COVID-19 infection and cardiac arrhythmias

Antonis S Manolis, Antonis A Manolis, Theodora A Manolis, Evdoxia J Apostolopoulos, Despoina Papatheou, Helen Melita, Antonis S Manolis, Antonis A Manolis, Theodora A Manolis, Evdoxia J Apostolopoulos, Despoina Papatheou, Helen Melita

Abstract

As the coronavirus 2019 (COVID-19) pandemic marches unrelentingly, more patients with cardiac arrhythmias are emerging due to the effects of the virus on the respiratory and cardiovascular (CV) systems and the systemic inflammation that it incurs, and also as a result of the proarrhythmic effects of COVID-19 pharmacotherapies and other drug interactions and the associated autonomic imbalance that enhance arrhythmogenicity. The most worrisome of all arrhythmogenic mechanisms is the QT prolonging effect of various anti-COVID pharmacotherapies that can lead to polymorphic ventricular tachycardia in the form of torsade des pointes and sudden cardiac death. It is therefore imperative to monitor the QT interval during treatment; however, conventional approaches to such monitoring increase the transmission risk for the staff and strain the health system. Hence, there is dire need for contactless monitoring and telemetry for inpatients, especially those admitted to the intensive care unit, as well as for outpatients needing continued management. In this context, recent technological advances have ushered in a new era in implementing digital health monitoring tools that circumvent these obstacles. All these issues are herein discussed and a large body of recent relevant data are reviewed.

Keywords: Atrial fibrillation; COVID-19; Cardiac arrhythmias; Long QT syndrome; Myocarditis; SARS-CoV-2; Sudden cardiac death; Torsade des pointes; Ventricular fibrillation; Ventricular tachycardia.

Copyright © 2020 Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
The schema illustrates the various arrhythmias encountered in patients with COVID-19 infection as a consequence of the virus infection affecting the heart and lung and/or producing systemic inflammation, the adverse (proarrhythmic) effects of COVID therapies and the drug-drug interactions that may occur (see text for discussion). AF = atrial fibrillation; AVB = atrioventricular block; LQT = long QT interval; PEA = pulseless electrical activity; SB = sinus bradycardia; SCD = sudden cardiac death; SNS = sympathetic nervous system; STach = sinus tachycardia; TdP = torsade des pointes; VAs = ventricular arrhythmias; VF = ventricular fibrillation; VT = ventricular tachycardia.

References

    1. Manolis AS, Manolis TA. Cardiovascular complications of the coronavirus (COVID-19) infection. Rhythmos. 2020;15:23–28.
    1. Parohan M, Yaghoubi S, Seraji A. Cardiac injury is associated with severe outcome and death in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Eur Heart J Acute Cardiovasc Care. 2020 Jun 21 doi: 10.1177/2048872620937165. . Online ahead of print.
    1. Lala A, Johnson KW, Januzzi JL, Russak AJ, Paranjpe I, Richter F, et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J Am Coll Cardiol. 2020;76(5):533–546. doi: 10.1016/jjacc202006007. . Epub 2020 Jun 8.
    1. Yu Y, Xu D, Fu S, Zhang J, Yang X, Xu L, et al. Patients with COVID-19 in 19 ICUs in Wuhan, China: a cross-sectional study. Crit Care. 2020;24:219.
    1. Bhatla A, Mayer MM, Adusumalli S, Hyman MC, Oh E, Tierney A, et al. COVID-19 and cardiac arrhythmias. Heart Rhythm. 2020 Jun 20 doi: 10.1016/j.hrthm.2020.06.016. S1547-5271(20)30594-4Online ahead of print.
    1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. Jama. 2020;323:1061–1069.
    1. Sala S, Peretto G, De Luca G, Farina N, Campochiaro C, Tresoldi M, et al. Low prevalence of arrhythmias in clinically stable COVID-19 patients. Pacing Clin Electrophysiol. 2020 Jun 16 doi: 10.1111/pace.13987. Online ahead of print.
    1. Lazaridis C, Vlachogiannis NI, Bakogiannis C, Spyridopoulos I, Stamatelopoulos K, Kanakakis I, et al. Involvement of cardiovascular system as the critical point in coronavirus disease 2019 (COVID-19) prognosis and recovery. Hellenic J Cardiol. 2020 Jun 10;S1109-9666(20)30093-2 doi: 101016/jhjc202005004 Online ahead of print.
    1. Singh AP, Tousif S, Umbarkar P, Lal H. A pharmacovigilance study of hydroxychloroquine cardiac safety profile: potential implication in COVID-19 mitigation. J Clin Med. 2020;9:E1867.
    1. Naksuk N, Lazar S, Peeraphatdit TB. Cardiac safety of off-label COVID-19 drug therapy: a review and proposed monitoring protocol. Eur Heart J Acute Cardiovasc Care. 2020;9:215–221.
    1. Yu WL, Toh HS, Liao CT, Chang WT. A double-edged sword-cardiovascular concerns of potential anti-COVID-19 drugs. Cardiovasc Drugs Ther. 2020 Jun 17:1–10. doi: 10.1007/s10557-020-07024-7.
    1. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular Implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19) JAMA Cardiol. 2020;5(7):1–8. doi: 10.1001/jamacardio.2020.1017. . Online ahead of print.
    1. Gopinathannair R, Merchant FM, Lakkireddy DR, Etheridge SP, Feigofsky S, Han JK, et al. COVID-19 and cardiac arrhythmias: a global perspective on arrhythmia characteristics and management strategies. J Interv Card Electrophysiol. 2020:1–8. doi: 10.1007/s10840-020-00789-9.
    1. Kunutsor SK, Laukkanen JA. Cardiovascular complications in COVID-19: a systematic review and meta-analysis. J Infect. 2020;81:e139–ee41.
    1. Si D, Du B, Ni L, Yang B, Sun H, Jiang N, et al. Death, discharge and arrhythmias among patients with COVID-19 and cardiac injury. CMAJ. 2020 Jun 24;192(28):E791–E798. doi: 10.1503/cmaj.200879. cmaj.200879. Online ahead of print.
    1. Li X, Pan X, Li Y, An N, Xing Y, Yang F, et al. Cardiac injury associated with severe disease or ICU admission and death in hospitalized patients with COVID-19: a meta-analysis and systematic review. Crit Care. 2020;24:468.
    1. Chen Q, Xu L, Dai Y, Ling Y, Mao J, Qian J, et al. Cardiovascular manifestations in severe and critical patients with COVID-19. Clin Cardiol. 2020;43(7):796–802. doi: 10.1002/clc.23384. . Epub 2020 Jun 20.
    1. Amaratunga EA, Corwin DS, Moran L, Snyder R. Bradycardia in patients with COVID-19: a calm before the storm? Cureus. 2020;12:e8599.
    1. McCullough SA, Goyal P, Krishnan U, Choi JJ, Safford MM, Okin PM. Electrocardiographic findings in COVID-19: insights on mortality and underlying myocardial processes. J Card Fail. 2020;26(7):626–632. doi: 10.1016/j.cardfail.2020.06.005. . Epub 2020 Jun 13.
    1. Pavri BB, Kloo J, Farzad D, Riley JM. Behavior of the PR interval with increasing heart rate in patients with COVID-19. Heart Rhythm. 2020 Jun 11 doi: 10.1016/j.hrthm.2020.06.009. S1547-5271(20)30551-8. Online ahead of print.
    1. Russo V, Rago A, Carbone A, Bottino R, Ammendola E, Della Cioppa N, et al. Atrial fibrillation in COVID-19: from epidemiological association to pharmacological implications. J Cardiovasc Pharmacol. 2020;76(2):138–145. doi: 10.1097/FJC.0000000000000854.
    1. Manolis AS. Rhythm or rate control management of atrial fibrillation: an overrated dilemma. Hellenic J Cardiol. 2015;56:495–500.
    1. Holt A, Gislason GH, Schou M, Zareini B, Biering-Sørensen T, Phelps M, et al. New-onset atrial fibrillation: incidence, characteristics, and related events following a national COVID-19 lockdown of 5.6 million people. Eur Heart J. 2020 Jun 24 doi: 10.1093/eurheartj/ehaa494. ehaa494. Online ahead of print.
    1. Varshneya M, Irurzun-Arana I, Campana C, Dariolli R, Gutierrez A, Pullinger TK, et al. Investigational treatments for COVID-19 may increase ventricular arrhythmia risk through drug interactions. medRxiv. 2020 doi: 10.1101/2020.05.21.20109397. 2020.05.21.20109397Preprint.
    1. Bavishi C, Bonow RO, Trivedi V, Abbott JD, Messerli FH, Bhatt DL. Acute myocardial injury in patients hospitalized with COVID-19 infection: A review. Prog Cardiovasc Dis. 2020 doi: 10.1016/j.pcad.2020.05.013. S0033-0620(20)30123-7.
    1. Roden DM, Harrington RA, Poppas A, Russo AM. Considerations for drug interactions on QTc interval in exploratory COVID-19 treatment. J Am Coll Cardiol. 2020;75:2623–2624.
    1. Toubiana J, Poirault C, Corsia A, Bajolle F, Fourgeaud J, Angoulvant F, et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. Bmj. 2020;369:m2094.
    1. Baldi E, Sechi GM, Mare C, Canevari F, Brancaglione A, Primi R, et al. COVID-19 kills at home: the close relationship between the epidemic and the increase of out-of-hospital cardiac arrests. Eur Heart J. 2020 Jun 20 doi: 10.1093/eurheartj/ehaa508. ehaa508Online ahead of print.
    1. Marijon E, Karam N, Jost D, Perrot D, Frattini B, Derkenne C, et al. Out-of-hospital cardiac arrest during the COVID-19 pandemic in Paris, France: a population-based, observational study. Lancet Public Health. 2020;5(8):e437–e443. doi: 10.1016/S2468-2667(20)30117-1. Epub 2020 May 27.
    1. Mosholder AD, Mathew J, Alexander JJ, Smith H, Nambiar S. Cardiovascular risks with azithromycin and other antibacterial drugs. N Engl J Med. 2013;368:1665–1668.
    1. Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;55
    1. Uzelac I, Iravanian S, Ashikaga H, Bhatia NK, Herndon C, Kaboudian A, et al. Fatal arrhythmias: another reason why doctors remain cautious about chloroquine/hydroxychloroquine for treating COVID-19. Heart Rhythm. 2020 doi: 10.1016/j.hrthm.2020.05.030. S1547-5271(20)30526-9Online ahead of print.
    1. Borba MGS, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, Brito M, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open. 2020;3
    1. Jankelson L, Karam G, Becker ML, Chinitz LA, Tsai MC. QT prolongation, torsades de pointes, and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-19: A systematic review. Heart Rhythm. 2020 May 11 doi: 10.1016/j.hrthm.2020.05.008. S1547-5271(20)30431-8Online ahead of print.
    1. Kim MH, Berkowitz C, Trohman RG. Polymorphic ventricular tachycardia with a normal QT interval following azithromycin. Pacing Clin Electrophysiol. 2005;28:1221–1222.
    1. Yang Z, Prinsen JK, Bersell KR, Shen W, Yermalitskaya L, Sidorova T, et al. Azithromycin causes a novel proarrhythmic syndrome. Circ Arrhythm Electrophysiol. 2017:10.
    1. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020;382:1787–1799.
    1. van der Lee M, Sankatsing R, Schippers E, Vogel M, Fätkenheuer G, van der Ven A, et al. Pharmacokinetics and pharmacodynamics of combined use of lopinavir/ritonavir and rosuvastatin in HIV-infected patients. Antivir Ther. 2007;12:1127–1132.
    1. David OJ, Kovarik JM, Schmouder RL. Clinical pharmacokinetics of fingolimod. Clin Pharmacokinet. 2012;51:15–28.
    1. Pilote S, Simard C, Drolet B. Fingolimod (Gilenya(®)) in multiple sclerosis: bradycardia, atrioventricular blocks, and mild effect on the QTc interval. Something to do with the L-type calcium channel? Fundam Clin Pharmacol. 2017;31:392–402.
    1. Vargas WS, Perumal JS. Fingolimod and cardiac risk: latest findings and clinical implications. Ther Adv Drug Saf. 2013;4:119–124.
    1. Ramireddy A, Chugh H, Reinier K, Ebinger J, Park E, Thompson M, et al. Experience with hydroxychloroquine and azithromycin in the coronavirus disease 2019 pandemic: implications for QT interval monitoring. J Am Heart Assoc. 2020;9
    1. Saleh M, Gabriels J, Chang D, Kim BS, Mansoor A, Mahmood E, et al. Effect of chloroquine, hydroxychloroquine and azithromycin on the corrected QT interval in patients with SARS-CoV-2 infection. Circ Arrhythm Electrophysiol. 2020;13
    1. Cipriani A, Zorzi A, Ceccato D, Capone F, Parolin M, Donato F, et al. Arrhythmic profile and 24-hour QT interval variability in COVID-19 patients treated with hydroxychloroquine and azithromycin. Int J Cardiol. 2020 doi: 10.1016/j.ijcard.2020.05.036. S0167-5273(20)32223-3Online ahead of print.
    1. Vouri SM, Thai TN, Winterstein AG. An evaluation of co-use of chloroquine or hydroxychloroquine plus azithromycin on cardiac outcomes: A pharmacoepidemiological study to inform use during the COVID19 pandemic. Res Social Adm Pharm. 2020 doi: 10.1016/j.sapharm.2020.04.031. S1551-7411(20)30468-XOnline ahead of print.
    1. Bun SS, Taghji P, Courjon J, Squara F, Scarlatti D, Theodore G, et al. QT interval prolongation under hydroxychloroquine/ azithromycin association for inpatients with SARS-CoV-2 lower respiratory tract infection. Clin Pharmacol Ther. 2020 doi: 10.1002/cpt.1968. Online ahead of print.
    1. Gollob MH. Clinical trials and qt-prolonging prophylactic therapy in healthy subjects: first, do no harm. J Am Coll Cardiol. 2020;75:3184–3186.
    1. Schwartz PJ, Woosley RL. Predicting the unpredictable: drug-induced qt prolongation and torsades de pointes. J Am Coll Cardiol. 2016;67:1639–1650.
    1. Giudicessi JR, Roden DM, Wilde AAM, Ackerman MJ. Genetic susceptibility for COVID-19-associated sudden cardiac death in African Americans. Heart Rhythm. 2020 May 5 doi: 10.1016/j.hrthm.2020.04.045. S1547-5271(20)30419-7Online ahead of print.
    1. Giudicessi JR, Noseworthy PA, Ackerman MJ. The QT interval. Circulation. 2019;139:2711–2713.
    1. Rautaharju PM, Zhang ZM, Prineas R, Heiss G. Assessment of prolonged QT and JT intervals in ventricular conduction defects. Am J Cardiol. 2004;93:1017–1021.
    1. Bogossian H, Frommeyer G, Ninios I, Hasan F, Nguyen QS, Karosiene Z, et al. New formula for evaluation of the QT interval in patients with left bundle branch block. Heart Rhythm. 2014;11:2273–2277.
    1. Giudicessi JR, Noseworthy PA, Friedman PA, Ackerman MJ. Urgent guidance for navigating and circumventing the QTc-prolonging and torsadogenic potential of possible pharmacotherapies for coronavirus disease 19 (COVID-19) Mayo Clin Proc. 2020;95:1213–1221.
    1. Garabelli P, Stavrakis S, Albert M, Koomson E, Parwani P, Chohan J, et al. Comparison of QT interval readings in normal sinus rhythm between a smartphone heart monitor and a 12-lead ECG for healthy volunteers and inpatients receiving sotalol or dofetilide. J Cardiovasc Electrophysiol. 2016;27:827–832.
    1. New FDA Guidance Allows Use of KardiaMobile 6L to Measure QTc in COVID-19 Patients. 2020. (Accessed June 12, 2020).
    1. Strik M, Caillol T, Ramirez FD, Abu-Alrub S, Marchand H, Welte N, et al. Validating QT-Interval measurement using the apple watch ECG to enable remote monitoring during the COVID-19 pandemic. Circulation. 2020;142(4):416–418. doi: 10.1161/CIRCULATIONAHA.120.048253. . Epub 2020 Jun 1.
    1. Roden DM. A practical approach to torsade de pointes. Clin Cardiol. 1997;20:285–290.
    1. Poulidakis E, Manolis AS. Transvenous temporary cardiac pacing. Rhythmos. 2014;9:20–27.
    1. Rattanawong P, Shen W, El Masry H, Sorajja D, Srivathsan K, Valverde A, et al. Guidance on acute management of atrial fibrillation in COVID-19. J Am Heart Assoc. 2020
    1. Viskin S, Wilde AA, Krahn AD, Zipes DP. Inaccessibility to quinidine therapy is about to get worse. J Am Coll Cardiol. 2013;62:355.
    1. Zimetbaum P. Antiarrhythmic drug therapy for atrial fibrillation. Circulation. 2012;125:381–389.
    1. Nielsen TL, Rasmussen BB, Flinois JP, Beaune P, Brosen K. In vitro metabolism of quinidine: the (3S)-3-hydroxylation of quinidine is a specific marker reaction for cytochrome P-4503A4 activity in human liver microsomes. J Pharmacol Exp Ther. 1999;289:31–37.
    1. Lessard E, Fortin A, Bélanger PM, Beaune P, Hamelin BA, Turgeon J. Role of CYP2D6 in the N-hydroxylation of procainamide. Pharmacogenetics. 1997;7:381–390.
    1. Oguayo KN, Oyetayo OO, Costa SM, Mixon TA. An unusual case of flecainide-induced QT prolongation leading to cardiac arrest. Pharmacotherapy. 2014;34:e30–e33.
    1. Cardiac Arrhythmia Suppression Trial (CAST) Investigators. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction N Engl J Med. 1989;321:406–412.
    1. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS: the task force for the management of atrial fibrillation of the European society of cardiology (ESC)developed with the special contribution of the european heart rhythm association (EHRA) of the ESCEndorsed by the European stroke organisation (ESO) Eur Heart J. 2016;37:2893–2962.
    1. Van Gelder IC, Rienstra M, Crijns HJ, Olshansky B. Rate control in atrial fibrillation. Lancet. 2016;388:818–828.
    1. Lydtin H. Side effects and contraindications of beta-receptor blocking agents. Klin Wochenschr. 1977;55:415–422.
    1. Kaufman ES, Zimmermann PA, Wang T, Dennish GW, 3rd, Barrell PD, Chandler ML, et al. Risk of proarrhythmic events in the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study: a multivariate analysis. J Am Coll Cardiol. 2004;44:1276–1282.
    1. Manolis AS, Tordjman T, Mack KD, Estes NA 3rd. Atypical pulmonary and neurologic complications of amiodarone in the same patient. Report of a case and review of the literature. Arch Intern Med. 1987;147:1805–1809.
    1. Manolis AS, Uricchio F, Estes NA 3rd. Prognostic value of early electrophysiologic studies for ventricular tachycardia recurrence in patients with coronary artery disease treated with amiodarone. Am J Cardiol. 1989;63:1052–1057.
    1. Manolis AS. Dronedarone: the hope and the hype. Rhythmos. 2011;6:21–23.
    1. Manolis AS. Did PALLAS deliver the final blow to dronedarone? Rhythmos. 2012;7:1–2.
    1. Chiladakis JA, Kalogeropoulos A, Patsouras N, Manolis AS. Ibutilide added to propafenone for the conversion of atrial fibrillation and atrial flutter. J Am Coll Cardiol. 2004;44:859–863.
    1. Waldo AL, Camm AJ, deRuyter H, Friedman PL, MacNeil DJ, Pauls JF, et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD Investigators. Survival With Oral d-Sotalol. Lancet. 1996;348:7–12.
    1. Manolis AS, Bethanis S, Metaxa S, Polytarchou K, Sakellaris N, Pyrros I. Use of intravenous vernakalant for atrial fibrillation conversion in the regular ward under only bedside monitoring. Hellenic J Cardiol. 2019;60:54–56.
    1. Cattaneo D, Formenti T, Astuti N, Meraviglia P, Ridolfo A, Gervasoni C. How relevant are the drug-drug interactions between antiretroviral boosted-based regimens and calcium channel blockers in real life? J Antimicrob Chemother. 2018;73:2271–2273.
    1. Ding R, Tayrouz Y, Riedel KD, Burhenne J, Weiss J, Mikus G, et al. Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther. 2004;76:73–84.
    1. Manolis AA, Manolis TA, Apostolopoulos EJ, Apostolaki NE, Melita H, Manolis AS. The role of the autonomic nervous system in cardiac arrhythmias: the neuro-cardiac axis, more foe than friend? Trends Cardiovasc Med. 2020 May 17 doi: 10.1016/j.tcm.2020.04.011. S1050-1738(20)30066-9Online ahead of print.
    1. Chigr F, Merzouki M, Najimi M. Autonomic brain centers and pathophysiology of COVID-19. ACS Chem Neurosci. 2020;11:1520–1522.
    1. Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov. 2005;4:673–684.
    1. Fudim M, Qadri YJ, Ghadimi K, MacLeod DB, Molinger J, Piccini JP, et al. Implications for neuromodulation therapy to control inflammation and related organ dysfunction in COVID-19. J Cardiovasc Transl Res. 2020:1–6.
    1. Tracey KJ. The inflammatory reflex. Nature. 2002;420:853–859.
    1. Bassi GS, Kanashiro A, Coimbra NC, Terrando N, Maixner W, Ulloa L. Anatomical and clinical implications of vagal modulation of the spleen. Neurosci Biobehav Rev. 2020;112:363–373.
    1. Ackland GL, Whittle J, Toner A, Machhada A, Del Arroyo AG, Sciuso A, et al. Molecular mechanisms linking autonomic dysfunction and impaired cardiac contractility in critical illness. Crit Care Med. 2016;44:e614–e624.
    1. Liu Q, Chen H, Zeng Q. Clinical characteristics of COVID-19 patients with complication of cardiac arrhythmia. J Infect. 2020;81(3):e6–e8. doi: 10.1016/j.jinf.2020.07.012. . Epub 2020 Jul 11.
    1. Sandoval Y, Januzzi JL, Jr., Jaffe AS. Cardiac troponin for the diagnosis and risk-stratification of myocardial injury in COVID-19: JACC review topic of the week. J Am Coll Cardiol. 2020 doi: 10.1016/j.jacc.2020.06.068. S0735-1097(20)35888-5Online ahead of print.
    1. Zaman S, MacIsaac AI, Jennings GL, Schlaich MP, Inglis SC, Arnold R, et al. Cardiovascular disease and COVID-19: Australian and New Zealand consensus statement. Med J Aust. 2020 doi: 10.5694/mja2.50714. Online ahead of print.
    1. Manolis AS, Manolis TA. Pediatric inflammatory multisystem syndrome temporally associated with SARS-Cov-2 infection (PIMS-TS): Kawasaki-like multisystem inflammatory syndrome in children (MIS-C) during the COVID-19 pandemic with predominant myocarditis. Rhythmos. 2020;15:42–46.
    1. Yasuhara J, Kuno T, Takagi H, Sumitomo N. Clinical characteristics of COVID-19 in children: a systematic review. Pediatr Pulmonol. 2020 doi: 10.1002/ppul.24991. Online ahead of print.
    1. Samuel S, Friedman RA, Sharma C, Ganigara M, Mitchell E, Schleien C, et al. Incidence of arrhythmias and electrocardiographic abnormalities in symptomatic pediatric patients with PCR-positive SARS-CoV-2 infection, including drug-induced changes in the corrected QT interval. Heart Rhythm. 2020 doi: 10.1016/j.hrthm.2020.06.033. S1547-5271(20)30632-9. Online ahead of print.
    1. Varma N, Marrouche NF, Aguinaga L, Albert CM, Arbelo E, Choi JI, et al. HRS/EHRA/APHRS/LAHRS/ACC/AHA worldwide practice update for telehealth and arrhythmia monitoring during and after a pandemic. Europace. 2020:euaa187. doi: 10.1093/europace/euaa187. Online ahead of print.
    1. Steinberg JS, Varma N, Cygankiewicz I, Aziz P, Balsam P, Baranchuk A, et al. 2017 ISHNE-HRS expert consensus statement on ambulatory ECG and external cardiac monitoring/telemetry. Heart Rhythm. 2017;14:e55–e96.
    1. Linz D, Pluymaekers N, Hendriks JM. TeleCheck-AF for COVID-19. Eur Heart J. 2020;41:1954–1955.

Source: PubMed

3
Subscribe