The neurologic pain signature responds to nonsteroidal anti-inflammatory treatment vs placebo in knee osteoarthritis

Marina López-Solà, Jesus Pujol, Jordi Monfort, Joan Deus, Laura Blanco-Hinojo, Ben J Harrison, Tor D Wager, Marina López-Solà, Jesus Pujol, Jordi Monfort, Joan Deus, Laura Blanco-Hinojo, Ben J Harrison, Tor D Wager

Abstract

Introduction: Many drug trials for chronic pain fail because of high placebo response rates in primary endpoints. Neurophysiological measures can help identify pain-linked pathophysiology and treatment mechanisms. They can also help guide early stop/go decisions, particularly if they respond to verum treatment but not placebo. The neurologic pain signature (NPS), an fMRI-based measure that tracks evoked pain in 40 published samples and is insensitive to placebo in healthy adults, provides a potentially useful neurophysiological measure linked to nociceptive pain.

Objectives: This study aims to validate the NPS in knee osteoarthritis (OA) patients and test the effects of naproxen on this signature.

Methods: In 2 studies (50 patients, 64.6 years, 75% females), we (1) test the NPS and other control signatures related to negative emotion in knee OA pain patients; (2) test the effect of placebo treatments; and (3) test the effect of naproxen, a routinely prescribed nonsteroidal anti-inflammatory drug in OA.

Results: The NPS was activated during knee pain in OA (d = 1.51, P < 0.001) and did not respond to placebo (d = 0.12, P = 0.23). A single dose of naproxen reduced NPS responses (vs placebo, NPS d = 0.34, P = 0.03 and pronociceptive NPS component d = 0.38, P = 0.02). Naproxen effects were specific for the NPS and did not appear in other control signatures.

Conclusion: This study provides preliminary evidence that fMRI-based measures, validated for nociceptive pain, respond to acute OA pain, do not appear sensitive to placebo, and are mild-to-moderately sensitive to naproxen.

Keywords: Chronic pain; NSAID; Neurologic pain signature; Osteoarthritis; Placebo; fMRI.

Conflict of interest statement

The authors have no conflicts of interest to declare.Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article.

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The International Association for the Study of Pain.

Figures

Figure 1.
Figure 1.
Study designs and summary of methodological approach. (A) Study designs for study 1 and study 2. The 23 patients in study 1 experienced 3 different visits in separate days: One with no treatment, one after a placebo pill, and a third after a naproxen pill (see Methods and supplementary materials for full description, http://links.lww.com/PR9/A148). The 27 patients in study 2 underwent a first visit (basal, no treatment) and a second visit (final, placebo) after receiving placebo treatment (pills) for 120 days. One contrast image representing [pain activation period (1) > rest (−1)] was obtained for each patient and each condition. (B) Summary of the methodology. Each individual contrast image was multiplied by each of the preselected, validated pain-related (NPSp, NPS, and SIIPS1) and control (emotion related, PINES and Distress) signatures (multivariate brain weighted maps that had been previously identified to maximally predict different aspects of pain or emotion in previous studies, see referenced articles). This yields one pattern response score per person per condition. NPSp, pronociceptive neurologic pain signature; NPS, neurologic pain signature; SIIPPS1, Stimulus Intensity–Independent Pain Signature 1.
Figure 2.
Figure 2.
Pain-related multivariate signatures (previously published and validated) and signature response (dot-product pattern expression) for each signature, for each study and condition. The top row shows a graphic representation of the signature brain weighted maps for reference (and the original publications): the NPSp, the NPS, and the SIIPS1. Individual dots represent signature responses (dot-product pattern expression) for each OA patient in each study (2 separate cohorts, 23 patients in study 1 and 27 patients in study 2). Bars around the mean represent within-person SE bars (Loftus and Masson, 1994). ***P < 0.001, **P < 0.01, *P < 0.05. NPSp, pronociceptive neurologic pain signature; NPS, neurologic pain signature; SIIPPS, Stimulus Intensity–Independent Pain Signature 1.
Figure 3.
Figure 3.
Pain-related multivariate signatures (previously published and validated) and signature response (dot-product pattern expression) for each signature, for each study and condition. The top row shows a graphic representation of the signature brain weighted maps for reference (and the original publications): the PINES (Picture-Induced Negative Emotion Signature) and Distress Signature. Individual dots represent signature responses (dot-product pattern expression) for each OA patient in each study (2 separate cohorts, 23 patients in study 1 and 27 patients in study 2). Bars around the mean represent within-person SE bars (Loftus and Masson, 1994). *P < 0.05. OA, osteoarthritis.

References

    1. Ablin JN, Buskila D, Clauw DJ. Biomarkers in fibromyalgia. Curr Pain Headache Rep 2009;13:343–9.
    1. Apkarian AV, Baliki MN, Farmer MA. Predicting transition to chronic pain. Curr Opin Neurol 2013;26:360–7.
    1. Apkarian AV, Hashmi JA, Baliki MN. Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. PAIN 2011;152:S49–64.
    1. Ashar YK, Andrews-Hanna JR, Dimidjian S, Wager TD. Empathic care and distress: predictive brain markers and dissociable brain systems. Neuron 2017;94:1263–73.e4.
    1. Atlas LY, Bolger N, Lindquist MA, Wager TD. Brain mediators of predictive cue effects on perceived pain. J Neurosci 2010;30:12964–77.
    1. Bagarinao E, Johnson KA, Martucci KT, Ichesco E, Farmer MA, Labus J, Ness TJ, Harris R, Deutsch G, Apkarian AV, Mayer EA, Clauw DJ, Mackey S. Preliminary structural MRI based brain classification of chronic pelvic pain: a MAPP network study. PAIN 2014;155:2502–9.
    1. Baliki MN, Baria AT, Apkarian aV. The cortical rhythms of chronic back pain. J Neurosci 2011;31:13981–90.
    1. Baliki MN, Geha PY, Fields HL, Apkarian AV. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 2010;66:149–60.
    1. Baliki MN, Geha PY, Jabakhanji R, Harden N, Schnitzer TJ, Apkarian AV. A preliminary fMRI study of analgesic treatment in chronic back pain and knee osteoarthritis. Mol Pain 2008;4:47.
    1. Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L, Schnitzer TJ, Fields HL, Apkarian AV. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci 2012;15:1117–19.
    1. Borsook D, Becerra L, Fava M. Use of functional imaging across clinical phases in CNS drug development. Transl Psychiatry 2013;3:e282.
    1. Borsook D, Becerra L, Hargreaves R. Biomarkers for chronic pain and analgesia. Part 1: the need, reality, challenges, and solutions. Discov Med 2011;11:197–207.
    1. Borsook D, Becerra L, Hargreaves R. Biomarkers for chronic pain and analgesia. Part 2: how, where, and what to look for using functional imaging. Discov Med 2011;11:209–19.
    1. Bräscher A-K, Becker S, Hoeppli M-E, Schweinhardt P. Different brain circuitries mediating controllable and uncontrollable pain. J Neurosci 2016;36:5013–25.
    1. Brown JE, Chatterjee N, Younger J, Mackey S. Towards a physiology-based measure of pain: patterns of human brain activity distinguish painful from non-painful thermal stimulation. PLoS One 2011;6:e24124.
    1. Burian M, Geisslinger G. COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacol Ther 2005;107:139–54.
    1. Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 2013;14:502–11.
    1. Chang LJ, Gianaros PJ, Manuck SB, Krishnan A, Wager TD. A sensitive and specific neural signature for picture-induced negative affect. PLoS Biol 2015;13:e1002180.
    1. Cheng DS, Visco CJ. Pharmaceutical therapy for osteoarthritis. PM R 2012;4:S82–8.
    1. Cheng JC, Bosma RL, Hemington KS, Kucyi A, Lindquist MA, Davis KD. Slow-5 dynamic functional connectivity reflects the capacity to sustain cognitive performance during pain. Neuroimage 2017;157:61–8.
    1. Cicala C, Ianaro A, Fiorucci S, Calignano A, Bucci M, Gerli R, Santucci L, Wallace JL, Cirino G. NO-naproxen modulates inflammation, nociception and downregulates T cell response in rat Freund's adjuvant arthritis. Br J Pharmacol 2000;130:1399–405.
    1. Dadabhoy D, Crofford LJ, Spaeth M, Russell IJ, Clauw DJ. Biology and therapy of fibromyalgia. Evidence-based biomarkers for fibromyalgia syndrome. Arthritis Res Ther 2008;10:211.
    1. Davis KD, Flor H, Greely HT, Iannetti GD, Mackey S, Ploner M, Pustilnik A, Tracey I, Treede R-D, Wager TD. Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. Nat Rev Neurol 2017;13:624–38.
    1. Duff EP, Moultrie F, van der Vaart M, Goksan S, Abos A, Fitzgibbon SP, Baxter L, Wager TD, Slater R. Inferring pain experience in infants using quantitative whole-brain functional MRI signatures: a cross-sectional, observational study. Lancet Digit Health 2020;2:e458–67.
    1. Duff EP, Vennart W, Wise RG, Howard MA, Harris RE, Lee M, Wartolowska K, Wanigasekera V, Wilson FJ, Whitlock M, Others. Learning to identify CNS drug action and efficacy using multistudy fMRI data. Sci Transl Med 2015;7:274ra16.
    1. Evidence-Based Medicine Working Group. Evidence-based medicine. A new approach to teaching the practice of medicine. JAMA 1992;268:2420–5.
    1. Farrar JT, Young JP, Jr, LaMoreaux L, Werth JL, Poole RM. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. PAIN 2001;94:149–58.
    1. Geha PY, Baliki MN, Chialvo DR, Harden RN, Paice JA, Apkarian AV. Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. PAIN 2007;128:88–100.
    1. Giménez M, Pujol J, Ali Z, López-Solà M, Contreras-Rodríguez O, Deus J, Ortiz H, Soriano-Mas C, Llorente-Onaindia J, Monfort J. Naproxen effects on brain response to painful pressure stimulation in patients with knee osteoarthritis: a double-blind, randomized, placebo-controlled, single-dose study. J Rheumatol 2014;41:2240–8.
    1. Harris RE, Sundgren PC, Craig AD, Kirshenbaum E, Sen A, Napadow V, Clauw DJ. Elevated insular glutamate in fibromyalgia is associated with experimental pain. Arthritis Rheum Official J Am Coll Rheumatol 2009;60:3146–52.
    1. Hashmi JA, Baliki MN, Huang L, Baria AT, Torbey S, Hermann KM, Schnitzer TJ, Apkarian AV. Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 2013;136:2751–68.
    1. Hautaniemi T, Petrenko N, Skorinkin A, Giniatullin R. The inhibitory action of the antimigraine nonsteroidal anti-inflammatory drug naproxen on P2X3 receptor-mediated responses in rat trigeminal neurons. Neuroscience 2012;209:32–8.
    1. Hiramatsu T, Nakanishi K, Yoshimura S, Yoshino A, Adachi N, Okamoto Y, Yamawaki S, Ochi M. The dorsolateral prefrontal network is involved in pain perception in knee osteoarthritis patients. Neurosci Lett 2014;581:109–14.
    1. Ichesco E, Schmidt-Wilcke T, Bhavsar R, Clauw DJ, Peltier SJ, Kim J, Napadow V, Hampson JP, Kairys AE, Williams DA, Harris RE. Altered resting state connectivity of the insular cortex in individuals with fibromyalgia. J Pain 2014;15:815–26.e1.
    1. Jensen TS, Baron R. Translation of symptoms and signs into mechanisms in neuropathic pain. PAIN 2003;102:1–8.
    1. Kaptchuk TJ, Kelley JM, Conboy LA, Davis RB, Kerr CE, Jacobson EE, Kirsch I, Schyner RN, Nam BH, Nguyen LT, Park M, Rivers AL, McManus C, Kokkotou E, Drossman DA, Goldman P, Lembo AJ. Components of placebo effect: randomised controlled trial in patients with irritable bowel syndrome. BMJ 2008;336:999–1003.
    1. de Koning EJ, Timmermans EJ, van Schoor NM, Stubbs B, van den Kommer TN, Dennison EM, Limongi F, Castell MV, Edwards MH, Queipo R, Cooper C, Siviero P, van der Pas S, Pedersen NL, Sánchez-Martínez M, Deeg DJH, Denkinger MD; EPOSA Group. Within-person pain variability and mental health in older adults with osteoarthritis: an analysis across 6 European cohorts. J Pain 2018;19:690–8.
    1. Krishnan A, Woo C-W, Chang LJ, Ruzic L, Gu X, López-Solà M, Jackson PL, Pujol J, Fan J, Wager TD. Somatic and vicarious pain are represented by dissociable multivariate brain patterns. Elife 2016;5:e15166. doi: 10.7554/eLife.15166.
    1. Kucyi A, Davis KD. The dynamic pain connectome. Trends Neurosci 2015;38:86–95.
    1. Kutch JJ, Ichesco E, Hampson JP, Labus JS, Farmer MA, Martucci KT, Ness TJ, Deutsch G, Apkarian AV, Mackey SC, Klumpp DJ, Schaeffer AJ, Rodriguez LV, Kreder KJ, Buchwald D, Andriole GL, Lai HH, Mullins C, Kusek JW, Landis JR, Mayer EA, Clemens JQ, Clauw DJ, Harris RE; MAPP Research Network. Brain signature and functional impact of centralized pain: a multidisciplinary approach to the study of chronic pelvic pain (MAPP) network study. Pain 2017;158:1979–91.
    1. Kutch JJ, Labus JS, Harris RE, Martucci KT, Farmer MA, Fenske S, Fling C, Ichesco E, Peltier S, Petre B, Guo W, Hou X, Stephens AJ, Mullins C, Clauw DJ, Mackey SC, Apkarian AV, Landis JR, Mayer EA; MAPP Research Network. Resting-state functional connectivity predicts longitudinal pain symptom change in urologic chronic pelvic pain syndrome: a MAPP network study. PAIN 2017;158:1069–82.
    1. Lee J, Mawla I, Kim J, Loggia ML, Ortiz A, Jung C, Chan S-T, Gerber J, Schmithorst VJ, Edwards RR, Wasan AD, Berna C, Kong J, Kaptchuk TJ, Gollub RL, Rosen BR, Napadow V. Machine learning-based prediction of clinical pain using multimodal neuroimaging and autonomic metrics. PAIN 2019;160:550–60.
    1. Levy D, Zhang X-C, Jakubowski M, Burstein R. Sensitization of meningeal nociceptors: inhibition by naproxen. Eur J Neurosci 2008;27:917–22.
    1. Linde K, Fässler M, Meissner K. Placebo interventions, placebo effects and clinical practice. Philos Trans R Soc Lond B Biol Sci 2011;366:1905–12.
    1. López-Solà M, Geuter S, Koban L, Coan JA, Wager TD. Brain mechanisms of social touch-induced analgesia in females. PAIN 2019;160:2072–85.
    1. López-Solà M, Koban L, Krishnan A, Wager TD. When pain really matters: A vicarious-pain brain marker tracks empathy for pain in the romantic partner. Neuropsychologia 2020;145:106427.
    1. López-Solà M, Koban L, Wager TD. Transforming pain with prosocial meaning: a functional magnetic resonance imaging study. Psychosom Med 2018;80:814–25.
    1. López-Solà M, Pujol J, Hernández-Ribas R, Harrison BJ, Ortiz H, Soriano-Mas C, Deus J, Menchón JM, Vallejo J, Cardoner N. Dynamic assessment of the right lateral frontal cortex response to painful stimulation. Neuroimage 2010;50:1177–87.
    1. López-Solà M, Pujol J, Wager TD, Garcia-Fontanals A, Blanco-Hinojo L, Garcia-Blanco S, Poca-Dias V, Harrison BJ, Contreras-Rodríguez O, Monfort J, Garcia-Fructuoso F, Deus J. Altered functional magnetic resonance imaging responses to nonpainful sensory stimulation in fibromyalgia patients. Arthritis Rheumatol (Hoboken, NJ) 2014;66:3200–9.
    1. López-Solà M, Woo C-W, Pujol J, Deus J, Harrison BJ, Monfort J, Wager TD. Towards a neurophysiological signature for fibromyalgia. PAIN 2017;158:34–47.
    1. Mackey S, Greely HT, Martucci KT. Neuroimaging-based pain biomarkers: definitions, clinical and research applications, and evaluation frameworks to achieve personalized pain medicine. Pain Rep 2019;4:e762.
    1. Martucci KT, MacNiven KH, Borg N, Knutson B, Mackey SC. Apparent effects of opioid use on neural responses to reward in chronic pain. Sci Rep 2019;9:9633.
    1. Martucci KT, Shirer WR, Bagarinao E, Johnson KA, Farmer MA, Labus JS, Apkarian AV, Deutsch G, Harris RE, Mayer EA, Clauw DJ, Greicius MD, Mackey SC. The posterior medial cortex in urologic chronic pelvic pain syndrome: detachment from default mode network-a resting-state study from the MAPP Research Network. PAIN 2015;156:1755–64.
    1. Ma Y, Wang C, Luo S, Li B, Wager TD, Zhang W, Rao Y, Han S. Serotonin transporter polymorphism alters citalopram effects on human pain responses to physical pain. Neuroimage 2016;135:186–96.
    1. Meissner K, Bingel U, Colloca L, Wager TD, Watson A, Flaten MA. The placebo effect: advances from different methodological approaches. J Neurosci 2011;31:16117–24.
    1. Meissner K, Distel H, Mitzdorf U. Evidence for placebo effects on physical but not on biochemical outcome parameters: a review of clinical trials. BMC Med 2007;5:3.
    1. van der Miesen MM, Lindquist MA, Wager TD. Neuroimaging-based biomarkers for pain: state of the field and current directions. Pain Rep 2019;4:e751.
    1. Miranda JA, Stanley P, Gore K, Turner J, Dias R, Rees H. A preclinical physiological assay to test modulation of knee joint pain in the spinal cord: effects of oxycodone and naproxen. PLoS One 2014;9:e106108.
    1. Monfort J, Pujol J, Contreras-Rodríguez O, Llorente-Onaindia J, López-Solà M, Blanco-Hinojo L, Vergés J, Herrero M, Sánchez L, Ortiz H, Montañés F, Deus J, Benito P. Effects of chondroitin sulfate on brain response to painful stimulation in knee osteoarthritis patients. A randomized, double-blind, placebo-controlled functional magnetic resonance imaging study. Med Clin 2017;148:539–47.
    1. Napadow V, Harris RE. What has functional connectivity and chemical neuroimaging in fibromyalgia taught us about the mechanisms and management of “centralized” pain?. Arthritis Res Ther 2014;16:425.
    1. Napadow V, Kim J, Clauw DJ, Harris RE. Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum 2012;64:2398–403.
    1. Parks EL, Geha PY, Baliki MN, Katz J, Schnitzer TJ, Apkarian AV. Brain activity for chronic knee osteoarthritis: dissociating evoked pain from spontaneous pain. Eur J Pain 2011;15:843.e1–14.
    1. Price DD, Bush FM, Long S, Harkins SW. A comparison of pain measurement characteristics of mechanical visual analogue and simple numerical rating scales. PAIN 1994;56:217–26.
    1. Price DD, Finniss DG, Benedetti F. A comprehensive review of the placebo effect: recent advances and current thought. Annu Rev Psychol 2008;59:565–90.
    1. Pujol J, López-Solà M, Ortiz H, Vilanova JC, Harrison BJ, Yücel M, Soriano-Mas C, Cardoner N, Deus J. Mapping brain response to pain in fibromyalgia patients using temporal analysis of FMRI. PLoS One 2009;4:e5224.
    1. Pujol J, Macià D, Blanco-hinojo L, Martínez-vilavella G, Sunyer J, De R, Caixàs A, Martín-santos R, Deus J, Harrison BJ. NeuroImage Does motion-related brain functional connectivity reflect both artifacts and genuine neural activity ?. Neuroimage 2014;101:87–95.
    1. Pujol J, Macià D, Garcia-Fontanals A, Blanco-hinojo L, López-Solà M, Garcia-Blanco S, Poca-Dias V, Harrison BJ, Contreras-Rodríguez O, Monfort J, Garcia-Fructuoso F, Deus J. The contribution of sensory system functional connectivity reduction to clinical pain in fibromyalgia. PAIN 2014.155:1492–1503. doi: 10.1016/j.pain.2014.04.028.
    1. Pujol J, Martínez-Vilavella G, Llorente-Onaindia J, Harrison BJ, López-Solà M, López-Ruiz M, Blanco-Hinojo L, Benito P, Deus J, Monfort J. Brain imaging of pain sensitization in patients with knee osteoarthritis. PAIN 2017;158:1831–8.
    1. Reckziegel D, Vachon-Presseau E, Petre B, Schnitzer TJ, Baliki MN, Apkarian AV. Deconstructing biomarkers for chronic pain: context- and hypothesis-dependent biomarker types in relation to chronic pain. PAIN 2019;160(Suppl 1):S37S48.
    1. Sacks H, Chalmers TC, Smith H, Jr. Randomized versus historical controls for clinical trials. Am J Med 1982;72:233–40.
    1. Sanders D, Krause K, O'Muircheartaigh J, Thacker MA, Huggins JP, Vennart W, Massat NJ, Choy E, Williams SCR, Howard MA. Pharmacologic modulation of hand pain in osteoarthritis: a double-blind placebo-controlled functional magnetic resonance imaging study using naproxen. Arthritis Rheumatol 2015;67:741–51.
    1. Schneider S, Junghaenel DU, Keefe FJ, Schwartz JE, Stone AA, Broderick JE. Individual differences in the day-to-day variability of pain, fatigue, and well-being in patients with rheumatic disease: associations with psychological variables. PAIN 2012;153:813–22.
    1. Seminowicz DA, Remeniuk B, Krimmel SR, Smith MT, Barrett FS, Wulff AB, Furman AJ, Geuter S, Lindquist MA, Irwin MR, Finan PH. Pain-related nucleus accumbens function: modulation by reward and sleep disruption. PAIN 2019;160:1196–207.
    1. Silver Spring (MD): Food and Drug Administration (US). Co-published by National Institutes of Health (US), Bethesda (MD). FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools). 2016. Available at: .
    1. Smith A, López-Solà M, McMahon K, Pedler A, Sterling M. Multivariate pattern analysis utilizing structural or functional MRI-In individuals with musculoskeletal pain and healthy controls: a systematic review. Semin Arthritis Rheum 2017;47:418–31.
    1. Smith SM, Dworkin RH, Turk DC, Baron R, Polydefkis M, Tracey I, Borsook D, Edwards RR, Harris RE, Wager TD, Arendt-Nielsen L, Burke LB, Carr DB, Chappell A, Farrar JT, Freeman R, Gilron I, Goli V, Haeussler J, Jensen T, Katz NP, Kent J, Kopecky EA, Lee DA, Maixner W, Markman JD, McArthur JC, McDermott MP, Parvathenani L, Raja SN, Rappaport BA, Rice ASC, Rowbotham MC, Tobias JK, Wasan AD, Witter J. The potential role of sensory testing, skin biopsy, and functional brain imaging as biomarkers in chronic pain clinical trials: IMMPACT considerations. J Pain 2017;18:757–77.
    1. Tracey I, Woolf CJ, Andrews NA. Composite pain biomarker signatures for objective assessment and effective treatment. Neuron 2019;101:783–800.
    1. Tupper SM, Rosenberg AM, Pahwa P, Stinson JN. Pain intensity variability and its relationship with quality of life in youths with juvenile idiopathic arthritis. Arthritis Care Res 2013;65:563–70.
    1. Tuttle AH, Tohyama S, Ramsay T, Kimmelman J, Schweinhardt P, Bennett GJ, Mogil JS. Increasing placebo responses over time in US clinical trials of neuropathic pain. PAIN 2015;156:2616–26.
    1. Tu Y, Ortiz A, Gollub RL, Cao J, Gerber J, Lang C, Park J, Wilson G, Shen W, Chan S-T, Wasan AD, Edwards RR, Napadow V, Kaptchuk TJ, Rosen B, Kong J. Multivariate resting-state functional connectivity predicts responses to real and sham acupuncture treatment in chronic low back pain. Neuroimage Clin 2019;23:101885.
    1. Wager TD, Atlas LY. The neuroscience of placebo effects: connecting context, learning and health. Nat Rev Neurosci 2015;16:403–18.
    1. Wager TD, Atlas LY, Lindquist Ma, Roy M, Woo C-W, Kross E. An fMRI-based neurologic signature of physical pain. N Engl J Med 2013;368:1388–97.
    1. Wager TD, Fields H. Placebo analgesia. Textbook of pain 2013:362373.
    1. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 2004;303:1162–7.
    1. Woo C-W, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci 2017;20:365–77.
    1. Woo C-W, Koban L, Kross E, Lindquist MA, Banich MT, Ruzic L, Andrews-Hanna JR, Wager TD. Separate neural representations for physical pain and social rejection. Nat Commun 2014;5:5380.
    1. Woo C-W, Roy M, Buhle JT, Wager TD. Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain. Plos Biol 2015;13:e1002036.
    1. Woo C-W, Schmidt L, Krishnan A, Jepma M, Roy M, Lindquist MA, Atlas LY, Wager TD. Quantifying cerebral contributions to pain beyond nociception. Nat Commun 2017;8:14211.
    1. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 2011;8:665–70.
    1. Yue Y, Collaku A. Correlation of pain reduction with fMRI BOLD response in osteoarthritis patients treated with paracetamol: randomized, double-blind, crossover clinical efficacy study. Pain Med 2018;19:355–67.
    1. Zhang B, Jung M, Tu Y, Gollub R, Lang C, Ortiz A, Park J, Wilson G, Gerber J, Mawla I, Chan S-T, Wasan A, Edwards R, Lee J, Napadow V, Kaptchuk T, Rosen B, Kong J. Identifying brain regions associated with the neuropathology of chronic low back pain: a resting-state amplitude of low-frequency fluctuation study. Br J Anaesth 2019;123:e303–11.
    1. Zunhammer M, Bingel U, Wager TD. Placebo effects on the neurologic pain signature: a meta-analysis of individual participant functional magnetic resonance imaging data. JAMA Neurol 2018;75:1321–30.

Source: PubMed

3
Subscribe