Photobiomodulation Therapy at 808 nm Does Not Improve Biceps Brachii Performance to Exhaustion and Delayed-Onset Muscle Soreness in Young Adult Women: A Randomized, Controlled, Crossover Trial

Ricardo Henrique Esquivel Azuma, Jeanne Karlette Merlo, Jeferson Lucas Jacinto, Jayne Maria Borim, Rubens Alexandre da Silva, Francis Lopes Pacagnelli, Joao Pedro Nunes, Alex Silva Ribeiro, Andreo Fernando Aguiar, Ricardo Henrique Esquivel Azuma, Jeanne Karlette Merlo, Jeferson Lucas Jacinto, Jayne Maria Borim, Rubens Alexandre da Silva, Francis Lopes Pacagnelli, Joao Pedro Nunes, Alex Silva Ribeiro, Andreo Fernando Aguiar

Abstract

Objective: This study aims to investigate the effects of laser photobiomodulation (PBM) at 808 nm on biceps brachii performance to exhaustion, rating of perceived exertion (RPE), and delayed onset muscle soreness (DOMS) in untrained young women.

Methods: Thirteen young women (20.1 ± 2.9 years) participated in a crossover study in which they received, in a counterbalanced manner, active and placebo laser PBM on two occasions (T1 and T2), separated by a 7-day washout period. During T1 and T2, participants received active (100 mW output power, irradiance of 35.7 W cm-2, and total energy of 28 J/arm) or placebo laser irradiation on the biceps brachii muscle at 20 min before the repetitions-to-failure test [six sets at 60% of one-repetition maximum (1RM) until failure] for elbow flexion exercise. The number of repetitions performed and RPE over the six sets, as well as DOMS from basal up to 72 h after the repetitions-to-failure test, were recorded.

Results: There was a significant (time, p < 0.05) reduction in the number of repetitions performed and an increase in RPE over six sets, with no statistical differences between placebo and active laser conditions (treatment × time, p > 0.05). DOMS increased at 24 h postexercise and progressively returned to baseline after 72 h in both conditions (time, p < 0.05; treatment × time, p > 0.05).

Conclusion: Our results indicate that acute laser PBM at 808 nm does not improve biceps brachii performance to exhaustion, RPE, and DOMS in untrained women.

Keywords: exercise; fatigue; low-level light therapy; pain; physical functional performance; resistance training.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Azuma, Merlo, Jacinto, Borim, da Silva, Pacagnelli, Nunes, Ribeiro and Aguiar.

Figures

FIGURE 1
FIGURE 1
Experimental design.
FIGURE 2
FIGURE 2
Treatment points (black circles) over biceps brachii muscle.
FIGURE 3
FIGURE 3
Number of repetitions to failure over six sets (S1–S6) (A) and corresponding total repetitions (sum of all sets) (B) during elbow flexion exercise in the active and placebo laser conditions (N = 13). Data are means ± SD. There were no significant (p > 0.05) differences over time between conditions. Different letters indicate significant (p < 0.05) difference between time points for both groups.
FIGURE 4
FIGURE 4
Rating of perceived exertion (RPE) immediately before the next set began (after the 60-s rest) (A) and corresponding total RPE (sum of all sets, S1–S6) (B) of the repetitions-to-failure test in the active and placebo laser conditions (N = 13). Data are means ± SD. There were no significant (p > 0.05) differences over time between conditions. Different letters indicate significant (p < 0.05) difference between time points for both groups.
FIGURE 5
FIGURE 5
Delayed onset muscle soreness (DOMS) during the recovery days (basal to 72 h postexercise) (A) and corresponding total DOMS (sum of all times) (B) in the active and placebo laser conditions (N = 13). Data are means ± SD. There were no significant (p > 0.05) differences over time between conditions. Different letters indicate significant (p < 0.05) difference between time points for both groups.

References

    1. ACSM (2009). American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 41 687–708. 10.1249/mss.0b013e3181915670
    1. Avin K. G., Naughton M. R., Ford B. W., Moore H. E., Monitto-Webber M. N., Stark A. M., et al. (2010). Sex differences in fatigue resistance are muscle group dependent. Med. Sci. Sports Exerc. 42 1943–1950. 10.1249/mss.0b013e3181d8f8fa
    1. Baroni B. M., Leal Junior E. C., De Marchi T., Lopes A. L., Salvador M., Vaz M. A. (2010a). Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur. J. Appl. Physiol. 110 789–796. 10.1007/s00421-010-1562-z
    1. Baroni B. M., Leal Junior E. C., Geremia J. M., Diefenthaeler F., Vaz M. A. (2010b). Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed. Laser Surg. 28 653–658. 10.1089/pho.2009.2688
    1. Bijur P. E., Silver W., Gallagher E. J. (2001). Reliability of the visual analog scale for measurement of acute pain. Acad. Emerg. Med. 8 1153–1157. 10.1111/j.1553-2712.2001.tb01132.x
    1. Cieśliński M., Ewa J., Sacewicz T., Cieśliński I., Płaszewski M. (2018). Low-level laser therapy and the recovery of muscle function after a single session of neuromuscular electrical stimulation: a crossover trial. Polish J. Sport Tour. 25 3–9. 10.2478/pjst-2018-0001
    1. Cohen J. (1992). A power primer. Psychol. Bull. 112 155–159.
    1. Craig J. A., Barlas P., Baxter G. D., Walsh D. M., Allen J. M. (1996). Delayed-onset muscle soreness: lack of effect of combined phototherapy/low-intensity laser therapy at low pulse repetition rates. J. Clin. Laser Med. Surg. 14 375–380. 10.1089/clm.1996.14.375
    1. Craig J. A., Barron J., Walsh D. M., Baxter G. D. (1999). Lack of effect of combined low intensity laser therapy/phototherapy (CLILT) on delayed onset muscle soreness in humans. Lasers Surg. Med. 24 223–230. 10.1002/(sici)1096-9101(1999)24:3<223::aid-lsm7>;2-y
    1. Dannecker E. A., Koltyn K. F., Riley J. L., III, Robinson M. E. (2003). Sex differences in delayed onset muscle soreness. J. Sports Med. Phys. Fitness 43 78–84.
    1. de Almeida P., Lopes-Martins R. A., De Marchi T., Tomazoni S. S., Albertini R., Correa J. C., et al. (2012). Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers Med. Sci. 27 453–458. 10.1007/s10103-011-0957-3
    1. de Freitas L. F., Hamblin M. R. (2016). Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron. 22:7000417.
    1. Dutra Y. M., Claus G. M., Malta E. S., Brisola G. M. P., Esco M. R., Ferraresi C., et al. (2020). Acute photobiomodulation by LED does not alter muscle fatigue and cycling performance. Med. Sci. Sports Exerc. 52 2448–2458. 10.1249/mss.0000000000002394
    1. Felismino A. S., Costa E. C., Aoki M. S., Ferraresi C., De Araujo Moura Lemos T. M., De Brito Vieira W. H. (2014). Effect of low-level laser therapy (808 nm) on markers of muscle damage: a randomized double-blind placebo-controlled trial. Lasers Med. Sci. 29 933–938.
    1. Ferguson B. (2014). American college of sports medicine. ACSM’s guidelines for exercise testing and prescription 9th Ed.2014. J. Can. Chiropr. Assoc. 58:328.
    1. Ferraresi C., Huang Y. Y., Hamblin M. R. (2016). Photobiomodulation in human muscle tissue: an advantage in sports performance? J. Biophotonics 9 1273–1299. 10.1002/jbio.201600176
    1. Flores D. F., Gentil P., Brown L. E., Pinto R. S., Carregaro R. L., Bottaro M. (2011). Dissociated time course of recovery between genders after resistance exercise. J. Strength Cond. Res. 25 3039–3044. 10.1519/jsc.0b013e318212dea4
    1. Ghigiarelli J. J., Fulop A. M., Burke A. A., Ferrara A. J., Sell K. M., Gonzalez A. M., et al. (2020). The effects of whole-body photobiomodulation light-bed therapy on creatine kinase and salivary interleukin-6 in a sample of trained males: a randomized, crossover study. Front. Sports Act. Living 2:48. 10.3389/fspor.2020.00048
    1. Goston J. L., Correia M. I. (2010). Intake of nutritional supplements among people exercising in gyms and influencing factors. Nutrition 26 604–611. 10.1016/j.nut.2009.06.021
    1. Hamblin M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 4 337–361. 10.3934/biophy.2017.3.337
    1. Hicks A. L., Kent-Braun J., Ditor D. S. (2001). Sex differences in human skeletal muscle fatigue. Exerc. Sport Sci. Rev. 29 109–112. 10.1097/00003677-200107000-00004
    1. Higashi R. H., Toma R. L., Tucci H. T., Pedroni C. R., Ferreira P. D., Baldini G., et al. (2013). Effects of low-level laser therapy on biceps braquialis muscle fatigue in young women. Photomed. Laser Surg. 31 586–594. 10.1089/pho.2012.3388
    1. Hoeger W. W. K., Barette S. L., Hale D. F., Hopkins D. R. (1987). Relationship between repetitions and selected percentages of one repetitium maximum. J. Appl. Sport Sci. Res. 1 11–13. 10.1519/00124278-198702000-00002
    1. Hoeger W. W. K., Hopkins D. R., Barette S. L., Hale D. F. (1990). Relationship between repetitions and selected percentages of one repetition maximum: a comparison between untrained and trained males and females. J. Appl. Sport Sci. Res. 4 47–54. 10.1519/1533-4287(1990)004<0047:rbrasp>;2
    1. Julian R., Hecksteden A., Fullagar H. H., Meyer T. (2017). The effects of menstrual cycle phase on physical performance in female soccer players. PLoS One 12:e0173951. 10.1371/journal.pone.0173951
    1. Kakihata C. M. M., Malanotte J. A., Higa J. Y., Errero T. K., Balbo S. L., Bertolini G. R. F. (2015). Influência do laser de baixa potência no salto vertical em indivíduos sedentários. Einstein (São Paulo) 13 41–46.
    1. Kerksick C. M., Wilborn C. D., Roberts M. D., Smith-Ryan A., Kleiner S. M., Jager R., et al. (2018). ISSN exercise & sports nutrition review update: research & recommendations. J. Int. Soc. Sports Nutr. 15:38.
    1. Kobordo T. A. (2015). The Effect of Low-Level Laser Therapy on Delayed Onset Muscle Soreness When Delivered Pre- and Posteccentric Exercise. Ph. D. thesis. Kent: Kent State University.
    1. Lau W. Y., Blazevich A. J., Newton M. J., Wu S. S., Nosaka K. (2015). Assessment of muscle pain induced by elbow-flexor eccentric exercise. J. Athl. Train. 50 1140–1148. 10.4085/1062-6050-50.11.05
    1. Leal Junior E. C., Lopes-Martins R. A., Dalan F., Ferrari M., Sbabo F. M., Generosi R. A., et al. (2008). Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed. Laser Surg. 26 419–424. 10.1089/pho.2007.2160
    1. Leal Junior E. C., Lopes-Martins R. A., Frigo L., De Marchi T., Rossi R. P., De Godoi V., et al. (2010). Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J. Orthop. Sports Phys. Ther. 40 524–532. 10.2519/jospt.2010.3294
    1. Leal Junior E. C., Lopes-Martins R. A., Vanin A. A., Baroni B. M., Grosselli D., De Marchi T., et al. (2009). Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med. Sci. 24 425–431. 10.1007/s10103-008-0592-9
    1. Malta E. S., De Lira F. S., Machado F. A., Zago A. S., Do Amaral S. L., Zagatto A. M. (2018). Photobiomodulation by led does not alter muscle recovery indicators and presents similar outcomes to cold-water immersion and active recovery. Front. Physiol. 9:1948. 10.3389/fphys.2018.01948
    1. Nampo F. K., Cavalheri V., Ramos Sde P., Camargo E. A. (2016). Effect of low-level phototherapy on delayed onset muscle soreness: a systematic review and meta-analysis. Lasers Med. Sci. 31 165–177. 10.1007/s10103-015-1832-4
    1. Orssatto L. B. R., Rossato M., Vargas M., Diefenthaeler F., De La Rocha Freitas C. (2020). Photobiomodulation therapy effects on resistance training volume and discomfort in well-trained adults: a randomized, double-blind, placebo-controlled trial. Photobiomodul. Photomed. Laser Surg. 38 720–726. 10.1089/photob.2019.4777
    1. Peserico C. S., Zagatto A. M., Machado F. A. (2019). Effects of endurance running training associated with photobiomodulation on 5-Km performance and muscle soreness: a randomized placebo-controlled trial. Front. Physiol. 10:211.
    1. Rinard J., Clarkson P. M., Smith L. L., Grossman M. (2000). Response of males and females to high-force eccentric exercise. J. Sports Sci. 18 229–236. 10.1080/026404100364965
    1. Robertson R. J., Goss F. L., Rutkowski J., Lenz B., Dixon C., Timmer J., et al. (2003). Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med. Sci. Sports Exerc. 35 333–341. 10.1249/01.mss.0000048831.15016.2a
    1. Salvador E. P., Edilson Serpeloni C., Gurjão A. L. D., Ritti-Dias R. M., Nakamura F. Y., De Oliveira A. R. (2005). A comparison of motor performance between men and women in multiple sets of weight exercises. Rev. Bras. Med. Esporte 11 242–245.
    1. Senekal M., Meltzer S., Horne A., Abrey N. C. G., Papenfus L., Van Der Merwe S., et al. (2019). Dietary supplement use in younger and older men exercising at gyms in Cape Town. South Afr. J. Clin. Nutr. 19 1–8. 10.1080/16070658.2019.1628609
    1. Shimano T., Kraemer W. J., Spiering B. A., Volek J. S., Hatfield D. L., Silvestre R., et al. (2006). Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men. J. Strength Cond. Res. 20 819–823. 10.1519/r-18195.1
    1. Silver M. D. (2001). Use of ergogenic aids by athletes. J. Am. Acad. Orthop. Surg. 9 61–70. 10.5435/00124635-200101000-00007
    1. Toma R. L., Oliveira M. X., Renno A. C. M., Laakso E. L. (2018). Photobiomodulation (PBM) therapy at 904 nm mitigates effects of exercise-induced skeletal muscle fatigue in young women. Lasers Med. Sci. 33 1197–1205. 10.1007/s10103-018-2454-4
    1. Vanin A. A., Verhagen E., Barboza S. D., Costa L. O. P., Leal-Junior E. C. P. (2018). Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: a systematic review and meta-analysis. Lasers Med. Sci. 33 181–214. 10.1007/s10103-017-2368-6
    1. Williams M. H. (1992). Ergogenic and ergolytic substances. Med. Sci. Sports Exerc. 24 S344–S348.
    1. Zagatto A. M., De Paula Ramos S., Nakamura F. Y., De Lira F. S., Lopes-Martins R., De Paiva Carvalho R. L. (2016). Effects of low-level laser therapy on performance, inflammatory markers, and muscle damage in young water polo athletes: a double-blind, randomized, placebo-controlled study. Lasers Med. Sci. 31 511–521. 10.1007/s10103-016-1875-1
    1. Zagatto A. M., Dutra Y. M., Lira F. S., Antunes B. M., Faustini J. B., Malta E. S., et al. (2020). Full body photobiomodulation therapy to induce faster muscle recovery in water polo athletes: preliminary results. Photobiomodul. Photomed. Laser Surg. 38 766–772. 10.1089/photob.2020.4803

Source: PubMed

3
Subscribe