marken Lichtenbelt W.D., Vanhommerig J.W., Smulders N.M., Drossaerts J.M., Kemerink G.J., Bouvy N.D. Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine. 2009;360(15):1500–1508.
    1. Cypess A.M., Lehman S., Williams G., Tal I., Rodman D., Goldfine A.B. Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine. 2009;360(15):1509–1517.
    1. Virtanen K.A., Lidell M.E., Orava J., Heglind M., Westergren R., Niemi T. Functional brown adipose tissue in healthy adults. New England Journal of Medicine. 2009;360(15):1518–1525.
    1. Ravussin E., Galgani J.E. The implication of brown adipose tissue for humans. Annual Review of Nutrition. 2011;31:33–47.
    1. Herz C.T., Kiefer F.W. Adipose tissue browning in mice and humans. Journal of Endocrinology. 2019;241(3):R97–R109.
    1. Rocha A.L.L., Faria L.C., Guimaraes T.C.M., Moreira G.V., Candido A.L., Couto C.A. Non-alcoholic fatty liver disease in women with polycystic ovary syndrome: systematic review and meta-analysis. Journal of Endocrinological Investigation. 2017;40(12):1279–1288.
    1. Kim J.J., Kim D., Yim J.Y., Kang J.H., Han K.H., Kim S.M. Polycystic ovary syndrome with hyperandrogenism as a risk factor for non-obese non-alcoholic fatty liver disease. Alimentary Pharmacology & Therapeutics. 2017;45(11):1403–1412.
    1. Wu J., Yao X.Y., Shi R.X., Liu S.F., Wang X.Y. A potential link between polycystic ovary syndrome and non-alcoholic fatty liver disease: an update meta-analysis. Reproductive Health. 2018;15(1):77.
    1. Cerda C., Perez-Ayuso R.M., Riquelme A., Soza A., Villaseca P., Sir-Petermann T. Nonalcoholic fatty liver disease in women with polycystic ovary syndrome. Journal of Hepatology. 2007;47(3):412–417.
    1. Gambarin-Gelwan M., Kinkhabwala S.V., Schiano T.D., Bodian C., Yeh H.C., Futterweit W. Prevalence of nonalcoholic fatty liver disease in women with polycystic ovary syndrome. Clinical Gastroenterology and Hepatology. 2007;5(4):496–501.
    1. Jones H., Sprung V.S., Pugh C.J., Daousi C., Irwin A., Aziz N. Polycystic ovary syndrome with hyperandrogenism is characterized by an increased risk of hepatic steatosis compared to nonhyperandrogenic PCOS phenotypes and healthy controls, independent of obesity and insulin resistance. Journal of Clinical Endocrinology & Metabolism. 2012;97(10):3709–3716.
    1. Chen M.J., Chiu H.M., Chen C.L., Yang W.S., Yang Y.S., Ho H.N. Hyperandrogenemia is independently associated with elevated alanine aminotransferase activity in young women with polycystic ovary syndrome. Journal of Clinical Endocrinology & Metabolism. 2010;95(7):3332–3341.
    1. Vassilatou E., Lafoyianni S., Vryonidou A., Ioannidis D., Kosma L., Katsoulis K. Increased androgen bioavailability is associated with non-alcoholic fatty liver disease in women with polycystic ovary syndrome. Human Reproduction. 2010;25(1):212–220.
    1. Cai J., Wu C.H., Zhang Y., Wang Y.Y., Xu W.D., Lin T.C. High-free androgen index is associated with increased risk of non-alcoholic fatty liver disease in women with polycystic ovary syndrome, independent of obesity and insulin resistance. International Journal of Obesity (Lond) 2017;41(9):1341–1347.
    1. Zhang Y., Meng F., Sun X., Sun X., Hu M., Cui P. Hyperandrogenism and insulin resistance contribute to hepatic steatosis and inflammation in female rat liver. OncoTarget. 2018;9(26):18180–18197.
    1. Baranova A., Tran T.P., Afendy A., Wang L., Shamsaddini A., Mehta R. Molecular signature of adipose tissue in patients with both non-alcoholic fatty liver disease (NAFLD) and polycystic ovarian syndrome (PCOS) Journal of Translational Medicine. 2013;11:133.
    1. Abruzzese G.A., Heber M.F., Ferreira S.R., Velez L.M., Reynoso R., Pignataro O.P. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism. Journal of Endocrinology. 2016;230(1):67–79.
    1. Navarro G., Allard C., Xu W., Mauvais-Jarvis F. The role of androgens in metabolism, obesity, and diabetes in males and females. Obesity (Silver Spring) 2015;23(4):713–719.
    1. Dunaif A., Xia J., Book C.B., Schenker E., Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. Journal of Clinical Investigation. 1995;96(2):801–810.
    1. Hojlund K., Glintborg D., Andersen N.R., Birk J.B., Treebak J.T., Frosig C. Impaired insulin-stimulated phosphorylation of Akt and AS160 in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment. Diabetes. 2008;57(2):357–366.
    1. Stepto N.K., Moreno-Asso A., McIlvenna L.C., Walters K.A., Rodgers R.J. Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Unraveling the conundrum in skeletal muscle? Journal of Clinical Endocrinology & Metabolism. 2019
    1. Hansen S.L., Svendsen P.F., Jeppesen J.F., Hoeg L.D., Andersen N.R., Kristensen J.M. Molecular mechanisms in skeletal muscle underlying insulin resistance in women who are lean with polycystic ovary syndrome. Journal of Clinical Endocrinology & Metabolism. 2019;104(5):1841–1854.
    1. Holmang A., Svedberg J., Jennische E., Bjorntorp P. Effects of testosterone on muscle insulin sensitivity and morphology in female rats. American Journal of Physiology. 1990;259(4 Pt 1):E555–E560.
    1. Holmang A., Niklasson M., Rippe B., Lonnroth P. Insulin insensitivity and delayed transcapillary delivery of insulin in oophorectomized rats treated with testosterone. Acta Physiologica Scandinavica. 2001;171(4):427–438.
    1. Song X., Shen Q., Fan L., Yu Q., Jia X., Sun Y. Dehydroepiandrosterone-induced activation of mTORC1 and inhibition of autophagy contribute to skeletal muscle insulin resistance in a mouse model of polycystic ovary syndrome. OncoTarget. 2018;9(15):11905–11921.
    1. Shen Q., Bi H., Yu F., Fan L., Zhu M., Jia X. Nontargeted metabolomic analysis of skeletal muscle in a dehydroepiandrosterone-induced mouse model of polycystic ovary syndrome. Molecular Reproduction and Development. 2019;86(4):370–378.
    1. Zhang B., Wang J., Shen S., Liu J., Sun J., Gu T. Association of androgen excess with glucose intolerance in women with polycystic ovary syndrome. BioMed Research International. 2018;2018:6869705.
    1. Xu W., Morford J., Mauvais-Jarvis F. Emerging role of testosterone in pancreatic beta cell function and insulin secretion. Journal of Endocrinology. 2019
    1. Rae M., Grace C., Hogg K., Wilson L.M., McHaffie S.L., Ramaswamy S. The pancreas is altered by in utero androgen exposure: implications for clinical conditions such as polycystic ovary syndrome (PCOS) PloS One. 2013;8(2)
    1. Harada N., Yotsumoto Y., Katsuki T., Yoda Y., Masuda T., Nomura M. Fetal androgen signaling defects affect beta cell mass and function, leading to glucose intolerance in high-fat diet-fed male rats. American Journal of Physiology. Endocrinology and Metabolism. 2019
    1. Navarro G., Allard C., Morford J.J., Xu W., Liu S., Molinas A.J. Androgen excess in pancreatic beta cells and neurons predisposes female mice to type 2 diabetes. JCI Insight. 2018;3(12)
    1. Wang H., Wang X., Zhu Y., Chen F., Sun Y., Han X. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function. The Journal of Steroid Biochemistry and Molecular Biology. 2015;154:254–266.
    1. Liu S., Navarro G., Mauvais-Jarvis F. Androgen excess produces systemic oxidative stress and predisposes to beta cell failure in female mice. PloS One. 2010;5(6)
    1. Navarro G., Xu W., Jacobson D.A., Wicksteed B., Allard C., Zhang G. Extranuclear actions of the androgen receptor enhance glucose-stimulated insulin secretion in the male. Cell Metabolism. 2016;23(5):837–851.
    1. Ramaswamy S., Grace C., Mattei A.A., Siemienowicz K., Brownlee W., MacCallum J. Developmental programming of polycystic ovary syndrome (PCOS): prenatal androgens establish pancreatic islet alpha/beta cell ratio and subsequent insulin secretion. Scientific Reports. 2016;6:27408.
    1. Nicol L.E., O'Brien T.D., Dumesic D.A., Grogan T., Tarantal A.F., Abbott D.H. Abnormal infant islet morphology precedes insulin resistance in PCOS-like monkeys. PloS One. 2014;9(9)
    1. Malin S.K., Kirwan J.P., Sia C.L., Gonzalez F. Glucose-stimulated oxidative stress in mononuclear cells is related to pancreatic beta cell dysfunction in polycystic ovary syndrome. Journal of Clinical Endocrinology & Metabolism. 2014;99(1):322–329.
    1. Malin S.K., Kirwan J.P., Sia C.L., Gonzalez F. Pancreatic beta cell dysfunction in polycystic ovary syndrome: role of hyperglycemia-induced nuclear factor-kappaB activation and systemic inflammation. American Journal of Physiology. Endocrinology and Metabolism. 2015;308(9):E770–E777.
    1. Sheppard K.M., Padmanabhan V., Coolen L.M., Lehman M.N. Prenatal programming by testosterone of hypothalamic metabolic control neurones in the Ewe. Journal of Neuroendocrinology. 2011;23(5):401–411.
    1. Konner A.C., Janoschek R., Plum L., Jordan S.D., Rother E., Ma X. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metabolism. 2007;5(6):438–449.
    1. Nohara K., Zhang Y., Waraich R.S., Laque A., Tiano J.P., Tong J. Early-life exposure to testosterone programs the hypothalamic melanocortin system. Endocrinology. 2011;152(4):1661–1669.
    1. Caldwell A.S.L., Edwards M.C., Desai R., Jimenez M., Gilchrist R.B., Handelsman D.J. Neuroendocrine androgen action is a key extraovarian mediator in the development of polycystic ovary syndrome. Proceedings of the National Academy of Sciences of the U S A. 2017;114(16):E3334–E3343.
    1. Lim S.S., Hutchison S.K., Van Ryswyk E., Norman R.J., Teede H.J., Moran L.J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database of Systematic Reviews. 2019;3:CD007506.
    1. Lashen H. Role of metformin in the management of polycystic ovary syndrome. Ther Adv Endocrinol Metab. 2010;1(3):117–128.
    1. Aubuchon M., Lieman H., Stein D., Cohen H.W., Isaac B., Adel G. Metformin does not improve the reproductive or metabolic profile in women with polycystic ovary syndrome (PCOS) Reproductive Sciences. 2009;16(10):938–946.
    1. Sturrock N.D., Lannon B., Fay T.N. Metformin does not enhance ovulation induction in clomiphene resistant polycystic ovary syndrome in clinical practice. British Journal of Clinical Pharmacology. 2002;53(5):469–473.
    1. Legro R.S., Barnhart H.X., Schlaff W.D., Carr B.R., Diamond M.P., Carson S.A. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. New England Journal of Medicine. 2007;356(6):551–566.
    1. Palomba S., Orio F., Jr., Falbo A., Manguso F., Russo T., Cascella T. Prospective parallel randomized, double-blind, double-dummy controlled clinical trial comparing clomiphene citrate and metformin as the first-line treatment for ovulation induction in nonobese anovulatory women with polycystic ovary syndrome. Journal of Clinical Endocrinology & Metabolism. 2005;90(7):4068–4074.
    1. Girard J. [Mechanisms of action of thiazolidinediones] Diabetes & Metabolism. 2001;27(2 Pt 2):271–278.
    1. Veiga-Lopez A., Lee J.S., Padmanabhan V. Developmental programming: insulin sensitizer treatment improves reproductive function in prenatal testosterone-treated female sheep. Endocrinology. 2010;151(8):4007–4017.
    1. Zhou R., Bruns C.M., Bird I.M., Kemnitz J.W., Goodfriend T.L., Dumesic D.A. Pioglitazone improves insulin action and normalizes menstrual cycles in a majority of prenatally androgenized female rhesus monkeys. Reproductive Toxicology. 2007;23(3):438–448.
    1. Du Q., Yang S., Wang Y.J., Wu B., Zhao Y.Y., Fan B. Effects of thiazolidinediones on polycystic ovary syndrome: a meta-analysis of randomized placebo-controlled trials. Advances in Therapy. 2012;29(9):763–774.
    1. Tuduri E., Lopez M., Dieguez C., Nadal A., Nogueiras R. Glucagon-like peptide 1 analogs and their effects on pancreatic islets. Trends in Endocrinology and Metabolism. 2016;27(5):304–318.
    1. Muller T.D. The potential of glucagon-like peptide 1 to reverse high-fat, high-sugar diet-related metabolic damage. Expert Review of Endocrinology and Metabolism. 2014;9(4):293–295.
    1. Lamos E.M., Malek R., Davis S.N. GLP-1 receptor agonists in the treatment of polycystic ovary syndrome. Expert Review of Clinical Pharmacology. 2017;10(4):401–408.
    1. Rasmussen C.B., Lindenberg S. The effect of liraglutide on weight loss in women with polycystic ovary syndrome: an observational study. Frontiers in Endocrinology (Lausanne) 2014;5:140.
    1. Jensterle M., Kravos N.A., Pfeifer M., Kocjan T., Janez A. A 12-week treatment with the long-acting glucagon-like peptide 1 receptor agonist liraglutide leads to significant weight loss in a subset of obese women with newly diagnosed polycystic ovary syndrome. Hormones (Athens) 2015;14(1):81–90.
    1. Han Y., Li Y., He B. GLP-1 receptor agonists versus metformin in PCOS: a systematic review and meta-analysis. Reproductive BioMedicine Online. 2019;39(2):332–342.
    1. Elkind-Hirsch K., Marrioneaux O., Bhushan M., Vernor D., Bhushan R. Comparison of single and combined treatment with exenatide and metformin on menstrual cyclicity in overweight women with polycystic ovary syndrome. Journal of Clinical Endocrinology & Metabolism. 2008;93(7):2670–2678.
    1. Jensterle Sever M., Kocjan T., Pfeifer M., Kravos N.A., Janez A. Short-term combined treatment with liraglutide and metformin leads to significant weight loss in obese women with polycystic ovary syndrome and previous poor response to metformin. European Journal of Endocrinology. 2014;170(3):451–459.
    1. Li Y.J., Han Y., He B. Effects of bariatric surgery on obese polycystic ovary syndrome: a systematic review and meta-analysis. Surgery for Obesity and Related Diseases. 2019;15(6):942–950.
    1. Menguer R.K., Weston A.C., Schmid H. Evaluation of metabolic syndrome in morbidly obese patients submitted to laparoscopic bariatric surgery: comparison of the results between roux-En-Y gastric bypass and sleeve gastrectomy. Obesity Surgery. 2017;27(7):1719–1723.
    1. Ressler I.B., Grayson B.E., Seeley R.J. Metabolic, behavioral, and reproductive effects of vertical sleeve gastrectomy in an obese rat model of polycystic ovary syndrome. Obesity Surgery. 2014;24(6):866–876.
    1. Brandt S.J., Gotz A., Tschop M.H., Muller T.D. Gut hormone polyagonists for the treatment of type 2 diabetes. Peptides. 2018;100:190–201.

Source: PubMed

3
Subscribe