Exploring Perinatal Asphyxia by Metabolomics

Emanuela Locci, Giovanni Bazzano, Roberto Demontis, Alberto Chighine, Vassilios Fanos, Ernesto d'Aloja, Emanuela Locci, Giovanni Bazzano, Roberto Demontis, Alberto Chighine, Vassilios Fanos, Ernesto d'Aloja

Abstract

Brain damage related to perinatal asphyxia is the second cause of neuro-disability worldwide. Its incidence was estimated in 2010 as 8.5 cases per 1000 live births worldwide, with no further recent improvement even in more industrialized countries. If so, hypoxic-ischemic encephalopathy is still an issue of global health concern. It is thought that a consistent number of cases may be avoided, and its sequelae may be preventable by a prompt and efficient physical and therapeutic treatment. The lack of early, reliable, and specific biomarkers has up to now hampered a more effective use of hypothermia, which represents the only validated therapy for this condition. The urge to unravel the biological modifications underlying perinatal asphyxia and hypoxic-ischemic encephalopathy needs new diagnostic and therapeutic tools. Metabolomics for its own features is a powerful approach that may help for the identification of specific metabolic profiles related to the pathological mechanism and foreseeable outcome. The metabolomic profiles of animal and human infants exposed to perinatal asphyxia or developing hypoxic-ischemic encephalopathy have so far been investigated by means of 1H nuclear magnetic resonance spectroscopy and mass spectrometry coupled with gas or liquid chromatography, leading to the identification of promising metabolomic signatures. In this work, an extensive review of the relevant literature was performed.

Keywords: 1H NMR; GC-MS; LC-MS; hypoxic-ischemic encephalopathy; metabolomics; perinatal asphyxia.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Sarnat H.B., Sarnat M.S. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch. Neurol. 1976;33:696–705. doi: 10.1001/archneur.1976.00500100030012.
    1. Higgins R.D., Raju T., Edwards A.D., Azzopardi V.B., Bose C.L., Clark R.H., Ferriero D.M., Guillet R., Gunn A.J., Hagberg H., et al. Hypothermia and other treatment options for neonatal encephalopathy: An executive summary of the Eunice Kennedy Shriver NICHD workshop. J. Pediatr. 2011;159:851–858. doi: 10.1016/j.jpeds.2011.08.004.
    1. Douglas-Escobar M., Weiss M.D. Hypoxic-ischemic encephalopathy: A review for the clinician. JAMA Pediatr. 2015;169:397–403. doi: 10.1001/jamapediatrics.2014.3269.
    1. Hanrahan J.D., Sargentoni J., Azzopardi D., Manji K., Cowan F.M., Rutherford M.A., Cox I.J., Bell J.D., Bryant D.J., Edwards A.D. Cerebral metabolism within 18 hours of birth asphyxia: A proton magnetic resonance spectroscopy study. Pediatr. Res. 1996;39:584–590. doi: 10.1203/00006450-199604000-00004.
    1. Johnston M.V., Ishida A., Ishida W.N., Matsushita H.B., Nishimura A., Tsuji M. Plasticity and injury in the developing brain. Brain Dev. 2009;31:1–10. doi: 10.1016/j.braindev.2008.03.014.
    1. Ferriero D.M. Neonatal brain injury. N. Engl. J. Med. 2004;351:1985–1995. doi: 10.1056/NEJMra041996.
    1. Gluckmann P.D., Wyatt J.S., Azzopardi D., Ballard R., Edwards A.D., Ferriero D.M., Polin R.A., Robertson C.M., Thoresen M., Whitelaw A., et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: Multicentre randomised trial. Lancet. 2005;365:663–670. doi: 10.1016/S0140-6736(05)17946-X.
    1. Shankaran S., Laptook A.R., Ehrenkranz R.A., Tyson J.E., McDonald S.A., Donovan E.F., Fanaroff A.A., Poole W.K., Wright L.L., Higgins R.D., et al. National Institute of Child Health and Human Development Neonatal Research Network. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 2005;353:1574–1584. doi: 10.1056/NEJMcps050929.
    1. Azzopardi D.V., Strohm B., Edwards A.D., Dyet L., Halliday H.L., Juszczak E., Kapellou O., Levene M., Marlow N., Porter E., et al. TOBY Study Group. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N. Engl. J. Med. 2009;361:1349–1358. doi: 10.1056/NEJMoa0900854.
    1. Zhou W.H., Cheng G.Q., Shao X.M., Liu X.Z., Shan R.B., Zhuang D.Y., Zhou C.L., Du L.Z., Cao Y., Yang Q., et al. China Study Group. Selective head cooling with mild systemic hypothermia after neonatal hypoxic-ischemic encephalopathy: A multicentre randomized controlled trial in China. J. Pediatr. 2010;157:367–372. doi: 10.1016/j.jpeds.2010.03.030.
    1. Simbruner G., Mittal R.A., Rohlmann F., Muche R. neo.nEURO.network Trial Participants. Systemic hypothermia after neonatal encephalopathy: Outcomes of neo.nEURO.network RCT. Pediatrics. 2010;126:e771–e778. doi: 10.1542/peds.2009-2441.
    1. Roka A., Azzopardi D. Therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy. Early Hum. Dev. 2010;86:361–367. doi: 10.1016/j.earlhumdev.2010.05.013.
    1. Zhao P., Zuo Z. Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in neonatal rats. Anesthesiology. 2004;101:695–703. doi: 10.1097/00000542-200409000-00018.
    1. McAuliffe J.J., Loepke A.W., Miles L., Joseph B., Hughes E., Vorhees C.V. Desflurane, isoflurane, and sevoflurane provide limited neuroprotection against neonatal hypoxia-ischemia in a delayed preconditioning paradigm. Anesthesiology. 2009;111:533–546. doi: 10.1097/ALN.0b013e3181b060d3.
    1. Spandou E., Papoutsopoulou S., Soubasi V., Karkavelas G., Simeonidou C., Kremenopoulos G., Guiba-Tziampiri O. Hypoxia-ischemia affects erythropoietin and erythropoietin receptor expression pattern in the neonatal rat brain. Brain Res. 2004;1021:167–172. doi: 10.1016/j.brainres.2004.06.057.
    1. Gunnarson E., Song Y., Kowalewsky J.M., Brismar H., Brines M., Cerami A., Andersson U., Zelenina M., Aperia A. Erythropoietin modulation of astrocyte water permeability as a component of neuroprotection. Proc. Natl. Acad. Sci. USA. 2009;106:1602–1607. doi: 10.1073/pnas.0812708106.
    1. Spandou E., Papadopoulou Z., Soubasi V., Karkavelas G., Simeonidou C., Pazaiti A., Guiba-Tziampiri O. Erythropoietin prevents long-term sensorimotor deficits and brain injury following neonatal hypoxia-ischemia in rats. Brain Res. 2005;1045:22–30. doi: 10.1016/j.brainres.2005.03.013.
    1. Zhu C., Kang W., Xu F., Cheng X., Zhang Z., Jia L., Ji L., Guo X., Xiong H., Simbruner G., et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics. 2009;124:e218–e226. doi: 10.1542/peds.2008-3553.
    1. Nabetani M., Shintaku H., Hamazaki T. Future perspectives of cell therapy for neonatal hypoxic-ischemic encephalopathy. Pediatr. Res. 2018;83:356–363. doi: 10.1038/pr.2017.260.
    1. Gonzalez F.F. Neuroprotection strategies for term encephalopathy. Semin. Pediatr. Neurol. 2019;32:100773. doi: 10.1016/j.spen.2019.08.009.
    1. Murray D.M. Biomarkers in neonatal hypoxic-ischemic encephalopathy—Review of the literature to date and future directions for research. In: de Vries L.S., Glass H.C., editors. Handbook of Clinical Neurology. Volume 162. Elsevier; Amsterdam, The Netherlands: 2019. pp. 281–293.
    1. Graham E.M., Everett A.D., Delpech J.-C., Northington F.J. Blood biomarkers for evaluation of perinatal encephalopathy—State of the art. Curr. Opin. Pediatr. 2018;30:199–203. doi: 10.1097/MOP.0000000000000591.
    1. Liu W., Yang Q., Wei H., Dong W., Fan Y., Hua Z. Prognostic value of clinical tests in neonates with hypoxic-ischemic encephalopathy treated with therapeutic hypothermia: A systematic review and meta-analysis. Front. Neurol. 2020;11:133. doi: 10.3389/fneur.2020.00133.
    1. Sweetman D., Kelly L.A., Zareen Z., Nolan B., Murphy J., Boylan G., Donoghue V., Molloy E.J. Coagulation profiles are associated with early clinical outcomes in neonatal encephalopathy. Front. Pediatr. 2019;7:399. doi: 10.3389/fped.2019.00399.
    1. Van Cappelen Van Walsum A.M., Jongsma H.W., Wevers R.A., Nijhuis J.G., Crevels J., Engelke U.F.H., Moolenaar S.H., Oeseburg B., Nijland R. Hypoxia in fetal lambs: A study with 1H-NMR spectroscopy of cerebrospinal fluid. Pediatr. Res. 2001;49:698–704. doi: 10.1203/00006450-200105000-00015.
    1. Liu J., Litt L., Segal M.R., Kelly M.J., Yoshihara H.A., James T.L. Outcome-related metabolomic patterns from 1H/31P NMR after mild hypothermia treatments of oxygen—Glucose deprivation in a neonatal brain slice model of asphyxia. J. Cereb. Blood Flow Metab. 2011;31:547–559. doi: 10.1038/jcbfm.2010.125.
    1. Liu J., Litt L., Pelton J.G., Segal M., Kelly M.J.S., Kim M., James T.M. 1H/13C-NMR metabolomics in a neonatal rat brain slice model of early and late mild hypothermia treatments of asphyxia. FASEB J. 2012;26:1151.
    1. Liu J., Segal M.R., Kelly M.J.S., Pelton J.G., Kim M., James T.M., Litt L. 13C NMR metabolomic evaluation of immediate and delayed mild hypothermia in cerebrocortical slices after oxygen–glucose deprivation. Anesthesiology. 2013;119:1120–1136. doi: 10.1097/ALN.0b013e31829c2d90.
    1. Liu J., Sheldon R.A., Segal M.R., Kelly M.J.S., Pelton J.G., Feriero D.M., James T.L., Litt L. 1H nuclear magnetic resonance brain metabolomics in neonatal mice after hypoxia–ischemia distinguished normothermic recovery from mild hypothermia recoveries. Pediatr. Res. 2013;74:170–179. doi: 10.1038/pr.2013.88.
    1. Solberg R., Enot D., Deigner H.P., Koal T., Scholl-Bürgi S., Saugstad O.D., Keller M. Metabolomic analyses of plasma reveals new insights into asphyxia and resuscitation in pigs. PLoS ONE. 2010;5:e9606. doi: 10.1371/journal.pone.0009606.
    1. Solberg R., Kuligowski J., Pankratov L., Escobar J., Quintás G., Lliso I., Sánchez-Illana Á., Saugstad O.D., Vento M. Changes of the plasma metabolome of newly born piglets subjected to postnatal hypoxia and resuscitation with air. Pediatr. Res. 2016;80:284–292. doi: 10.1038/pr.2016.66.
    1. Kuligowski J., Solberg R., Sánchez-Illana Á., Pankratov L., Parra-Llorca A., Quintás G., Saugstad O.D., Vento M. Plasma metabolite score correlates with hypoxia time in a newly born piglet model for asphyxia. Redox Biol. 2017;12:1–7. doi: 10.1016/j.redox.2017.02.002.
    1. Sánchez-Illana Á., Solberg R., Lliso I., Pankratov L., Quintás G., Saugstad O.D., Vento M., Kuligowski J. Assessment of phospholipid synthesis related biomarkers for perinatal asphyxia: A piglet study. Sci. Rep. 2017;7:40315. doi: 10.1038/srep40315.
    1. Solberg R., Escobar J., Arduini A., Torres-Cuevas I., Lahoz A., Sastre J., Saugstad O.D., Vento M., Kuligowski J., Quintás G. Metabolomic analysis of the effect of postnatal hypoxia on the retina in a newly born piglet model. PLoS ONE. 2013;8:e66540. doi: 10.1371/journal.pone.0066540.
    1. Arduini A., Escobar J., Vento M., Escrig R., Quintás G., Sastre J., Saugstad O.D., Solberg R. Metabolic adaptation and neuroprotection differ in the retina and choroid in a piglet model of acute postnatal hypoxia. Pediatr. Res. 2014;76:127–134. doi: 10.1038/pr.2014.70.
    1. Atzori L., Xanthos T., Barberini L., Antonucci R., Murgia F., Lussu M., Aroni F., Varsami M., Papalois A., Lai A., et al. A metabolomic approach in an experimental model of hypoxia- reoxygenation in newborn piglets: Urine predicts outcome. J. Matern. Fetal Neonatal Med. 2010;23:134–137. doi: 10.3109/14767058.2010.517033.
    1. Murgia F., Noto A., Iacovidou N., Xanthos T., Lussu M., Atzori L., Barberini L., Finco G., D’Aloja E., Fanos V. Is the quickness of resuscitation after hypoxia influenced by the oxygen concentration? Metabolomics in piglets resuscitated with different oxygen concentrations. J. Pediatr. Neonat. Individual. Med. 2013;2:e020233.
    1. Fanos V., Noto A., Xanthos T., Lussu M., Murgia F., Barberini L., Finco G., D’Aloja E., Papalois A., Iacovidou N., et al. Metabolomics network characterization of resuscitation after normocapnic hypoxia in a newborn piglet model supports the hypothesis that room air is better. BioMed Res. Int. 2014;2014:731620. doi: 10.1155/2014/731620.
    1. Skappak C., Regush S., Cheung P.-Y., Adamko D.J. Identifying hypoxia in a newborn piglet model using urinary NMR metabolomic profiling. PLoS ONE. 2013;8:e65035. doi: 10.1371/journal.pone.0065035.
    1. Sachse D., Solevåg A.L., Berg J.P., Nakstad B. The role of plasma and urine metabolomics in identifying new biomarkers in severe newborn asphyxia: A study of asphyxiated newborn pigs following cardiopulmonary resuscitation. PLoS ONE. 2016;11:e0161123. doi: 10.1371/journal.pone.0161123.
    1. Beckstrom A.C., Humston E.M., Snyder L.R., Synovec R.E., Juul S.E. Application of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method to identify potential biomarkers of perinatal asphyxia in a non-human primate model. J. Chromatogr. A. 2011;1218:1899–1906. doi: 10.1016/j.chroma.2011.01.086.
    1. Chun P.T., McPherson R.J., Marney L.C., Zangeneh S.Z., Parsons B.A., Shojaie A., Synovec R.E., Juul S.E. Serial plasma metabolites following hypoxic-ischemic encephalopathy in a nonhuman primate model. Dev. Neurosci. 2015;37:161–171. doi: 10.1159/000370147.
    1. McAdams R.M., McPherson R.J., Kapur R.P., Juul S.E. Focal brain injury associated with a model of severe hypoxic-ischemic encephalopathy in nonhuman primates. Dev. Neurosci. 2017;39:107–123. doi: 10.1159/000456658.
    1. Chu C.Y., Xiao X., Zhou X.G., Lau T.K., Rogers M.S., Fok T.F., Law L.K., Pang C.P., Wang C.C. Metabolomic and bioinformatic analyses in asphyxiated neonates. Clin. Biochem. 2006;39:203–209. doi: 10.1016/j.clinbiochem.2006.01.006.
    1. Longini M., Giglio S., Perrone S., Vivi A., Tassini M., Fanos V., Sarafidis K., Buonocore G. Proton nuclear magnetic resonance spectroscopy of urine samples in preterm asphyctic newborn: A metabolomic approach. Clin. Chim. Acta. 2015;444:250–256. doi: 10.1016/j.cca.2015.02.004.
    1. Noto A., Pomero G., Mussap M., Barberini L., Fattuoni C., Palmas F., Dalmazzo C., Delogu A., Dessì A., Fanos V., et al. Urinary gas chromatography mass spectrometry metabolomics in asphyxiated newborns undergoing hypothermia: From the birth to the first month of life. Ann. Transl. Med. 2016;4:417. doi: 10.21037/atm.2016.11.27.
    1. Locci E., Noto A., Puddu M., Pomero G., Demontis R., Dalmazzo C., Delogu A., Fanos V., d’Aloja E., Gancia P. A longitudinal 1H-NMR metabolomics analysis of urine from newborns with hypoxic-ischemic encephalopathy undergoing hypothermia therapy. Clinical and medical legal insights. PLoS ONE. 2018;13:e0194267. doi: 10.1371/journal.pone.0194267.
    1. Walsh B.H., Broadhurst D.I., Mandal R., Wishart D.S., Boylan G.B., Kenny L.C., Murray D.M. The metabolomic profile of umbilical cord blood in neonatal hypoxic ischaemic encephalopathy. PLoS ONE. 2012;7:e50520. doi: 10.1371/journal.pone.0050520.
    1. Reinke S.N., Walsh B.H., Boylan G.B., Sykes B.D., Kenny L.C., Murray D.M., Broadhurst D.I. 1H NMR derived metabolomic profile of neonatal asphyxia in umbilical cord serum: Implications for hypoxic ischemic encephalopathy. J. Prot. Res. 2013;12:4230–4239. doi: 10.1021/pr400617m.
    1. Ahearne C.E., Denihan N.M., Walsh B.H., Reinke S.N., Kenny L.C., Boylan G.B., Broadhurst D.I., Murray D.M. Early cord metabolite index and outcome in perinatal asphyxia and hypoxic-ischaemic encephalopathy. Neonatology. 2016;110:296–302. doi: 10.1159/000446556.
    1. Sànchez-Illana Á., Nuñez-Ramiro A., Cernada M., Parra-Llorca A., Valverde E., Blanco D., Moral-Pumarega M.T., Cabañas F., Boix H., Pavon A., et al. Evolution of energy related metabolites in plasma from newborns with hypoxic-ischemic encephalopathy during hypothermia treatment. Sci. Rep. 2017;7:17039. doi: 10.1038/s41598-017-17202-7.
    1. El-Farghali O.G., El-Chimi M.S., El-Abd H.S., El-Desouky E. Amino acid and acylcarnitine profiles in perinatal asphyxia: A case-control study. J. Matern. Fetal Neonatal Med. 2018;31:1462–1469. doi: 10.1080/14767058.2017.1319354.
    1. Ferriero D.M., Bonifacio S.L. The search continues for the elusive biomarkers of neonatal brain injury. J. Pediatr. 2014;164:438–440. doi: 10.1016/j.jpeds.2013.11.042.
    1. Giannakis S., Ruhfus M., Rüdiger M., Sabir H., German Neonatal Hypothermia Network Hospital survey showed wide variations in therapeutic hypothermia for neonantes in Germany. Acta Paediatr. 2020;109:200–201. doi: 10.1111/apa.14979.
    1. Chouchani E.T., Pell V.R., Gaude E., Aksentijević D., Sundier S.Y., Robb E.L., Logan A., Nadtochiy S.M., Ord E.N.J., Smith A.C. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515:431–435. doi: 10.1038/nature13909.
    1. Varvarousis D., Xanthos T., Ferino G., Noto A., Iacovidou N., Mura M., Scano P., Chalkias A., Papalois A., De-Giorgio F., et al. Metabolomics profiling reveals different patterns in an animal model of asphyxial and dysrhythmic cardiac arrest. Sci. Rep. 2017;7:16575. doi: 10.1038/s41598-017-16857-6.
    1. Zhang J., Wang Y.T., Miller J.H., Day M.M., Munger J.C., Brookes P.S. Accumulation of succinate in cardiac ischemia primarily occurs via canonical Krebs cycle activity. Cell Rep. 2018;23:2617–2628. doi: 10.1016/j.celrep.2018.04.104.

Source: PubMed

3
Subscribe