Rehabilitation protocols following total knee arthroplasty: a review of study designs and outcome measures

Iciar M Dávila Castrodad, Thea M Recai, Megha M Abraham, Jennifer I Etcheson, Nequesha S Mohamed, Armin Edalatpour, Ronald E Delanois, Iciar M Dávila Castrodad, Thea M Recai, Megha M Abraham, Jennifer I Etcheson, Nequesha S Mohamed, Armin Edalatpour, Ronald E Delanois

Abstract

Total knee arthroplasty (TKA) is among the most common elective procedures performed worldwide. Recent efforts have been made to significantly improve patient outcomes, specifically with postoperative rehabilitation. Despite the many rehabilitation modalities available, the optimal rehabilitation strategy has yet to be determined. Therefore, this systematic review focuses on evaluating existing postoperative rehabilitation protocols. Specifically, this review analyses the study designs, rehabilitation methods, and outcome measures of postoperative rehabilitation protocols for TKA recipients in the past five years. The PubMed, EMBASE, and Cochrane Library databases were queried for studies evaluating rehabilitation protocols following primary TKA. Of the 11,013 studies identified within the last five years, 70 met the inclusion and exclusion criteria. After assessing for relevance and removing duplicates, a final count of 20 studies remained for analysis. Level-of-evidence was determined by the American Academy of Orthopaedic Surgeons (AAOS) classification system. Our findings demonstrated that continuous passive motion and inpatient rehabilitation may not provide additional benefit to the patient or healthcare system. However, early rehabilitation, telerehabilitation, outpatient therapy, high intensity, and high velocity exercise may be successful forms of rehabilitation. Additionally, weight-bearing biofeedback, neuromuscular electrical stimulation, and balance control appear to be beneficial adjuncts to conventional rehabilitation. Postoperative rehabilitation following TKA facilitates patient recovery and improves quality of life. This systematic review analyzed the existing rehabilitation protocols from the past five years. Some studies did not accurately describe the conventional rehabilitation protocols, the duration of therapy sessions, and the timing of these sessions. As such, future studies should explicitly describe their methodology. This will allow high-quality assessments and the conception of standardized protocols.

Keywords: Total knee arthroplasty (TKA); physical therapy; physiotherapy; postoperative rehabilitation.

Conflict of interest statement

Conflicts of Interest: Dr. Delanois reports other from Baltimore City Medical Society, other from Orthofix, Inc, other from Stryker, other from United orthopedics, other from Flexion Therapeutics, other from Tissue Gene, outside the submitted work. All other authors have no conflicts of interest to declare.

2019 Annals of Translational Medicine. All rights reserved.

Figures

Figure 1
Figure 1
Systematic review flowchart for study inclusion.

References

    1. Culliford D, Maskell J, Judge A, et al. Future projections of total hip and knee arthroplasty in the UK: results from the UK Clinical Practice Research Datalink. Osteoarthr Cartil 2015;23:594-600. 10.1016/j.joca.2014.12.022
    1. Culliford DJ, Maskell J, Beard DJ, et al. Temporal trends in hip and knee replacement in the United Kingdom: 1991 to 2006. J Bone Joint Surg Br 2010;92:130-5. 10.1302/0301-620X.92B1.22654
    1. Kurtz SM, Ong KL, Lau E, et al. International survey of primary and revision total knee replacement. Int Orthop 2011;35:1783-9. 10.1007/s00264-011-1235-5
    1. Kurtz SM, Ong KL, Lau E, et al. Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. J Bone Joint Surg Am 2014;96:624-30. 10.2106/JBJS.M.00285
    1. Naylor JM, Hart A, Mittal R, et al. The value of inpatient rehabilitation after uncomplicated knee arthroplasty: a propensity score analysis. Med J Aust 2017;207:250-5. 10.5694/mja16.01362
    1. Bade MJ, Kohrt WM, Stevens-Lapsley JE. Outcomes before and after total knee arthroplasty compared to healthy adults. J Orthop Sports Phys Ther 2010;40:559-67. 10.2519/jospt.2010.3317
    1. Winters JD, Christiansen CL, Stevens-Lapsley JE. Preliminary investigation of rate of torque development deficits following total knee arthroplasty. Knee 2014;21:382-6. 10.1016/j.knee.2013.10.003
    1. Stevens-Lapsley JE, Balter JE, Kohrt WM, et al. Quadriceps and hamstrings muscle dysfunction after total knee arthroplasty. Clin Orthop Relat Res 2010;468:2460-8. 10.1007/s11999-009-1219-6
    1. Marcus RL, Yoshida Y, Meier W, et al. An Eccentrically Biased Rehabilitation Program Early after TKA Surgery. Arthritis 2011;2011:353149.
    1. Pozzi F, Snyder-Mackler L, Zeni J. Physical exercise after knee arthroplasty: a systematic review of controlled trials. Eur J Phys Rehabil Med 2013;49:877-92.
    1. Mistry JB, Elmallah R, Bhave A, et al. Rehabilitative Guidelines after Total Knee Arthroplasty: A Review. J Knee Surg 2016;29:201-17. 10.1055/s-0036-1579670
    1. Doerfler D, Gurney B, Mermier C, et al. High-Velocity Quadriceps Exercises Compared to Slow-Velocity Quadriceps Exercises Following Total Knee Arthroplasty. J Geriatr Phys Ther 2016;39:147-58. 10.1519/JPT.0000000000000071
    1. Moffet H, Tousignant M, Nadeau S, et al. In-Home Telerehabilitation Compared with Face-to-Face Rehabilitation After Total Knee Arthroplasty: A Noninferiority Randomized Controlled Trial. J Bone Joint Surg Am 2015;97:1129-41. 10.2106/JBJS.N.01066
    1. Okike K, Kocher MS. Evidence-Based Orthopaedics: Levels of Evidence and Guidelines in Orthopaedic Surgery. 2011. Available online:
    1. Ritter MA, Gandolf VS, Holston KS. Continuous passive motion versus physical therapy in total knee arthroplasty. Clin Orthop Relat Res 1989;(244):239-43.
    1. Harvey LA, Brosseau L, Herbert RD. Continuous passive motion following total knee arthroplasty in people with arthritis. Cochrane Database Syst Rev 2014;(2):CD004260.
    1. Mau-Moeller A, Behrens M, Finze S, et al. The effect of continuous passive motion and sling exercise training on clinical and functional outcomes following total knee arthroplasty: a randomized active-controlled clinical study. Health Qual Life Outcomes 2014;12:68. 10.1186/1477-7525-12-68
    1. Romness DW, Rand JA. The role of continuous passive motion following total knee arthroplasty. Clin Orthop Relat Res 1988;(226):34-7.
    1. Pope RO, Corcoran S, McCaul K, et al. Continuous passive motion after primary total knee arthroplasty. Does it offer any benefits? J Bone Joint Surg Br 1997;79:914-7. 10.1302/0301-620X.79B6.0790914
    1. Maniar RN, Baviskar J V., Singhi T, et al. To Use or Not to Use Continuous Passive Motion Post–Total Knee Arthroplasty. J Arthroplasty 2012;27:193-200.e1. 10.1016/j.arth.2011.04.009
    1. Herbold JA, Bonistall K, Blackburn M, et al. Randomized controlled trial of the effectiveness of continuous passive motion after total knee replacement. Arch Phys Med Rehabil 2014;95:1240-5. 10.1016/j.apmr.2014.03.012
    1. Boese CK, Weis M, Phillips T, et al. The efficacy of continuous passive motion after total knee arthroplasty: a comparison of three protocols. J Arthroplasty 2014;29:1158-62. 10.1016/j.arth.2013.12.005
    1. Joshi RN, White PB, Murray-Weir M, et al. Prospective Randomized Trial of the Efficacy of Continuous Passive Motion Post Total Knee Arthroplasty: Experience of the Hospital for Special Surgery. J Arthroplasty 2015;30:2364-9. 10.1016/j.arth.2015.06.006
    1. Denis M, Moffet H, Caron F, et al. Effectiveness of continuous passive motion and conventional physical therapy after total knee arthroplasty: a randomized clinical trial. Phys Ther 2006;86:174-85.
    1. Walker RH, Morris BA, Angulo DL, et al. Postoperative use of continuous passive motion, transcutaneous electrical nerve stimulation, and continuous cooling pad following total knee arthroplasty. J Arthroplasty 1991;6:151-6. 10.1016/S0883-5403(11)80010-0
    1. Bennett LA, Brearley SC, Hart JAL, et al. A comparison of 2 continuous passive motion protocols after total knee arthroplasty: a controlled and randomized study. J Arthroplasty 2005;20:225-33. 10.1016/j.arth.2004.08.009
    1. Johnson DP. The effect of continuous passive motion on wound-healing and joint mobility after knee arthroplasty. J Bone Joint Surg Am 1990;72:421-6. 10.2106/00004623-199072030-00016
    1. Ververeli PA, Sutton DC, Hearn SL, et al. Continuous passive motion after total knee arthroplasty. Analysis of cost and benefits. Clin Orthop Relat Res 1995;(321):208-15.
    1. Cram P, Lu X, Kates SL, et al. Total Knee Arthroplasty Volume, Utilization, and Outcomes Among Medicare Beneficiaries, 1991-2010. JAMA 2012;308:1227-36. 10.1001/2012.jama.11153
    1. Walsh M, Woodhouse LJ, Thomas SG, et al. Physical impairments and functional limitations: a comparison of individuals 1 year after total knee arthroplasty with control subjects. Phys Ther 1998;78:248-58. 10.1093/ptj/78.3.248
    1. Orr R, de Vos NJ, Singh NA, et al. Power training improves balance in healthy older adults. J Gerontol A Biol Sci Med Sci 2006;61:78-85. 10.1093/gerona/61.1.78
    1. Pozzi F, White DK, Snyder-Mackler L, et al. Restoring physical function after knee replacement: a cross sectional comparison of progressive strengthening vs standard physical therapy. Physiother Theory Pract 2018:1-12. [Epub ahead of print]. 10.1080/09593985.2018.1479475
    1. Kelly MA, Finley M, Lichtman SW, et al. Comparative Analysis of High-Velocity Versus Low-Velocity Exercise on Outcomes After Total Knee Arthroplasty: A Randomized Clinical Trial. J Geriatr Phys Ther 2016;39:178-89. 10.1519/JPT.0000000000000070
    1. Bade MJ, Struessel T, Dayton M, et al. Early High-Intensity Versus Low-Intensity Rehabilitation After Total Knee Arthroplasty: A Randomized Controlled Trial. Arthritis Care Res (Hoboken) 2017;69:1360-8. 10.1002/acr.23139
    1. Chughtai M, Kelly JJ, Newman JM, et al. The Role of Virtual Rehabilitation in Total and Unicompartmental Knee Arthroplasty. J Knee Surg 2019;32:105-10. 10.1055/s-0038-1637018
    1. Bini SA, Mahajan J. Clinical outcomes of remote asynchronous telerehabilitation are equivalent to traditional therapy following total knee arthroplasty: A randomized control study. J Telemed Telecare 2017;23:239-47. 10.1177/1357633X16634518
    1. Klement MR, Rondon AJ, McEntee RM, et al. Web-Based, Self-Directed Physical Therapy After Total Knee Arthroplasty Is Safe and Effective for Most, but Not All, Patients. J Arthroplasty 2019;34:S178-82. 10.1016/j.arth.2018.11.040
    1. Ko V, Naylor J, Harris I, et al. One-to-One Therapy Is Not Superior to Group or Home-Based Therapy After Total Knee Arthroplasty. J Bone Joint Surg Am 2013;95:1942-9. 10.2106/JBJS.L.00964
    1. Mahomed NN, Davis AM, Hawker G, et al. Inpatient compared with home-based rehabilitation following primary unilateral total hip or knee replacement: a randomized controlled trial. J Bone Joint Surg Am 2008;90:1673-80. 10.2106/JBJS.G.01108
    1. Kramer JF, Speechley M, Bourne R, et al. Comparison of clinic- and home-based rehabilitation programs after total knee arthroplasty. Clin Orthop Relat Res 2003;410:225-34. 10.1097/01.blo.0000063600.67412.11
    1. Rajan RA, Pack Y, Jackson H, et al. No need for outpatient physiotherapy following total knee arthroplasty: a randomized trial of 120 patients. Acta Orthop Scand 2004;75:71-3. 10.1080/00016470410001708140
    1. Buhagiar MA, Naylor JM, Harris IA, et al. Effect of Inpatient Rehabilitation vs a Monitored Home-Based Program on Mobility in Patients With Total Knee Arthroplasty: The HIHO Randomized Clinical Trial. JAMA 2017;317:1037-46. 10.1001/jama.2017.1224
    1. Pagnotta G, Rich E, Eckardt P, et al. The Effect of a Rapid Rehabilitation Program on Patients Undergoing Unilateral Total Knee Arthroplasty. Orthop Nurs 2017;36:112-21. 10.1097/NOR.0000000000000325
    1. McGinn T, Chughtai M, Khlopas A, et al. Early Outpatient Physical Therapy May Improve Range-of-Motion in Primary Total Knee Arthroplasty. J Knee Surg 2017;30:618-21. 10.1055/s-0037-1603793
    1. Han ASY, Nairn L, Harmer AR, et al. Early rehabilitation after total knee replacement surgery: a multicenter, noninferiority, randomized clinical trial comparing a home exercise program with usual outpatient care. Arthritis Care Res (Hoboken) 2015;67:196-202. 10.1002/acr.22457
    1. Boonstra MC, Schwering PJA, De Waal Malefijt MC, et al. Sit-to-Stand Movement as a Performance-Based Measure for Patients With Total Knee Arthroplasty. Phys Ther 2010;90:149-56. 10.2522/ptj.20090119
    1. Hatfield GL, Hubley-Kozey CL, Astephen Wilson JL, et al. The Effect of Total Knee Arthroplasty on Knee Joint Kinematics and Kinetics During Gait. J Arthroplasty 2011;26:309-18. 10.1016/j.arth.2010.03.021
    1. Mizner RL, Snyder-Mackler L. Altered loading during walking and sit-to-stand is affected by quadriceps weakness after total knee arthroplasty. J Orthop Res 2005;23:1083-90. 10.1016/j.orthres.2005.01.021
    1. Yoshida Y, Zeni J, Snyder-Mackler L. Do patients achieve normal gait patterns 3 years after total knee arthroplasty? J Orthop Sports Phys Ther 2012;42:1039-49. 10.2519/jospt.2012.3763
    1. McClelland J, Zeni J, Haley RM, et al. Functional and biomechanical outcomes after using biofeedback for retraining symmetrical movement patterns after total knee arthroplasty: a case report. J Orthop Sports Phys Ther 2012;42:135-44. 10.2519/jospt.2012.3773
    1. Yue C, Zhang X, Zhu Y, et al. Systematic Review of Three Electrical Stimulation Techniques for Rehabilitation After Total Knee Arthroplasty. J Arthroplasty 2018;33:2330-7. 10.1016/j.arth.2018.01.070
    1. Mizner RL, Petterson SC, Stevens JE, et al. Early quadriceps strength loss after total knee arthroplasty. The contributions of muscle atrophy and failure of voluntary muscle activation. J Bone Joint Surg Am 2005;87:1047-53. 10.2106/00004623-200505000-00016
    1. Levine M, McElroy K, Stakich V, et al. Comparing conventional physical therapy rehabilitation with neuromuscular electrical stimulation after TKA. Orthopedics 2013;36:e319-24. 10.3928/01477447-20130222-20
    1. Jogi P, Overend TJ, Spaulding SJ, et al. Effectiveness of balance exercises in the acute post-operative phase following total hip and knee arthroplasty: A randomized clinical trial. SAGE open Med 2015;3:2050312115570769. 10.1177/2050312115570769
    1. Christiansen CL, Bade MJ, Davidson BS, et al. Effects of Weight-Bearing Biofeedback Training on Functional Movement Patterns Following Total Knee Arthroplasty: A Randomized Controlled Trial. J Orthop Sports Phys Ther 2015;45:647-55. 10.2519/jospt.2015.5593
    1. Stevens-Lapsley JE, Balter JE, Wolfe P, et al. Early neuromuscular electrical stimulation to improve quadriceps muscle strength after total knee arthroplasty: a randomized controlled trial. Phys Ther 2012;92:210-26. 10.2522/ptj.20110124
    1. Avramidis K, Karachalios T, Popotonasios K, et al. Does Electric Stimulation of the Vastus Medialis Muscle Influence Rehabilitation After Total Knee Replacement? Orthopedics 2011;34:175. 10.3928/01477447-20110124-06
    1. Duncan PW, Chandler J, Studenski S, et al. How do physiological components of balance affect mobility in elderly men? Arch Phys Med Rehabil 1993;74:1343-9. 10.1016/0003-9993(93)90090-W
    1. Carroll NV, Slattum PW, Cox FM. The Cost of Falls Among the Community-Dwelling Elderly. J Manag Care Pharm 2005;11:307-16. 10.18553/jmcp.2005.11.4.307
    1. Takura T, Miki K. The future of medical reimbursement for orthopedic surgery in Japan from the viewpoint of the health economy. J Orthop Sci 2016;21:273-81. 10.1016/j.jos.2016.02.007
    1. Doma K, Grant A, Morris J. The Effects of Balance Training on Balance Performance and Functional Outcome Measures Following Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. Sports Med 2018;48:2367-85. 10.1007/s40279-018-0964-7
    1. Monticone M, Ferrante S, Rocca B, et al. Home-based functional exercises aimed at managing kinesiophobia contribute to improving disability and quality of life of patients undergoing total knee arthroplasty: a randomized controlled trial. Arch Phys Med Rehabil 2013;94:231-9. 10.1016/j.apmr.2012.10.003
    1. Roig-Casasús S, Blasco JM, López-Bueno L, et al. Balance Training With a Dynamometric Platform Following Total Knee Replacement: A Randomized Controlled Trial. J Geriatr Phys Ther 2018;41:204-9. 10.1519/JPT.0000000000000121

Source: PubMed

3
Subscribe