Methods Used to Assess the 3D Accuracy of Dental Implant Positions in Computer-Guided Implant Placement: A Review

Se-Wook Pyo, Young-Jun Lim, Ki-Tae Koo, Jungwon Lee, Se-Wook Pyo, Young-Jun Lim, Ki-Tae Koo, Jungwon Lee

Abstract

The purpose of this review is to examine various assessment methods in order to compare the accuracy between the virtually planned and clinically achieved implant positions. In this review, comparison methods using pre- and post-operative computed topography (CT) data and digital impressions for definitive prosthesis will be described. The method for the displacement and strain for quantification of the error will also be explored. The difference between the planned and the actual implant placement position in guided implant surgery is expressed as an error. Assessing the accuracy of implant-guided surgery can play an important role as positive feedback in order to reduce errors. All of the assessment methods have their own inevitable errors and require careful interpretation in evaluation.

Keywords: accuracy; computer-guided surgery; dental implants; displacement measurement; implant position.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
A portion of implant on the post-operative computed topography (CT) is separated. 3D modeling analysis confirms the actual position by directly reproducing the shape of the implant.
Figure 2
Figure 2
A library image of implant fixture is loaded on the post-operative CT. By this image replacing analysis, the implant placed position is determined.
Figure 3
Figure 3
If the insertion torque is stable after implant surgery, the implant placed position can be determined using a surgical template immediately. The surgical template should be able to hold the impression coping connected to the placed implant.
Figure 4
Figure 4
A custom abutment prefabricated to the planned position of the implant can be used as the scan body. By connecting this scan body to the implant and performing an intraoral scan, the actually placed position of the implant can be indirectly confirmed.
Figure 5
Figure 5
Displacement measurement by direct method. The planned position and the placed position are superimposed.
Figure 6
Figure 6
Displacement measurement by indirect method. The planned position (purple) and the placed position (red) are superimposed.
Figure 7
Figure 7
These parameters used to displacement measuring in general. “Lp” and “La” can each be reported by one distance, or by two individual vectors (with a horizontal and a vertical distance).
Figure 8
Figure 8
The process flow of the implant treatment and the principles of direct and indirect methods.

References

    1. Motta M., Monsano R., Velloso G.R., de Oliveira Silva J.C., Luvizuto E.R., Margonar R., Queiroz T.P. Guided Surgery in Esthetic Region. J. Craniofac. Surg. 2016;27:e262-5. doi: 10.1097/SCS.0000000000002493.
    1. Margonar R., Queiroz T.P., Luvizuto E.R., Betoni-Júnior W., Zocal E.A. Mandibular rehabilitation using immediate implant loading after computer-guided surgery. J. Craniofac. Surg. 2012;23:e129-32. doi: 10.1097/SCS.0b013e31824cdb74.
    1. De Almeida E.O., Pellizzer E.P., Goiatto M.C., Margonar R., Rocha E.P., Freitas A.C., Jr., Anchieta R.B. Computer-guided surgery in implantology: Review of basic concepts. J. Craniofac. Surg. 2010;21:1917–1921. doi: 10.1097/SCS.0b013e3181f4b1a0.
    1. Higginbottom F.L., Wilson T.G., Jr. Three-dimensional templates for placement of root-form dental implants: A technical note. Int. J. Oral Maxillofac. Implants. 1996;11:787–793.
    1. Tsuchida F., Hosoi T., Imanaka M., Kobayashi K. A technique for making a diagnostic and surgical template. J. Prosthet. Dent. 2004;91:395–397. doi: 10.1016/j.prosdent.2003.12.012.
    1. Jung R.E., Schneider D., Ganeles J., Wismeijer D., Zwahlen M., Hämmerle C.H., Tahmaseb A. Computer technology applications in surgical implant dentistry: A systematic review. Int. J. Oral Maxillofac. Implants. 2009;24:92–109.
    1. Vercruyssen M., Fortin T., Widmann G., Jacobs R., Quirynen M. Different techniques of static/dynamic guided implant surgery: Modalities and indications. Periodontology. 2014;66:214–227. doi: 10.1111/prd.12056.
    1. Behneke A., Burwinkel M., Behneke N. Factors influencing transfer accuracy of cone beam CT-derived template-based implant placement. Clin. Oral Implants Res. 2012;23:416–423. doi: 10.1111/j.1600-0501.2011.02337.x.
    1. Pettersson A., Kero T., Söderberg R., Näsström K. Accuracy of virtually planned and CAD/CAM-guided implant surgery on plastic models. J. Prosthet. Dent. 2014;112:1472–1478. doi: 10.1016/j.prosdent.2014.01.029.
    1. Yatzkair G., Cheng A., Brodie S., Raviv E., Boyan B.D., Schwartz Z. Accuracy of computer-guided implantation in a human cadaver model. Clin. Oral Implants Res. 2015;26:1143–1149. doi: 10.1111/clr.12482.
    1. Platzer S., Bertha G., Heschl A., Wegscheider W.A., Lorenzoni M. Three-dimensional accuracy of guided implant placement: Indirect assessment of clinical outcomes. Clin. Implant Dent. Relat. Res. 2013;15:724–734. doi: 10.1111/j.1708-8208.2011.00406.x.
    1. Cristache C.M., Gurbanescu S. Accuracy Evaluation of a Stereolithographic Surgical Template for Dental Implant Insertion Using 3D Superimposition Protocol. Int. J. Dent. 2017;2017:4292081. doi: 10.1155/2017/4292081.
    1. Sun Y., Luebbers H.T., Agbaje J.O., Schepers S., Politis C., Van Slycke S., Vrielinck L. Accuracy of Dental Implant Placement Using CBCT-Derived Mucosa-Supported Stereolithographic Template. Clin. Implant Dent. Relat. Res. 2015;17:862–870. doi: 10.1111/cid.12189.
    1. Vieira D.M., Sotto-Maior B.S., Barros C.A., Reis E.S., Francischone C.E. Clinical accuracy of flapless computer-guided surgery for implant placement in edentulous arches. Int. J. Oral Maxillofac. Implants. 2013;28:1347–1351. doi: 10.11607/jomi.3156.
    1. Tahmaseb A., van de Weijden J.J., Mercelis P., De Clerck R., Wismeijer D. Parameters of passive fit using a new technique to mill implant-supported superstructures: An in vitro study of a novel three-dimensional force measurement-misfit method. Int. J. Oral Maxillofac. Implants. 2010;25:247–257.
    1. Tahmaseb A., De Clerck R., Eckert S., Wismeijer D. Reference-based digital concept to restore partially edentulous patients following an immediate loading protocol: A pilot study. Int. J. Oral Maxillofac. Implants. 2011;26:707–717.
    1. Ruth V., Kolditz D., Steiding C., Kalender W.A. Metal Artifact Reduction in X-ray Computed Tomography Using Computer-Aided Design Data of Implants as Prior Information. Invest. Radiol. 2017;52:349–359. doi: 10.1097/RLI.0000000000000345.
    1. Maes F., Collignon A., Vandermeulen D., Marchal G., Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging. 1997;16:187–198. doi: 10.1109/42.563664.
    1. Park J.H. Ph.D. Thesis. Seoul National University; Seoul, Korea: 2018. Accuracy of Implant Placement with a Stereolithographic Surgical Template on Mandibular Molar Sites Measured by Two Methods; Pre- and Postoperative CT Method and Postoperative Digital Impression Method.
    1. Tahmaseb A., Wismeijer D., Coucke W., Derksen W. Computer technology applications in surgical implant dentistry: A systematic review. Int. J. Oral Maxillofac. Implants. 2014;29:25–42. doi: 10.11607/jomi.2014suppl.g1.2.

Source: PubMed

3
Subscribe