2021 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Neonatal Life Support; Education, Implementation, and Teams; First Aid Task Forces; and the COVID-19 Working Group

Myra H Wyckoff, Eunice M Singletary, Jasmeet Soar, Theresa M Olasveengen, Robert Greif, Helen G Liley, David Zideman, Farhan Bhanji, Lars W Andersen, Suzanne R Avis, Khalid Aziz, Jason C Bendall, David C Berry, Vere Borra, Bernd W Böttiger, Richard Bradley, Janet E Bray, Jan Breckwoldt, Jestin N Carlson, Pascal Cassan, Maaret Castrén, Wei-Tien Chang, Nathan P Charlton, Adam Cheng, Sung Phil Chung, Julie Considine, Daniela T Costa-Nobre, Keith Couper, Katie N Dainty, Peter G Davis, Maria Fernanda de Almeida, Allan R de Caen, Edison F de Paiva, Charles D Deakin, Therese Djärv, Matthew J Douma, Ian R Drennan, Jonathan P Duff, Kathryn J Eastwood, Walid El-Naggar, Jonathan L Epstein, Raffo Escalante, Jorge G Fabres, Joe Fawke, Judith C Finn, Elizabeth E Foglia, Fredrik Folke, Karoline Freeman, Elaine Gilfoyle, Craig A Goolsby, Amy Grove, Ruth Guinsburg, Tetsuo Hatanaka, Mary Fran Hazinski, George S Heriot, Karen G Hirsch, Mathias J Holmberg, Shigeharu Hosono, Ming-Ju Hsieh, Kevin K C Hung, Cindy H Hsu, Takanari Ikeyama, Tetsuya Isayama, Vishal S Kapadia, Mandira Daripa Kawakami, Han-Suk Kim, David A Kloeck, Peter J Kudenchuk, Anthony T Lagina, Kasper G Lauridsen, Eric J Lavonas, Andrew S Lockey, Carolina Malta Hansen, David Markenson, Tasuku Matsuyama, Christopher J D McKinlay, Amin Mehrabian, Raina M Merchant, Daniel Meyran, Peter T Morley, Laurie J Morrison, Kevin J Nation, Michael Nemeth, Robert W Neumar, Tonia Nicholson, Susan Niermeyer, Nikolaos Nikolaou, Chika Nishiyama, Brian J O'Neil, Aaron M Orkin, Osokogu Osemeke, Michael J Parr, Catherine Patocka, Jeffrey L Pellegrino, Gavin D Perkins, Jeffrey M Perlman, Yacov Rabi, Joshua C Reynolds, Giuseppe Ristagno, Charles C Roehr, Tetsuya Sakamoto, Claudio Sandroni, Taylor Sawyer, Georg M Schmölzer, Sebastian Schnaubelt, Federico Semeraro, Markus B Skrifvars, Christopher M Smith, Michael A Smyth, Roger F Soll, Takahiro Sugiura, Sian Taylor-Phillips, Daniele Trevisanuto, Christian Vaillancourt, Tzong-Luen Wang, Gary M Weiner, Michelle Welsford, Jane Wigginton, Jonathan P Wyllie, Joyce Yeung, Jerry P Nolan, Katherine M Berg, COVID-19 Working Group, Cristian Abelairas-Gómez, Roberto Barcala-Furelos, Stephen B Beerman, Joost Bierens, Sofia Cacciola, Jacqueline Cellini, Andreas Claesson, Rachael Court, Sonia D'Arrigo, Niels De Brier, Cody L Dunne, Hylmar E Elsenga, Samantha Johnson, Gunn Kleven, Ian Maconochie, Tom Mecrow, Patrick Morgan, Quentin Otto, Tina L Palmieri, Sam Parnia, Rahul Pawar, João Pereira, Sarah Rudd, Andrea Scapigliati, Andrew Schmidt, Jeroen Seesink, Justin R Sempsrott, David Szpilman, David S Warner, Jonathon B Webber, Rebecca L West, Myra H Wyckoff, Eunice M Singletary, Jasmeet Soar, Theresa M Olasveengen, Robert Greif, Helen G Liley, David Zideman, Farhan Bhanji, Lars W Andersen, Suzanne R Avis, Khalid Aziz, Jason C Bendall, David C Berry, Vere Borra, Bernd W Böttiger, Richard Bradley, Janet E Bray, Jan Breckwoldt, Jestin N Carlson, Pascal Cassan, Maaret Castrén, Wei-Tien Chang, Nathan P Charlton, Adam Cheng, Sung Phil Chung, Julie Considine, Daniela T Costa-Nobre, Keith Couper, Katie N Dainty, Peter G Davis, Maria Fernanda de Almeida, Allan R de Caen, Edison F de Paiva, Charles D Deakin, Therese Djärv, Matthew J Douma, Ian R Drennan, Jonathan P Duff, Kathryn J Eastwood, Walid El-Naggar, Jonathan L Epstein, Raffo Escalante, Jorge G Fabres, Joe Fawke, Judith C Finn, Elizabeth E Foglia, Fredrik Folke, Karoline Freeman, Elaine Gilfoyle, Craig A Goolsby, Amy Grove, Ruth Guinsburg, Tetsuo Hatanaka, Mary Fran Hazinski, George S Heriot, Karen G Hirsch, Mathias J Holmberg, Shigeharu Hosono, Ming-Ju Hsieh, Kevin K C Hung, Cindy H Hsu, Takanari Ikeyama, Tetsuya Isayama, Vishal S Kapadia, Mandira Daripa Kawakami, Han-Suk Kim, David A Kloeck, Peter J Kudenchuk, Anthony T Lagina, Kasper G Lauridsen, Eric J Lavonas, Andrew S Lockey, Carolina Malta Hansen, David Markenson, Tasuku Matsuyama, Christopher J D McKinlay, Amin Mehrabian, Raina M Merchant, Daniel Meyran, Peter T Morley, Laurie J Morrison, Kevin J Nation, Michael Nemeth, Robert W Neumar, Tonia Nicholson, Susan Niermeyer, Nikolaos Nikolaou, Chika Nishiyama, Brian J O'Neil, Aaron M Orkin, Osokogu Osemeke, Michael J Parr, Catherine Patocka, Jeffrey L Pellegrino, Gavin D Perkins, Jeffrey M Perlman, Yacov Rabi, Joshua C Reynolds, Giuseppe Ristagno, Charles C Roehr, Tetsuya Sakamoto, Claudio Sandroni, Taylor Sawyer, Georg M Schmölzer, Sebastian Schnaubelt, Federico Semeraro, Markus B Skrifvars, Christopher M Smith, Michael A Smyth, Roger F Soll, Takahiro Sugiura, Sian Taylor-Phillips, Daniele Trevisanuto, Christian Vaillancourt, Tzong-Luen Wang, Gary M Weiner, Michelle Welsford, Jane Wigginton, Jonathan P Wyllie, Joyce Yeung, Jerry P Nolan, Katherine M Berg, COVID-19 Working Group, Cristian Abelairas-Gómez, Roberto Barcala-Furelos, Stephen B Beerman, Joost Bierens, Sofia Cacciola, Jacqueline Cellini, Andreas Claesson, Rachael Court, Sonia D'Arrigo, Niels De Brier, Cody L Dunne, Hylmar E Elsenga, Samantha Johnson, Gunn Kleven, Ian Maconochie, Tom Mecrow, Patrick Morgan, Quentin Otto, Tina L Palmieri, Sam Parnia, Rahul Pawar, João Pereira, Sarah Rudd, Andrea Scapigliati, Andrew Schmidt, Jeroen Seesink, Justin R Sempsrott, David Szpilman, David S Warner, Jonathon B Webber, Rebecca L West

Abstract

The International Liaison Committee on Resuscitation initiated a continuous review of new, peer-reviewed published cardiopulmonary resuscitation science. This is the fifth annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations; a more comprehensive review was done in 2020. This latest summary addresses the most recently published resuscitation evidence reviewed by International Liaison Committee on Resuscitation task force science experts. Topics covered by systematic reviews in this summary include resuscitation topics of video-based dispatch systems; head-up cardiopulmonary resuscitation; early coronary angiography after return of spontaneous circulation; cardiopulmonary resuscitation in the prone patient; cord management at birth for preterm and term infants; devices for administering positive-pressure ventilation at birth; family presence during neonatal resuscitation; self-directed, digitally based basic life support education and training in adults and children; coronavirus disease 2019 infection risk to rescuers from patients in cardiac arrest; and first aid topics, including cooling with water for thermal burns, oral rehydration for exertional dehydration, pediatric tourniquet use, and methods of tick removal. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the quality of the evidence, according to the Grading of Recommendations Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations or good practice statements. Insights into the deliberations of the task forces are provided in Justification and Evidence-to-Decision Framework Highlights sections. In addition, the task forces listed priority knowledge gaps for further research.

Keywords: AHA Scientific Statements; Advanced cardiac life support; Cardiopulmonary resuscitation; First aid; Health plan implementation; Infant, newborn.

Copyright © 2021 European Resuscitation Council, American Heart Association, Inc. and International Liaison Committee on Resuscitation. Published by Elsevier B.V. All rights reserved.

References

    1. Guyatt G., Oxman A.D., Akl E.A., Kunz R., Vist G., Brozek J., Norris S., Falck-Ytter Y., Glasziou P., DeBeer H., et al. GRADE guidelines, 1: introduction–GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64:383–394. doi: 10.1016/j.jclinepi.2010.04.026.
    1. Chung S, Avis S, Castren M, Considine J, Folke F, Hung K, Ikeyama T, Kudenchuk P, Lagina A, Malta-Hansen C, et al; International Liaison Committee on Resuscitation Basic Life Support Task Force. Video-based dispatch system: BLS Task Force systematic review.Accessed March 4, 2021.
    1. Lee S.Y., Song K.J., Shin S.D., Hong K.J., Kim T.H. Comparison of the effects of audio-instructed and video-instructed dispatcher-assisted cardiopulmonary resuscitation on resuscitation outcomes after out-of-hospital cardiac arrest. Resuscitation. 2020;147:12–20. doi: 10.1016/j.resuscitation.2019.12.004.
    1. Atkinson P.R., Bingham J., McNicholl B.P., Loane M.A., Wootton R. Telemedicine and cardiopulmonary resuscitation: the value of video-link and telephone instruction to a mock bystander. J Telemed Telecare. 1999;5:242–245. doi: 10.1258/1357633991933783.
    1. Bang J.Y., Cho Y., Cho G.C., Lee J., Kim IY. Can mobile videocall assist laypersons’ use of automated external defibrillators? A randomized simulation study and qualitative analysis. Biomed Res Int. 2020;2020:4069749. doi: 10.1155/2020/4069749.
    1. Bolle S.R., Scholl J., Gilbert M. Can video mobile phones improve CPR quality when used for dispatcher assistance during simulated cardiac arrest? Acta Anaesthesiol Scand. 2009;53:116–120. doi: 10.1111/j.1399-6576.2008.01779.x.
    1. Dong X., Zhang L., Myklebust H., Birkenes T.S., Zheng Z.J. Effect of a real-time feedback smartphone application (TCPRLink) on the quality of telephone-assisted CPR performed by trained laypeople in China: a manikin-based randomised controlled study. BMJ Open. 2020;10:e038813. doi: 10.1136/bmjopen-2020-038813.
    1. Ecker H., Wingen S., Hamacher S., Lindacher F., Bottiger B.W., Wetsch W.A. Evaluation of CPR quality via smartphone with a video livestream: a study in a metropolitan area. Prehosp Emerg Care. 2021;25:76–81. doi: 10.1080/10903127.2020.1734122.
    1. Hunt E.A., Heine M., Shilkofski N.S., Bradshaw J.H., Nelson-McMillan K., Duval-Arnould J., Elfenbein R. Exploration of the impact of a voice activated decision support system (VADSS) with video on resuscitation performance by lay rescuers during simulated cardiopulmonary arrest. Emerg Med J. 2015;32:189–194. doi: 10.1136/emermed-2013-202867.
    1. Lee J.S., Jeon W.C., Ahn J.H., Cho Y.J., Jung Y.S., Kim G.W. The effect of a cellular-phone video demonstration to improve the quality of dispatcher-assisted chest compression-only cardiopulmonary resuscitation as compared with audio coaching. Resuscitation. 2011;82:64–68. doi: 10.1016/j.resuscitation.2010.09.467.
    1. Márquez-Hernández V.V., Gutiérrez-Puertas L., Garrido-Molina J.M., García-Viola A., Granados-Gámez G., Aguilera-Manrique G. Using a mobile phone application versus telephone assistance during cardiopulmonary resuscitation: a randomized comparative study. J Emerg Nurs. 2020;46:460–467.e2. doi: 10.1016/j.jen.2020.03.015.
    1. Perry O., Wacht O., Jaffe E., Sinuany-Stern Z., Bitan Y. Using a filming protocol to improve video-instructed cardiopulmonary resuscitation. Technol Health Care. 2020;28:213–220. doi: 10.3233/THC-192024.
    1. Plata C., Stolz M., Warnecke T., Steinhauser S., Hinkelbein J., Wetsch W.A., Böttiger B.W., Spelten O. Using a smartphone application (PocketCPR) to determine CPR quality in a bystander CPR scenario: a manikin trial. Resuscitation. 2019;137:87–93. doi: 10.1016/j.resuscitation.2019.01.039.
    1. Stipulante S., Delfosse A.S., Donneau A.F., Hartsein G., Haus S., D’Orio V., Ghuysen A. Interactive videoconferencing versus audio telephone calls for dispatcher-assisted cardiopulmonary resuscitation using the ALERT algorithm: a randomized trial. Eur J Emerg Med. 2016;23:418–424. doi: 10.1097/MEJ.0000000000000338.
    1. Yang C.W., Wang H.C., Chiang W.C., Chang W.T., Yen Z.S., Chen S.Y., Ko P.C., Ma M.H., Chen S.C., Chang S.C., et al. Impact of adding video communication to dispatch instructions on the quality of rescue breathing in simulated cardiac arrests: a randomized controlled study. Resuscitation. 2008;78:327–332. doi: 10.1016/j.resuscitation.2008.03.232.
    1. Yang C.W., Wang H.C., Chiang W.C., Hsu C.W., Chang W.T., Yen Z.S., Ko P.C., Ma M.H., Chen S.C., Chang S.C. Interactive video instruction improves the quality of dispatcher-assisted chest compression-only cardiopulmonary resuscitation in simulated cardiac arrests. Crit Care Med. 2009;37:490–495. doi: 10.1097/CCM.0b013e31819573a5.
    1. Lin Y.Y., Chiang W.C., Hsieh M.J., Sun J.T., Chang Y.C., Ma M.H. Quality of audio-assisted versus video-assisted dispatcher-instructed bystander cardiopulmonary resuscitation: a systematic review and meta-analysis. Resuscitation. 2018;123:77–85. doi: 10.1016/j.resuscitation.2017.12.010.
    1. Debaty G., Shin S.D., Metzger A., Kim T., Ryu H.H., Rees J., McKnite S., Matsuura T., Lick M., Yannopoulos D., et al. Tilting for perfusion: head-up position during cardiopulmonary resuscitation improves brain flow in a porcine model of cardiac arrest. Resuscitation. 2015;87:38–43. doi: 10.1016/j.resuscitation.2014.11.019.
    1. Ryu H.H., Moore J.C., Yannopoulos D., Lick M., McKnite S., Shin S.D., Kim T.Y., Metzger A., Rees J., Tsangaris A., et al. The effect of head up cardiopulmonary resuscitation on cerebral and systemic hemodynamics. Resuscitation. 2016;102:29–34. doi: 10.1016/j.resuscitation.2016.01.033.
    1. Kim T., Shin S.D., Song K.J., Park Y.J., Ryu H.H., Debaty G., Lurie K., Hong K.J. The effect of resuscitation position on cerebral and coronary perfusion pressure during mechanical cardiopulmonary resuscitation in porcine cardiac arrest model. Resuscitation. 2017;113:101–107. doi: 10.1016/j.resuscitation.2017.02.008.
    1. Moore J.C., Salverda B., Rojas-Salvador C., Lick M., Debaty G., Lurie K.G. Controlled sequential elevation of the head and thorax combined with active compression decompression cardiopulmonary resuscitation and an impedance threshold device improves neurological survival in a porcine model of cardiac arrest. Resuscitation. 2021;158:220–227. doi: 10.1016/j.resuscitation.2020.09.030.
    1. Rojas-Salvador C., Moore J.C., Salverda B., Lick M., Debaty G., Lurie K.G. Effect of controlled sequential elevation timing of the head and thorax during cardiopulmonary resuscitation on cerebral perfusion pressures in a porcine model of cardiac arrest. Resuscitation. 2020;149:162–169. doi: 10.1016/j.resuscitation.2019.12.011.
    1. Park Y.J., Hong K.J., Shin S.D., Kim T.Y., Ro Y.S., Song K.J., Ryu H.H. Worsened survival in the head-up tilt position cardiopulmonary resuscitation in a porcine cardiac arrest model. Clin Exp Emerg Med. 2019;6:250–256. doi: 10.15441/ceem.18.060.
    1. Wigginton J, Olasveengen TM, O’Neil B, Berg K, Kudenchuck P, Ristagno G, Morley PT; International Liaison Committee on Resuscitation Basic and Advanced Life Support Task Forces. Head-up CPR: BLS systematic review.Accessed March 4, 2021.
    1. Pepe P.E., Scheppke K.A., Antevy P.M., Crowe R.P., Millstone D., Coyle C., Prusansky C., Garay S., Ellis R., Fowler R.L., et al. Confirming the clinical safety and feasibility of a bundled methodology to improve cardiopulmonary resuscitation involving a head-up/torso-up chest compression technique. Crit Care Med. 2019;47:449–455. doi: 10.1097/CCM.0000000000003608.
    1. World Health Organization. Drowning.Accessed March 4, 2021.
    1. Bierens J., Abelairas-Gomez C., Barcala Furelos R., Beerman S., Claesson A., Dunne C., Elsenga H.E., Morgan P., Mecrow T., Pereira J.C., et al. Resuscitation and emergency care in drowning: a scoping review. Resuscitation. 2021;162:205–217. doi: 10.1016/j.resuscitation.2021.01.033.
    1. Bierens J, Barcala-Furelos R, Beerman S, Claesson A, Dunne C, Elsenga H, Abelairas-Gomez C, Morgan P, Mecrow T, Pereira JCC, et al; International Liaison Committee on Resuscitation Basic Life Support Task Force. Bystander CPR in drowning (BLS #856): scoping review. Accessed March 4, 2021.
    1. Al-Mofadda S.M., Nassar A., Al-Turki A., Al-Sallounm A.A. Pediatric near drowning: the experience of King Khalid University Hospital. Ann Saudi Med. 2001;21:300–303. doi: 10.5144/0256-4947.2001.300.
    1. Claesson A., Svensson L., Silfverstolpe J., Herlitz J. Characteristics and outcome among patients suffering out-of-hospital cardiac arrest due to drowning. Resuscitation. 2008;76:381–387. doi: 10.1016/j.resuscitation.2007.09.003.
    1. Ballesteros M.A., Gutiérrez-Cuadra M., Muñoz P., Miñambres E. Prognostic factors and outcome after drowning in an adult population. Acta Anaesthesiol Scand. 2009;53:935–940. doi: 10.1111/j.1399-6576.2009.02020.x.
    1. Grmec S., Strnad M., Podgorsek D. Comparison of the characteristics and outcome among patients suffering from out-of-hospital primary cardiac arrest and drowning victims in cardiac arrest. Int J Emerg Med. 2009;2:7–12. doi: 10.1007/s12245-009-0084-0.
    1. Youn C.S., Choi S.P., Yim H.W., Park K.N. Out-of-hospital cardiac arrest due to drowning: an Utstein style report of 10 years of experience from St. Mary’s Hospital. Resuscitation. 2009;80:778–783. doi: 10.1016/j.resuscitation.2009.04.007.
    1. Venema A.M., Groothoff J.W., Bierens J.J. The role of bystanders during rescue and resuscitation of drowning victims. Resuscitation. 2010;81:434–439. doi: 10.1016/j.resuscitation.2010.01.005.
    1. Claesson A., Lindqvist J., Ortenwall P., Herlitz J. Characteristics of lifesaving from drowning as reported by the Swedish Fire and Rescue Services 1996-2010. Resuscitation. 2012;83:1072–1077. doi: 10.1016/j.resuscitation.2012.05.025.
    1. Nitta M., Kitamura T., Iwami T., Nadkarni V.M., Berg R.A., Topjian A.A., Okamoto Y., Nishiyama C., Nishiuchi T., Hayashi Y., et al. Out-of-hospital cardiac arrest due to drowning among children and adults from the Utstein Osaka Project. Resuscitation. 2013;84:1568–1573. doi: 10.1016/j.resuscitation.2013.06.017.
    1. Buick J.E., Lin S., Rac V.E., Brooks S.C., Kierzek G., Morrison L.J. Drowning: an overlooked cause of out-of-hospital cardiac arrest in Canada. CJEM. 2014;16:314–321. doi: 10.2310/8000.2013.131069.
    1. Claesson A., Lindqvist J., Herlitz J. Cardiac arrest due to drowning: changes over time and factors of importance for survival. Resuscitation. 2014;85:644–648. doi: 10.1016/j.resuscitation.2014.02.006.
    1. Vähätalo R., Lunetta P., Olkkola K.T., Suominen P.K. Drowning in children: Utstein style reporting and outcome. Acta Anaesthesiol Scand. 2014;58:604–610. doi: 10.1111/aas.12298.
    1. Joanknecht L., Argent A.C., van Dijk M., van As A.B. Childhood drowning in South Africa: local data should inform prevention strategies. Pediatr Surg Int. 2015;31:123–130. doi: 10.1007/s00383-014-3637-0.
    1. Hubert H., Escutnaire J., Michelet P., Babykina E., El Khoury C., Tazarourte K., Vilhelm C., El Hiki L., Guinhouya B., Gueugniaud P.Y., GR-RéAC Can we identify termination of resuscitation criteria in cardiac arrest due to drowning: results from the French national out-of-hospital cardiac arrest registry. J Eval Clin Pract. 2016;22:924–931. doi: 10.1111/jep.12562.
    1. Al-Qurashi F.O., Yousef A.A., Aljoudi A., Alzahrani S.M., Al-Jawder N.Y., Al-Ahmar A.K., Al-Majed M.S., Abouollo H.M. A review of nonfatal drowning in the pediatric-age group: a 10-year experience at a university hospital in Saudi Arabia. Pediatr Emerg Care. 2019;35:782–786. doi: 10.1097/PEC.0000000000001232.
    1. Tobin J.M., Ramos W.D., Pu Y., Wernicki P.G., Quan L., Rossano J.W. Bystander CPR is associated with improved neurologically favourable survival in cardiac arrest following drowning. Resuscitation. 2017;115:39–43. doi: 10.1016/j.resuscitation.2017.04.004.
    1. Cohen N., Scolnik D., Rimon A., Balla U., Glatstein M. Childhood drowning: review of patients presenting to the emergency departments of 2 large tertiary care pediatric hospitals near and distant from the sea coast. Pediatr Emerg Care. 2020;36:e258–e262. doi: 10.1097/PEC.0000000000001394.
    1. Fukuda T., Ohashi-Fukuda N., Hayashida K., Kukita I. Association of bystander cardiopulmonary resuscitation and neurological outcome after out-of-hospital cardiac arrest due to drowning in Japan, 2013–2016. Resuscitation. 2019;141:111–120. doi: 10.1016/j.resuscitation.2019.06.005.
    1. Fukuda T., Ohashi-Fukuda N., Hayashida K., Kondo Y., Kukita I. Bystander-initiated conventional vs compression-only cardiopulmonary resuscitation and outcomes after out-of-hospital cardiac arrest due to drowning. Resuscitation. 2019;145:166–174. doi: 10.1016/j.resuscitation.2019.08.026.
    1. Deleted in proof
    1. Tobin J.M., Ramos W.D., Greenshields J., Dickinson S., Rossano J.W., Wernicki P.G., Markenson D., Vellano K., McNally B., CARES Surveillance Group Outcome of conventional bystander cardiopulmonary resuscitation in cardiac arrest following drowning. Prehosp Disaster Med. 2020;35:141–147. doi: 10.1017/S1049023X20000060.
    1. Olasveengen T.M., Mancini M.E., Perkins G.D., Avis S., Brooks S., Castrén M., Chung S.P., Considine J., Couper K., Escalante R., Adult Basic Life Support Collaborators, et al. Adult basic life support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2020;142(suppl):S41–S91. doi: 10.1161/CIR.0000000000000892.
    1. 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations, part 2: adult basic life support. Resuscitation. 2005;67:187–201. doi: 10.1016/j.resuscitation.2005.09.016.
    1. Bierens J, Barcala-Furelos R, Beerman S, Claesson A, Dunne C, Elsenga H, Abelairas-Gomez C, Morgan P, Mecrow T, Pereira JCC, et al; International Liaison Committee on Resuscitation Basic Life Support Task Force. In water resuscitation in drowning (BLS #856): scoping review.Accessed March 4, 2021.
    1. Szpilman D., Soares M. In-water resuscitation: is it worthwhile? Resuscitation. 2004;63:25–31. doi: 10.1016/j.resuscitation.2004.03.017.
    1. Perkins G.D. In-water resuscitation: a pilot evaluation. Resuscitation. 2005;65:321–324. doi: 10.1016/j.resuscitation.2004.12.002.
    1. Winkler B.E., Eff A.M., Ehrmann U., Eff S., Koch A., Kaehler W., Georgieff M., Muth C.M. Effectiveness and safety of in-water resuscitation performed by lifeguards and laypersons: a crossover manikin study. Prehosp Emerg Care. 2013;17:409–415. doi: 10.3109/10903127.2013.792892.
    1. Lungwitz Y.P., Nussbaum B.L., Paulat K., Muth C.M., Kranke P., Winkler B.E. A novel rescue-tube device for in-water resuscitation. Aerosp Med Hum Perform. 2015;86:379–385. doi: 10.3357/AMHP.4133.2015.
    1. Winkler B.E., Eff A.M., Eff S., Ehrmann U., Koch A., Kähler W., Muth C.M. Efficacy of ventilation and ventilation adjuncts during in-water-resuscitation: a randomized cross-over trial. Resuscitation. 2013;84:1137–1142. doi: 10.1016/j.resuscitation.2013.02.006.
    1. Bierens J, Barcala-Furelos R, Beerman S, Claesson A, Dunne C, Elsenga H, Abelairas-Gomez C, Morgan P, Mecrow T, Pereira JCC, et al; International Liaison Committee on Resuscitation Basic Life Support Task Force. Resuscitation on a boat following drowning (BLS #856): scoping review.Accessed March 4, 2021.
    1. Seesink J., Nieuwenburg S.A.V., van der Linden T., Bierens J.J.L.M. Circumstances, outcome and quality of cardiopulmonary resuscitation by lifeboat crews. Resuscitation. 2019;142:104–110. doi: 10.1016/j.resuscitation.2019.07.012.
    1. Kingdon D., Stapleton E., Stahl E. Successful resuscitation: novel partnership between paramedics and U.S. Coast Guard. Prehosp Emerg Care. 2016;20:432–438. doi: 10.3109/10903127.2015.1111478.
    1. Fungueiriño-Suárez R., Barcala-Furelos R., González-Fermoso M., Martínez-Isasi S., Fernández-Méndez F., González-Salvado V., Navarro-Patón R., Rodríguez-Núñez A. Coastal fishermen as lifesavers while sailing at high speed: a crossover study. Biomed Res Int. 2018;2018:2747046. doi: 10.1155/2018/2747046.
    1. Barcala-Furelos R., Abelairas-Gomez C., Palacios-Aguilar J., Rey E., Costas-Veiga J., Lopez-Garcia S., Rodriguez-Nunez A. Can surf-lifeguards perform a quality cardiopulmonary resuscitation sailing on a lifeboat? A quasi-experimental study. Emerg Med J. 2017;34:370–375. doi: 10.1136/emermed-2016-205952.
    1. Tipton M., David G., Eglin C., Golden F. Basic life support on small boats at sea. Resuscitation. 2007;75:332–337. doi: 10.1016/j.resuscitation.2007.04.027.
    1. de Vries W., Bierens J.J., Maas M.W. Moderate sea states do not influence the application of an AED in rigid inflatable boats. Resuscitation. 2006;70:247–253. doi: 10.1016/j.resuscitation.2006.01.008.
    1. Bierens J, Barcala-Furelos R, Beerman S, Claesson A, Dunne C, Elsenga H, Abelairas-Gomez C, Morgan P, Mecrow T, Pereira JCC, et al; International Liaison Committee on Resuscitation Basic Life Support Task Force. Airway management in drowning (BLS #856): scoping review.Accessed March 4, 2021.
    1. Garner A.A., Barker C.L., Weatherall A.D. Retrospective evaluation of prehospital triage, presentation, interventions and outcome in paediatric drowning managed by a physician staffed helicopter emergency medical service. Scand J Trauma Resusc Emerg Med. 2015;23:92. doi: 10.1186/s13049-015-0177-0.
    1. Salas Ballestin A., de Carlos Vicente J.C., Frontera Juan G., Sharluyan Petrosyan A., Reina Ferragut C.M., Gonzalez Calvar A., Clavero Rubio M.D.C., Fernandez de la Ballina A. Prognostic factors of children admitted to a pediatric intensive care unit after an episode of drowning. Pediatr Emerg Care. 2021;37:e192–e195. doi: 10.1097/PEC.0000000000001554.
    1. Kieboom J.K., Verkade H.J., Burgerhof J.G., Bierens J.J., Rheenen P.F., Kneyber M.C., Albers M.J. Outcome after resuscitation beyond 30 minutes in drowned children with cardiac arrest and hypothermia: Dutch nationwide retrospective cohort study. BMJ. 2015;350:h418. doi: 10.1136/bmj.h418.
    1. Berg K.M., Soar J., Andersen L.W., Böttiger B.W., Cacciola S., Callaway C.W., Couper K., Cronberg T., D’Arrigo S., Deakin C.D., on behalf of the Adult Advanced Life Support Collaborators, et al. Adult advanced life support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2020;142(suppl 1):S92–S139. doi: 10.1161/CIR.0000000000000893.
    1. Bierens J, Barcala Furelos R, Beerman S, Claesson A, Dunn C, Elsenga H, Gomez CA, Morgan P, Bierens J, Barcala-Furelos R, et al; International Liaison Committee on Resuscitation Basic Life Support Task Force. Pre-hospital oxygen in drowning (BLS #856): task force scoping review.Accessed March 4, 2021.
    1. Cantu R.M., Pruitt C.M., Samuy N., Wu C.L. Predictors of emergency department discharge following pediatric drowning. Am J Emerg Med. 2018;36:446–449. doi: 10.1016/j.ajem.2017.08.057.
    1. Cohen N., Capua T., Lahat S., Glatstein M., Sadot E., Rimon A. Predictors for hospital admission of asymptomatic to moderately symptomatic children after drowning. Eur J Pediatr. 2019;178:1379–1384. doi: 10.1007/s00431-019-03429-1.
    1. Gregorakos L., Markou N., Psalida V., Kanakaki M., Alexopoulou A., Sotiriou E., Damianos A., Myrianthefs P. Near-drowning: clinical course of lung injury in adults. Lung. 2009;187:93–97. doi: 10.1007/s00408-008-9132-4.
    1. Jung C.Y., Cha S.I., Jang S.S., Lee S.Y., Lee J.H., Son J.W., Park J.Y., Jung T.H., Kim C.H. Clinical feature of submersion injury in adults [in Korean]. Tuberc Respir Dis (Seoul). 2003;55:287–296. doi: 10.4046/trd.2003.55.3.287.
    1. Montenij L.J., de Vries W., Schwarte L., Bierens J.J. Feasibility of pulse oximetry in the initial prehospital management of victims of drowning: a preliminary study. Resuscitation. 2011;82:1235–1238. doi: 10.1016/j.resuscitation.2011.04.019.
    1. Bierens J, Barcala-Furelos R, Beerman S, Claesson A, Dunne C, Elsenga H, Abelairas-Gomez C, Morgan P, Mecrow T, Pereira JCC, et al; International Liaison Committee on Resuscitation Basic Life Support Task Force. Automated external defibrillator use in drowning AED use (BLS #856): scoping review.Accessed March 4, 2021.
    1. El-Assaad I., Al-Kindi S.G., McNally B., Vellano K., Worley S., Tang A.S., Aziz P.F., CARES Surveillance Group Automated external defibrillator application before EMS arrival in pediatric cardiac arrests. Pediatrics. 2018;142:e20171903. doi: 10.1542/peds.2017-1903.
    1. Dyson K., Morgans A., Bray J., Matthews B., Smith K. Drowning related out-of-hospital cardiac arrests: characteristics and outcomes. Resuscitation. 2013;84:1114–1118. doi: 10.1016/j.resuscitation.2013.01.020.
    1. Reynolds J.C., Michiels E.A., Nasiri M., Reeves M.J., Quan L. Observed long-term mortality after 18,000 person-years among survivors in a large regional drowning registry. Resuscitation. 2017;110:18–25. doi: 10.1016/j.resuscitation.2016.10.005.
    1. Iserbyt P., Schouppe G., Charlier N. A multiple linear regression analysis of factors affecting the simulated basic life support (BLS) performance with automated external defibrillator (AED) in Flemish lifeguards. Resuscitation. 2015;89:70–74. doi: 10.1016/j.resuscitation.2015.01.010.
    1. Bierens J, Barcala-Furelos R, Beerman S, Claesson A, Dunne C, Elsenga H, Abelairas-Gomez C, Morgan P, Mecrow T, Pereira JCC, et al; International Liaison Committee on Resuscitation Basic Life Support Task Force. Mechanical ventilation in drowning (BLS #856): task force scoping review.Accessed March 4, 2021.
    1. Caglar A., Er A., Ozden O., Karaarslan U., Akgul F., Koroglu T.F., Duman M. Efficacy of early noninvasive ventilation in three cases of nonfatal drowning with pulmonary oedema in the paediatric emergency department. J Emerg Med. Hong Kong. 2016;23:42–46. doi: 10.1177/102490791602300206.
    1. Onarheim H., Vik V. Porcine surfactant (Curosurf) for acute respiratory failure after near-drowning in 12 year old. Acta Anaesthesiol Scand. 2004;48:778–781. doi: 10.1111/j.0001-5172.2004.00406.x.
    1. Ruggeri P., Calcaterra S., Bottari A., Girbino G., Fodale V. Successful management of acute respiratory failure with noninvasive mechanical ventilation after drowning, in an epileptic-patient. Respir Med Case Rep. 2016;17:90–92. doi: 10.1016/j.rmcr.2016.02.004.
    1. Michelet P., Bouzana F., Charmensat O., Tiger F., Durand-Gasselin J., Hraiech S., Jaber S., Dellamonica J., Ichai C. Acute respiratory failure after drowning: a retrospective multicenter survey. Eur J Emerg Med. 2017;24:295–300. doi: 10.1097/MEJ.0000000000000362.
    1. Griffiths M.J.D., McAuley D.F., Perkins G.D., Barrett N., Blackwood B., Boyle A., Chee N., Connolly B., Dark P., Finney S., et al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respir Res. 2019;6:e000420. doi: 10.1136/bmjresp-2019-000420.
    1. Bierens J, Barcala-Furelos R, Beerman S, Claesson A, Dunne C, Elsenga H, Abelairas-Gomez C, Morgan P, Mecrow T, Pereira JCC, et al; International Liaison Committee on Resuscitation Basic Life Support Task Force. Criteria for discharge in drowning (BLS #856): scoping review.Accessed March 4, 2021.
    1. Bauman BD, Louiselle A, Nygaard RM, Vakayil V, Acton R, Hess D, Saltzman D, Kreykes N, Fischer G, Louie J, et al.Treatment of hypothermic cardiac arrest in the pediatric drowning victim, a case report, and systematic review [published online January 29, 2019].Pediatr Emerg Care.doi: 10.1097/PEC.0000000000001735.
    1. Burke C.R., Chan T., Brogan T.V., Lequier L., Thiagarajan R.R., Rycus P.T., McMullan D.M. Extracorporeal life support for victims of drowning. Resuscitation. 2016;104:19–23. doi: 10.1016/j.resuscitation.2016.04.005.
    1. Champigneulle B., Bellenfant-Zegdi F., Follin A., Lebard C., Guinvarch A., Thomas F., Pirracchio R., Journois D. Extracorporeal life support (ECLS) for refractory cardiac arrest after drowning: an 11-year experience. Resuscitation. 2015;88:126–131. doi: 10.1016/j.resuscitation.2014.11.023.
    1. Coskun K.O., Popov A.F., Schmitto J.D., Hinz J., Kriebel T., Schoendube F.A., Ruschewski W., Tirilomis T. Extracorporeal circulation for rewarming in drowning and near-drowning pediatric patients. Artif Organs. 2010;34:1026–1030. doi: 10.1111/j.1525-1594.2010.01156.x.
    1. Dunne B., Christou E., Duff O., Merry C. Extracorporeal-assisted rewarming in the management of accidental deep hypothermic cardiac arrest: a systematic review of the literature. Circ. Heart Lung. 2014;23:1029–1035. doi: 10.1016/j.hlc.2014.06.011.
    1. Eich C., Bräuer A., Timmermann A., Schwarz S.K., Russo S.G., Neubert K., Graf B.M., Aleksic I. Outcome of 12 drowned children with attempted resuscitation on cardiopulmonary bypass: an analysis of variables based on the “Utstein style for drowning.”. Resuscitation. 2007;75:42–52. doi: 10.1016/j.resuscitation.2007.03.013.
    1. Hilmo J., Naesheim T., Gilbert M. “Nobody is dead until warm and dead”: prolonged resuscitation is warranted in arrested hypothermic victims also in remote areas: a retrospective study from northern Norway. Resuscitation. 2014;85:1204–1211. doi: 10.1016/j.resuscitation.2014.04.029.
    1. Kim K.I., Lee W.Y., Kim H.S., Jeong J.H., Ko H.H. Extracorporeal membrane oxygenation in near-drowning patients with cardiac or pulmonary failure. Scand J Trauma Resusc Emerg Med. 2014;22:77. doi: 10.1186/s13049-014-0077-8.
    1. Ruttmann E., Weissenbacher A., Ulmer H., Müller L., Höfer D., Kilo J., Rabl W., Schwarz B., Laufer G., Antretter H., et al. Prolonged extracorporeal membrane oxygenation-assisted support provides improved survival in hypothermic patients with cardiocirculatory arrest. J Thorac Cardiovasc Surg. 2007;134:594–600. doi: 10.1016/j.jtcvs.2007.03.049.
    1. Skarda D., Barnhart D., Scaife E., Molitor M., Meyers R., Rollins M. Extracorporeal cardiopulmonary resuscitation (EC-CPR) for hypothermic arrest in children: is meaningful survival a reasonable expectation? J Pediatr Surg. 2012;47:2239–2243. doi: 10.1016/j.jpedsurg.2012.09.014.
    1. Svendsen ØS, Grong K., Andersen K.S., Husby P. Outcome after rewarming from accidental hypothermia by use of extracorporeal circulation. Ann Thorac Surg. 2017;103:920–925. doi: 10.1016/j.athoracsur.2016.06.093.
    1. Wanscher M., Agersnap L., Ravn J., Yndgaard S., Nielsen J.F., Danielsen E.R., Hassager C., Romner B., Thomsen C., Barnung S., et al. Outcome of accidental hypothermia with or without circulatory arrest: experience from the Danish Præstø Fjord boating accident. Resuscitation. 2012;83:1078–1084. doi: 10.1016/j.resuscitation.2012.05.009.
    1. Weuster M., Haneya A., Panholzer B., Klüter T., van der Brelie M., van Laak U., Cremer J., Haake N. The use of extracorporeal membrane oxygenation systems in severe accidental hypothermia after drowning: a centre experience. ASAIO J. 2016;62:157–162. doi: 10.1097/MAT.0000000000000312.
    1. Causey A.L., Tilelli J.A., Swanson M.E. Predicting discharge in uncomplicated near-drowning. Am J Emerg Med. 2000;18:9–11. doi: 10.1016/s0735-6757(00)90039-1.
    1. Brennan C.E., Hong T.K.F., Wang V.J. Predictors of safe discharge for pediatric drowning patients in the emergency department. Am J Emerg Med. 2018;36:1619–1623. doi: 10.1016/j.ajem.2018.01.050.
    1. Shenoi R.P., Allahabadi S., Rubalcava D.M., Camp E.A. The Pediatric Submersion Score predicts children at low risk for injury following submersions. Acad Emerg Med. 2017;24:1491–1500. doi: 10.1111/acem.13278.
    1. Nikolaou N.I., Welsford M., Beygui F., Bossaert L., Ghaemmaghami C., Nonogi H., O’Connor R.E., Pichel D.R., Scott T., Walters D.L., Acute Coronary Syndrome Chapter Collaborators, et al. Part 5: acute coronary syndromes: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation. 2015;95:e121–e146. doi: 10.1016/j.resuscitation.2015.07.043.
    1. Welsford M., Nikolaou N.I., Beygui F., Bossaert L., Ghaemmaghami C., Nonogi H., O’Connor R.E., Pichel D.R., Scott T., Walters D.L., Acute Coronary Syndrome Chapter Collaborators, et al. Part 5: acute coronary syndromes: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2015;132(suppl 1):S146–S176. doi: 10.1161/CIR.0000000000000274.
    1. Drennan I.R., Nikolaou N., Netherton S., Welsford M., Nation K., Belley-Cote E., Torabi N., Morrison L.J., International Liaison Committee on Resuscitation Advanced Life Support Task Force Early coronary angiography post-ROSC: International Liaison Committee on Resuscitation. 2021. Accessed March 10, 2021.
    1. Kern K.B., Radsel P., Jentzer J.C., Seder D.B., Lee K.S., Lotun K., Janardhanan R., Stub D., Hsu C.H., Noc M. Randomized pilot clinical trial of early coronary angiography versus no early coronary angiography after cardiac arrest without ST-segment elevation: the PEARL study. Circulation. 2020;142:2002–2012. doi: 10.1161/CIRCULATIONAHA.120.049569.
    1. Elfwén L., Lagedal R., Nordberg P., James S., Oldgren J., Böhm F., Lundgren P., Rylander C., van der Linden J., Hollenberg J., et al. Direct or Subacute Coronary Angiography in Out-of-Hospital Cardiac Arrest (DISCO): an initial pilot-study of a randomized clinical trial. Resuscitation. 2019;139:253–261. doi: 10.1016/j.resuscitation.2019.04.027.
    1. Lemkes J.S., Janssens G.N., van der Hoeven N.W., Jewbali L.S.D., Dubois E.A., Meuwissen M., Rijpstra T.A., Bosker H.A., Blans M.J., Bleeker G.B., et al. Coronary angiography after cardiac arrest without ST-segment elevation. N Engl J Med. 2019;380:1397–1407. doi: 10.1056/NEJMoa1816897.
    1. Vyas A., Chan P.S., Cram P., Nallamothu B.K., McNally B., Girotra S. Early coronary angiography and survival after out-of-hospital cardiac arrest. Circ Cardiovasc Interv. 2015;8:e002321. doi: 10.1161/CIRCINTERVENTIONS.114.002321.
    1. Garcia S., Drexel T., Bekwelem W., Raveendran G., Caldwell E., Hodgson L., Wang Q., Adabag S., Mahoney B., Frascone R., et al. Early access to the cardiac catheterization laboratory for patients resuscitated from cardiac arrest due to a shockable rhythm: the Minnesota Resuscitation Consortium Twin Cities Unified Protocol. J Am Heart Assoc. 2016;5:e002670. doi: 10.1161/JAHA.115.002670.
    1. Geri G., Dumas F., Bougouin W., Varenne O., Daviaud F., Pène F., Lamhaut L., Chiche J.D., Spaulding C., Mira J.P., et al. Immediate percutaneous coronary intervention is associated with improved short- and long-term survival after out-of-hospital cardiac arrest. Circ Cardiovasc Interv. 2015;8:e002303. doi: 10.1161/CIRCINTERVENTIONS.114.002303.
    1. Callaway C.W., Schmicker R.H., Brown S.P., Albrich J.M., Andrusiek D.L., Aufderheide T.P., Christenson J., Daya M.R., Falconer D., Husa R.D., ROC Investigators, et al. Early coronary angiography and induced hypothermia are associated with survival and functional recovery after out-of-hospital cardiac arrest. Resuscitation. 2014;85:657–663. doi: 10.1016/j.resuscitation.2013.12.028.
    1. Tømte O., Andersen GØ, Jacobsen D., Drægni T., Auestad B., Sunde K. Strong and weak aspects of an established post-resuscitation treatment protocol: a five-year observational study. Resuscitation. 2011;82:1186–1193. doi: 10.1016/j.resuscitation.2011.05.003.
    1. Dankiewicz J., Nielsen N., Annborn M., Cronberg T., Erlinge D., Gasche Y., Hassager C., Kjaergaard J., Pellis T., Friberg H. Survival in patients without acute ST elevation after cardiac arrest and association with early coronary angiography: a post hoc analysis from the TTM trial. Intensive Care Med. 2015;41:856–864. doi: 10.1007/s00134-015-3735-z.
    1. Bro-Jeppesen J., Kjaergaard J., Wanscher M., Pedersen F., Holmvang L., Lippert F.K., Møller J.E., Køber L., Hassager C. Emergency coronary angiography in comatose cardiac arrest patients: do real-life experiences support the guidelines? Eur Heart J Acute Cardiovasc Care. 2012;1:291–301. doi: 10.1177/2048872612465588.
    1. Jentzer J.C., Scutella M., Pike F., Fitzgibbon J., Krehel N.M., Kowalski L., Callaway C.W., Rittenberger J.C., Reynolds J.C., Barsness G.W., et al. Early coronary angiography and percutaneous coronary intervention are associated with improved outcomes after out of hospital cardiac arrest. Resuscitation. 2018;123:15–21. doi: 10.1016/j.resuscitation.2017.12.004.
    1. Guérin C., Reignier J., Richard J.C. Prone positioning in the acute respiratory distress syndrome. N Engl J Med. 2013;369:980–981. doi: 10.1056/NEJMc1308895.
    1. Berg K, Hsu CH, Considine J, Pawar R, Cellini J, Schexnayder S, Soar J, Olasveengen T; International Liaison Committee on Resuscitation Advanced Life Support, Basic Life Support, and Pediatric Life Support Task Forces. Cardiopulmonary resuscitation and defibrillation for cardiac arrest when patients are in the prone position: International Liaison Committee on Resuscitation.Accessed March 10, 2021.
    1. Al Harbi M.K., Alattas K.A., Alnajar M., Albuthi M.F. Prone cardiopulmonary resuscitation in elderly undergoing posterior spinal fusion with laminectomy. Saudi J Anaesth. 2020;14:123–126. doi: 10.4103/sja.SJA_165_19.
    1. Brown J., Rogers J., Soar J. Cardiac arrest during surgery and ventilation in the prone position: a case report and systematic review. Resuscitation. 2001;50:233–238. doi: 10.1016/s0300-9572(01)00362-8.
    1. Bustillo M.A., Lien C.A., Mack P.F., Kopman D.J., Safavynia S.A., Rubin L., Stein D., Hartl R., Stieg P.E., Hernandez R.N., et al. Optimizing patient access during an emergency while using intraoperative computed tomography. World Neurosurg. 2019;121:274–278.e1. doi: 10.1016/j.wneu.2018.09.134.
    1. Dequin P.F., Hazouard E., Legras A., Lanotte R., Perrotin D. Cardiopulmonary resuscitation in the prone position: Kouwenhoven revisited. Intensive Care Med. 1996;22:1272. doi: 10.1007/BF01709349.
    1. Dooney N. Prone CPR for transient asystole during lumbosacral spinal surgery. Anaesth Intensive Care. 2010;38:212–213.
    1. Gomes D.D.S., Bersot C.D.A. Cardiopulmonary resuscitation in the prone position. Open J Anesthesiol. 2012;2:199–201.
    1. Haffner E., Sostarich A.M., Fösel T. Successful cardiopulmonary resuscitation in prone position [in German]. Anaesthesist. 2010;59:1099–1101. doi: 10.1007/s00101-010-1785-8.
    1. Loewenthal A., De Albuquerque A.M., Lehmann-Meurice C., Otteni JC. Efficacy of external cardiac massage in a patient in the prone position [in French]. Ann Fr Anesth Reanim. 1993;12:587–589. doi: 10.1016/s0750-7658(05)80627-6.
    1. Mishra N., Singh S., Elayat A., Kaushal A. Cardiac arrest in the prone position caused by central venous cannulation-induced cardiac tamponade. Korean J Anesthesiol. 2019;72:394–395. doi: 10.4097/kja.19105.
    1. Miranda C.C., Newton M.C. Successful defibrillation in the prone position. Br J Anaesth. 2001;87:937–938. doi: 10.1093/bja/87.6.937.
    1. Sun W.Z., Huang F.Y., Kung K.L., Fan S.Z., Chen T.L. Successful cardiopulmonary resuscitation of two patients in the prone position using reversed precordial compression. Anesthesiology. 1992;77:202–204. doi: 10.1097/00000542-199207000-00027.
    1. Taylor J.C.L., Buchanan C.C.R., Rumball M.J. Cardiac arrest during craniotomy in prone position. Anaesth Crit Care. Trends. 2013;3:224–226.
    1. Albin M.S., Ritter R.R., Pruett C.E., Kalff K. Venous air embolism during lumbar laminectomy in the prone position: report of three cases. Anesth Analg. 1991;73:346–349. doi: 10.1213/00000539-199109000-00021.
    1. Chen H.L., Wong C.S., Ho S.T., Chang F.L., Hsu C.H., Wu C.T. A lethal pulmonary embolism during percutaneous vertebroplasty. Anesth Analg. 2002;95:1060–1062, table of contents. doi: 10.1097/00000539-200210000-00049.
    1. Dumont T.M., Stockwell D.W., Horgan M.A. Venous air embolism: an unusual complication of atlantoaxial arthrodesis: case report. Spine (Phila Pa 1976). 2010;35:E1238–E1240. doi: 10.1097/BRS.0b013e3181f62600.
    1. Ewah B., Calder I. Intraoperative death during lumbar discectomy. Br J Anaesth. 1991;66:721–723. doi: 10.1093/bja/66.6.721.
    1. Miyakoshi N., Hongo M., Kasukawa Y., Ishikawa Y., Kudo D., Shimada Y. Intraoperative visible air bubbling recorded as a sign of massive venous air embolism during prone position surgery for extensive ossification of spinal ligaments: a case report with a video clip. World Neurosurg. 2019;131:38–42. doi: 10.1016/j.wneu.2019.07.166.
    1. Pan Y., Qiu B., Yu F., Hu B. Fatal air embolism during endoscopic retrograde cholangio-pancreatography (ERCP): a case report. J Med Coll PLA. 2012;27:239–243.
    1. Pinheiro L.C., Carmona B.M., de Nazareth Chaves Fascio M., de Souza I.S., de Azevedo R.A.A., Barbosa FT. Cardiac arrest after epidural anesthesia for a esthetic plastic surgery: a case report [in Portuguese]. Rev Bras Anestesiol. 2017;67:544–547. doi: 10.1016/j.bjan.2015.03.006.
    1. Burki A., Mahboob S., Fatima T. CPR in prone position during neurosurgery. Anaesth Pain Intensive Care. 2017;21:275–278.
    1. Gueugniaud P.Y., Muchada R., Bertin-Maghit M., Griffith N., Petit P. Non-invasive continuous haemodynamic and PETCO2 monitoring during peroperative cardiac arrest. Can J Anaesth. 1995;42:910–913. doi: 10.1007/BF03011039.
    1. Kaloria N., Bhagat H., Singla N. Venous air embolism during removal of bony spur in a child of split cord malformation. J Neurosci Rural Pract. 2017;8:483–484. doi: 10.4103/jnrp.jnrp_508_16.
    1. Kelleher A., Mackersie A. Cardiac arrest and resuscitation of a 6-month old achondroplastic baby undergoing neurosurgery in the prone position. Anaesthesia. 1995;50:348–350. doi: 10.1111/j.1365-2044.1995.tb04615.x.
    1. Lee-Archer P.F., Chaseling B. Air embolism during posterior spinal fusion in a 10-year-old girl: a case report. A A Case Rep. 2017;8:307–309. doi: 10.1213/XAA.0000000000000498.
    1. Mayorga-Buiza M.J., Rivero-Garvia M., Gomez-Gonzalez E., Marquez-Rivas J. Cardiac pulmonary resuscitation in prone position: the best option for posterior fossa neurosurgical patients. Paediatr Anaesth. 2018;28:746–747. doi: 10.1111/pan.13448.
    1. Reid J.M., Appleton P.J. A case of ventricular fibrillation in the prone position during back stabilisation surgery in a boy with Duchenne’s muscular dystrophy. Anaesthesia. 1999;54:364–367. doi: 10.1046/j.1365-2044.1999.00835.x.
    1. Sutherland R.W., Winter R.J. Two cases of fatal air embolism in children undergoing scoliosis surgery. Acta Anaesthesiol Scand. 1997;41:1073–1076. doi: 10.1111/j.1399-6576.1997.tb04839.x.
    1. Tobias J.D., Mencio G.A., Atwood R., Gurwitz G.S. Intraoperative cardiopulmonary resuscitation in the prone position. J Pediatr Surg. 1994;29:1537–1538. doi: 10.1016/0022-3468(94)90208-9.
    1. Smelt W.L. Cardiac arrest during desflurane anaesthesia in a patient with Duchenne’s muscular dystrophy. Acta Anaesthesiol Scand. 2005;49:267–269. doi: 10.1111/j.1399-6576.2004.00596.x.
    1. Tofil N.M., Dollar J., Zinkan L., Youngblood A.Q., Peterson D.T., White M.L., Stooksberry T.N., Jarrell S.A., King C. Performance of anesthesia residents during a simulated prone ventricular fibrillation arrest in an anesthetized pediatric patient. Paediatr Anaesth. 2014;24:940–944. doi: 10.1111/pan.12406.
    1. Mazer S.P., Weisfeldt M., Bai D., Cardinale C., Arora R., Ma C., Sciacca R.R., Chong D., Rabbani L.E. Reverse CPR: a pilot study of CPR in the prone position. Resuscitation. 2003;57:279–285. doi: 10.1016/s0300-9572(03)00037-6.
    1. Wei J., Tung D., Sue S.H., Wu S.V., Chuang Y.C., Chang C.Y. Cardiopulmonary resuscitation in prone position: a simplified method for outpatients. J Chin Med Assoc. 2006;69:202–206. doi: 10.1016/S1726-4901(09)70219-9.
    1. West RL, Otto Q, Drennan IR, Rudd S, Parnia S, Böttiger BW, Soar J; International Liaison Committee on Resuscitation Advanced Life Support Task Force. CPR-related cognitive activity, consciousness, awareness and recall and its management: scoping review. Accessed March 19, 2021. .
    1. Gamper G., Willeit M., Sterz F., Herkner H., Zoufaly A., Hornik K., Havel C., Laggner A.N. Life after death: posttraumatic stress disorder in survivors of cardiac arrest–prevalence, associated factors, and the influence of sedation and analgesia. Crit Care Med. 2004;32:378–383. doi: 10.1097/01.CCM.0000108880.97967.C0.
    1. Parnia S., Spearpoint K., de Vos G., Fenwick P., Goldberg D., Yang J., Zhu J., Baker K., Killingback H., McLean P., et al. AWARE: AWAreness during REsuscitation: a prospective study. Resuscitation. 2014;85:1799–1805. doi: 10.1016/j.resuscitation.2014.09.004.
    1. Olaussen A., Shepherd M., Nehme Z., Smith K., Jennings P.A., Bernard S., Mitra B. CPR-induced consciousness: a cross-sectional study of healthcare practitioners’ experience. Australas Emerg Nurs J. 2016;19:186–190. doi: 10.1016/j.aenj.2016.07.002.
    1. Olaussen A., Nehme Z., Shepherd M., Jennings P.A., Bernard S., Mitra B., Smith K. Consciousness induced during cardiopulmonary resuscitation: An observational study. Resuscitation. 2017;113:44–50. doi: 10.1016/j.resuscitation.2017.01.018.
    1. Doan T.N., Adams L., Schultz B.V., Bunting D., Parker L., Rashford S., Bosley E. Insights into the epidemiology of cardiopulmonary resuscitation-induced consciousness in out-of-hospital cardiac arrest. Emerg Med Australas. 2020;32:769–776. doi: 10.1111/1742-6723.13505.
    1. Bernier G.M. Maintenance of consciousness during closed-chest massage. JAMA. 1962;181:446–447. doi: 10.1001/jama.1962.03050310086018c.
    1. Miller J.B., Davie R.D., Douglas D.M. The efficiency of cardiac massage in ventricular fibrillation: description of an instance of recovery of consciousness without spontaneous heart beat. Br J Anaesth. 1961;33:22–23. doi: 10.1093/bja/33.1.22.
    1. Lewinter J.R., Carden D.L., Nowak R.M., Enriquez E., Martin G.B. CPR-dependent consciousness: evidence for cardiac compression causing forward flow. Ann Emerg Med. 1989;18:1111–1115. doi: 10.1016/s0196-0644(89)80942-4.
    1. Quinn J.V., Hebert P.C., Stiell I.G. Need for sedation in a patient undergoing active compression-decompression cardiopulmonary resuscitation. Acad Emerg Med. 1994;1:463–466. discussion 466-467. doi: 10.1111/j.1553-2712.1994.tb02529.x.
    1. McDonald G. Code blue stories. Hosp Physician. 2005;41:12.
    1. Yu H.Y., Yeh H.L., Wang S.S., Tsai M.K., Chen Y.S., Ko W.J., Lin F.Y. Ultra long cardiopulmonary resuscitation with intact cerebral performance for an asystolic patient with acute myocarditis. Resuscitation. 2007;73:307–308. doi: 10.1016/j.resuscitation.2006.08.012.
    1. Bihari S., Rajajee V. Prolonged retention of awareness during cardiopulmonary resuscitation for asystolic cardiac arrest. Neurocrit Care. 2008;9:382–386. doi: 10.1007/s12028-008-9099-2.
    1. Tobin J.M., Mihm F.G. A hemodynamic profile for consciousness during cardiopulmonary resuscitation. Anesth Analg. 2009;109:1598–1599. doi: 10.1213/ANE.0b013e3181b89432.
    1. Ulrichs C.J., Böttiger B.W., Padosch S.A. Total recall: is it ethical not to sedate people during successful resuscitation? Resuscitation. 2014;85:e49. doi: 10.1016/j.resuscitation.2013.12.026.
    1. Fauber J. New CPR devices save lives, medical college study finds. January 18, 2011. Accessed March 10, 2021.
    1. Greb C., Heightman A.J. Mechanical CPR helps save the day–and the patient. JEMS: J Emerg Med Serv. 2014 Accessed January 5 2021.
    1. Gwinnutt C. Awareness during resuscitation. Resuscitation. 2015;97:e17. doi: 10.1016/j.resuscitation.2014.12.036.
    1. Hoppenfeld M.S., Kotov A., Ortega R. Ventricular fibrillation and consciousness are not mutually exclusive. Resuscitation. 2016;100:e1–e2. doi: 10.1016/j.resuscitation.2015.11.025.
    1. Oksar M., Turhanoglu S. Is it possible to maintain consciousness and spontaneous ventilation with chest compression in the early phase of cardiac arrest? Case Rep Anesthesiol. 2016;2016:3158015. doi: 10.1155/2016/3158015.
    1. Pound J., Verbeek P.R., Cheskes S. CPR induced consciousness during out-of-hospital cardiac arrest: a case report on an emerging phenomenon. Prehosp Emerg Care. 2017;21:252–256. doi: 10.1080/10903127.2016.1229823.
    1. Rice D.T., Nudell N.G., Habrat D.A., Smith J.E., Ernest E.V. CPR induced consciousness: it’s time for sedation protocols for this growing population. Resuscitation. 2016;103:e15–e16. doi: 10.1016/j.resuscitation.2016.02.013.
    1. Grandi T, De Carlo S, Carosi V, Visentin A, Fanton N, Baldo D, Paganini M. Six cases of CPR-induced consciousness in witnessed cardiac arrest.Italian J Emerg Med. Accessed March 1, 2021.
    1. Gray R. Consciousness with cardiopulmonary resuscitation. Can Fam Physician. 2018;64:514–517.
    1. Wacht O., Huri R., Strugo R. Case study: combative cardiac patient: what do you do when a patient regains consciousness during mechanical CPR? EMS World. 2015;44:29–33.
    1. Pinto J., Almeida P., Ribeiro F., Simões R. cardiopulmonary resuscitation induced consciousness: a case report in an elderly patient. Eur J Case Rep Intern Med. 2020;7:001409. doi: 10.12890/2020_001409.
    1. Sukumar V. Having a conscious patient during cardiopulmonary resuscitation: is it not time to consider sedation protocol? A case report. A A Pract. 2019;13:250–252. doi: 10.1213/XAA.0000000000001037.
    1. Asghar A., Salim B., Tahir S., Islam F., Khan M.F. Awareness during cardiopulmonary resuscitation. Indian J Crit Care Med. 2020;24:136–137. doi: 10.5005/jp-journals-10071-23345.
    1. Chin K.C., Yang S.C., Chiang W.C. Video of cardiopulmonary resuscitation induced consciousness during ventricular fibrillation. Resuscitation. 2020;155:22–23. doi: 10.1016/j.resuscitation.2020.07.006.
    1. Lapostolle F., Petrovic T., Alhéritière A., Agostinucci J.M., Adnet F. Life signs in “dead” patients. Resuscitation. 2012;83:e164. doi: 10.1016/j.resuscitation.2012.01.045.
    1. Bhatt S., Alison B.J., Wallace E.M., Crossley K.J., Gill A.W., Kluckow M., te Pas A.B., Morley C.J., Polglase G.R., Hooper S.B. Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs. J Physiol. 2013;591:2113–2126. doi: 10.1113/jphysiol.2012.250084.
    1. Hooper S.B., Polglase G.R., te Pas A.B. A physiological approach to the timing of umbilical cord clamping at birth. Arch Dis Child Fetal Neonatal Ed. 2015;100:F355–F360. doi: 10.1136/archdischild-2013-305703.
    1. Perlman J.M., Wyllie J., Kattwinkel J., Wyckoff M.H., Aziz K., Guinsburg R., Kim H.S., Liley H.G., Mildenhall L., Simon W.M., on behalf of the Neonatal Resuscitation Chapter Collaborators, et al. Part 7: neonatal resuscitation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2015;132(suppl 1):S204–S241. doi: 10.1161/CIR.0000000000000276.
    1. Deleted in proof
    1. Wyllie J., Perlman J.M., Kattwinkel J., Wyckoff M.H., Aziz K., Guinsburg R., Kim H.S., Liley H.G., Mildenhall L., Simon W.M., Neonatal Resuscitation Chapter Collaborators, et al. Part 7: neonatal resuscitation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation. 2015;95:e169–e201. doi: 10.1016/j.resuscitation.2015.07.045.
    1. Seidler A.L., Gyte G.M.L., Rabe H., Díaz-Rossello J.L., Duley L., Aziz K., Testoni Costa-Nobre D., Davis P.G., Schmölzer G.M., Ovelman C., et al. ; International Liaison Committee on Resuscitation Neonatal Life Support Task Force Umbilical cord management for newborns >34 weeks’ gestation: a meta-analysis. Pediatrics. 2021;147:e20200576. doi: 10.1542/peds.2020-0576.
    1. Costa-Nobre D.T., Davis P.G., Soll R., Niermeyer S., El-Naggar W., de Almeida M.F., Fabres J.G., Fawke J., Foglia E.E., Guinsburg R., et al. Preterm umbilical cord management. 2021. Accessed March 19 2021.
    1. Aladangady N., McHugh S., Aitchison T.C., Wardrop C.A., Holland B.M. Infants’ blood volume in a controlled trial of placental transfusion at preterm delivery. Pediatrics. 2006;117:93–98. doi: 10.1542/peds.2004-1773.
    1. Armanian A.M., Tehrani H., Ansari M., Ghaemi S. Is “delayed umbilical cord clamping” beneficial for premature newborns? Int J Pediatr. 2017;5:4909–4918. doi: 10.22038/ijp.2016.7909.
    1. Backes C.H., Huang H., Iams J.D., Bauer J.A., Giannone P.J. Timing of umbilical cord clamping among infants born at 22 through 27 weeks’ gestation. J Perinatol. 2016;36:35–40. doi: 10.1038/jp.2015.117.
    1. Baenziger O., Stolkin F., Keel M., von Siebenthal K., Fauchere J.C., Das Kundu S., Dietz V., Bucher H.U., Wolf M. The influence of the timing of cord clamping on postnatal cerebral oxygenation in preterm neonates: a randomized, controlled trial. Pediatrics. 2007;119:455–459. doi: 10.1542/peds.2006-2725.
    1. Das S., Sarkar N., Bhattacharya M., Basu S., Sanyal D., Chatterjee A., Aich B., Chatterjee K. Neurological outcome at 30 months of age after mild hypothermia via selective head cooling in term neonates with perinatal asphyxia using low-cost coolcap: a single-center randomized control pilot trial in India. J Pediatr Neurol. 2017;15:157–165. doi: 10.1055/s-0037-1603681.
    1. Dipak N.K., Nanavat R.N., Kabra N.K., Srinivasan A., Ananthan A. Effect of delayed cord clamping on hematocrit, and thermal and hemodynamic stability in preterm neonates: a randomized controlled trial. Indian Pediatr. 2017;54:112–115. doi: 10.1007/s13312-017-1011-8.
    1. Dong X.Y., Sun X.F., Li M.M., Yu Z.B., Han SP. Influence of delayed cord clamping on preterm infants with a gestational age of >32 weeks [in Chinese]. Zhongguo Dang Dai Er Ke Za Zhi. 2016;18:635–638.
    1. Duley L., Dorling J., Pushpa-Rajah A., Oddie S.J., Yoxall C.W., Schoonakker B., Bradshaw L., Mitchell E.J., Fawke J.A., Cord Pilot Trial Collaborative Group Randomised trial of cord clamping and initial stabilisation at very preterm birth. Arch Dis Child Fetal Neonatal Ed. 2018;103:F6–F14. doi: 10.1136/archdischild-2016-312567.
    1. Finn D., Ryan D.H., Pavel A., O’Toole J.M., Livingstone V., Boylan G.B., Kenny L.C., Dempsey E.M. Clamping the Umbilical Cord in Premature Deliveries (CUPiD): neuromonitoring in the immediate newborn period in a randomized, controlled trial of preterm infants born at >32 weeks of gestation. J Pediatr. 2019;208:121–126.e2. doi: 10.1016/j.jpeds.2018.12.039.
    1. Gokmen Z., Ozkiraz S., Tarcan A., Kozanoglu I., Ozcimen E.E., Ozbek N. Effects of delayed umbilical cord clamping on peripheral blood hematopoietic stem cells in premature neonates. J Perinat Med. 2011;39:323–329. doi: 10.1515/jpm.2011.021.
    1. Hofmeyr G.J., Bolton K.D., Bowen D.C., Govan J.J. Periventricular/intraventricular haemorrhage and umbilical cord clampings: findings and hypothesis. S Afr Med J. 1988;73:104–106.
    1. Hofmeyr G.J., Gobetz L., Bex P.J., Van der Griendt M., Nikodem C., Skapinker R., Delahunt T. Periventricular/intraventricular hemorrhage following early and delayed umbilical cord clamping: a randomized controlled trial. Online J Curr Clin Trials. 1993:110.
    1. Kazemi M., Akbarianrad Z., Zahedpasha Y., Mehraein R., Mojaveri M. Effects of delayed cord clamping on intraventricular hemorrhage in preterm infants. J Pediatr. Iranian. 2017;27:e6570. doi: 10.5812/ijp.6570.
    1. Kinmond S., Aitchison T.C., Holland B.M., Jones J.G., Turner T.L., Wardrop C.A. Umbilical cord clamping and preterm infants: a randomised trial. BMJ. 1993;306:172–175. doi: 10.1136/bmj.306.6871.172.
    1. Kugelman A., Borenstein-Levin L., Riskin A., Chistyakov I., Ohel G., Gonen R., Bader D. Immediate versus delayed umbilical cord clamping in premature neonates born >35 weeks: a prospective, randomized, controlled study. Am J Perinatol. 2007;24:307–315. doi: 10.1055/s-2007-981434.
    1. Mercer J.S., McGrath M.M., Hensman A., Silver H., Oh W. Immediate and delayed cord clamping in infants born between 24 and 32 weeks: a pilot randomized controlled trial. J Perinatol. 2003;23:466–472. doi: 10.1038/sj.jp.7210970.
    1. Mercer J.S., Vohr B.R., McGrath M.M., Padbury J.F., Wallach M., Oh W. Delayed cord clamping in very preterm infants reduces the incidence of intraventricular hemorrhage and late-onset sepsis: a randomized, controlled trial. Pediatrics. 2006;117:1235–1242. doi: 10.1542/peds.2005-1706.
    1. McDonnell M., Henderson-Smart D.J. Delayed umbilical cord clamping in preterm infants: a feasibility study. J Paediatr Child Health. 1997;33:308–310. doi: 10.1111/j.1440-1754.1997.tb01606.x.
    1. Oh W., Fanaroff A.A., Carlo W.A., Donovan E.F., McDonald S.A., Poole W.K., Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network Effects of delayed cord clamping in very-low-birth-weight infants. J Perinatol. 2011;31(suppl 1):S68–S71. doi: 10.1038/jp.2010.186.
    1. Rana A., Agarwal K., Ramji S., Gandhi G., Sahu L. Safety of delayed umbilical cord clamping in preterm neonates of less than 34 weeks of gestation: a randomized controlled trial. Obstet Gynecol Sci. 2018;61:655–661. doi: 10.5468/ogs.2018.61.6.655.
    1. Rabe H., Wacker A., Hülskamp G., Hörnig-Franz I., Schulze-Everding A., Harms E., Cirkel U., Louwen F., Witteler R., Schneider H.P. A randomised controlled trial of delayed cord clamping in very low birth weight preterm infants. Eur J Pediatr. 2000;159:775–777. doi: 10.1007/pl00008345.
    1. Ruangkit C., Bumrungphuet S., Panburana P., Khositseth A., Nuntnarumit P. A randomized controlled trial of immediate versus delayed umbilical cord clamping in multiple-birth infants born preterm. Neonatology. 2019;115:156–163. doi: 10.1159/000494132.
    1. Tarnow-Mordi W., Morris J., Kirby A., Robledo K., Askie L., Brown R., Evans N., Finlayson S., Fogarty M., Gebski V., Australian Placental Transfusion Study Collaborative Group, et al. Delayed versus Immediate cord clamping in preterm infants. N Engl J Med. 2017;377:2445–2455. doi: 10.1056/NEJMoa1711281.
    1. Alan S., Arsan S., Okulu E., Akin I.M., Kilic A., Taskin S., Cetinkaya E., Erdeve O., Atasay B. Effects of umbilical cord milking on the need for packed red blood cell transfusions and early neonatal hemodynamic adaptation in preterm infants born ≤1500 g: a prospective, randomized, controlled trial. J Pediatr Hematol Oncol. 2014;36:e493–e498. doi: 10.1097/MPH.0000000000000143.
    1. Elimian A., Goodman J., Escobedo M., Nightingale L., Knudtson E., Williams M. Immediate compared with delayed cord clamping in the preterm neonate: a randomized controlled trial. Obstet Gynecol. 2014;124:1075–1079. doi: 10.1097/aog.0000000000000556.
    1. El-Naggar W., Simpson D., Hussain A., Armson A., Dodds L., Warren A., Whyte R., McMillan D. Cord milking versus immediate clamping in preterm infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2019;104:F145–F150. doi: 10.1136/archdischild-2018-314757.
    1. Hosono S., Mugishima H., Fujita H., Hosono A., Minato M., Okada T., Takahashi S., Harada K. Umbilical cord milking reduces the need for red cell transfusions and improves neonatal adaptation in infants born at less than 29 weeks’ gestation: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2008;93:F14–F19. doi: 10.1136/adc.2006.108902.
    1. Katheria A., Blank D., Rich W., Finer N. Umbilical cord milking improves transition in premature infants at birth. PLoS One. 2014;9:e94085. doi: 10.1371/journal.pone.0094085.
    1. Kilicdag H., Gulcan H., Hanta D., Torer B., Gokmen Z., Ozdemir S.I., Antmen B.A. Is umbilical cord milking always an advantage? J Matern Fetal Neonatal Med. 2016;29:615–618. doi: 10.3109/14767058.2015.1012067.
    1. Lago Leal V., Pamplona Bueno L., Cabanillas Vilaplana L., Nicolás Montero E., Martín Blanco M., Fernández Romero C., El Bakkali S., Pradillo Aramendi T., Sobrino Lorenzano L., Castellano Esparza P., et al. Effect of milking maneuver in preterm infants: a randomized controlled trial. Fetal Diagn Ther. 2019;45:57–61. doi: 10.1159/000485654.
    1. Li J., Yu B., Wang W., Luo D., Dai Q.L., Gan X.Q. Does intact umbilical cord milking increase infection rates in preterm infants with premature prolonged rupture of membranes? J Matern Fetal Neonatal Med. 2020;33:184–190. doi: 10.1080/14767058.2018.1487947.
    1. March M.I., Hacker M.R., Parson A.W., Modest A.M., de Veciana M. The effects of umbilical cord milking in extremely preterm infants: a randomized controlled trial. J Perinatol. 2013;33:763–767. doi: 10.1038/jp.2013.70.
    1. Mercer J.S., Erickson-Owens D.A., Vohr B.R., Tucker R.J., Parker A.B., Oh W., Padbury J.F. Effects of placental transfusion on neonatal and 18 month outcomes in preterm infants: a randomized controlled trial. J Pediatr. 2016;168:50–55.e1. doi: 10.1016/j.jpeds.2015.09.068.
    1. Silahli M., Duman E., Gokmen Z., Toprak E., Gokdemir M., Ecevit A. The relationship between placental transfusion, and thymic size and neonatal morbidities in premature infants: a randomized control trial. J Pak Med Assoc. 2018;68:1560–1565.
    1. Song S.Y., Kim Y., Kang B.H., Yoo H.J., Lee M. Safety of umbilical cord milking in very preterm neonates: a randomized controlled study. Obstet Gynecol Sci. 2017;60:527–534. doi: 10.5468/ogs.2017.60.6.527.
    1. Ram Mohan G., Shashidhar A., Chandrakala B.S., Nesargi S., Suman Rao P.N. Umbilical cord milking in preterm neonates requiring resuscitation: a randomized controlled trial. Resuscitation. 2018;130:88–91. doi: 10.1016/j.resuscitation.2018.07.003.
    1. Katheria A., Reister F., Essers J., Mendler M., Hummler H., Subramaniam A., Carlo W., Tita A., Truong G., Davis-Nelson S., et al. Association of umbilical cord milking vs delayed umbilical cord clamping with death or severe intraventricular hemorrhage among preterm infants. JAMA. 2019;322:1877–1886. doi: 10.1001/jama.2019.16004.
    1. Katheria A.C., Truong G., Cousins L., Oshiro B., Finer N.N. Umbilical cord milking versus delayed cord clamping in preterm infants. Pediatrics. 2015;136:61–69. doi: 10.1542/peds.2015-0368.
    1. Krueger M.S., Eyal F.G., Peevy K.J., Hamm C.R., Whitehurst R.M., Lewis D.F. Delayed cord clamping with and without cord stripping: a prospective randomized trial of preterm neonates. Am J Obstet Gynecol. 2015;212:394.e1–394.e5. doi: 10.1016/j.ajog.2014.12.017.
    1. Pratesi S., Montano S., Ghirardello S., Mosca F., Boni L., Tofani L., Dani C. Placental Circulation Intact Trial (PCI-T): resuscitation with the placental circulation intact vs. cord milking for very preterm infants: a feasibility study. Front Pediatr. 2018;6:364. doi: 10.3389/fped.2018.00364.
    1. Rabe H., Jewison A., Fernandez Alvarez R., Crook D., Stilton D., Bradley R., Holden D., Brighton Perinatal Study Group Milking compared with delayed cord clamping to increase placental transfusion in preterm neonates: a randomized controlled trial. Obstet Gynecol. 2011;117(pt 1):205–211. doi: 10.1097/AOG.0b013e3181fe46ff.
    1. Shirk S.K., Manolis S.A., Lambers D.S., Smith K.L. Delayed clamping vs milking of umbilical cord in preterm infants: a randomized controlled trial. Am J Obstet Gynecol. 2019;220:482.e1–482.e8. doi: 10.1016/j.ajog.2019.01.234.
    1. Downey C.L., Bewley S. Historical perspectives on umbilical cord clamping and neonatal transition. J R Soc Med. 2012;105:325–329. doi: 10.1258/jrsm.2012.110316.
    1. Hooper S.B., Binder-Heschl C., Polglase G.R., Gill A.W., Kluckow M., Wallace E.M., Blank D., Te Pas A.B. The timing of umbilical cord clamping at birth: physiological considerations. Matern Health Neonatol Perinatol. 2016;2:4. doi: 10.1186/s40748-016-0032-y.
    1. Niermeyer S., Velaphi S. Promoting physiologic transition at birth: re-examining resuscitation and the timing of cord clamping. Semin Fetal Neonatal Med. 2013;18:385–392. doi: 10.1016/j.siny.2013.08.008.
    1. Bhutta Z.A., Das J.K., Rizvi A., Gaffey M.F., Walker N., Horton S., Webb P., Lartey A., Black R.E., Lancet Nutrition Interventions Review Group, the Maternal and Child Nutrition Study Group Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? Lancet. 2013;382:452–477. doi: 10.1016/S0140-6736(13)60996-4.
    1. Seidler A.L., Duley L., Katheria A.C., De Paco Matallana C., Dempsey E., Rabe H., Kattwinkel J., Mercer J., Josephsen J., Fairchild K., et al. ; iCOMP Collaboration Systematic review and network meta-analysis with individual participant data on cord management at preterm birth (iCOMP): study protocol. BMJ Open. 2020;10:e034595. doi: 10.1136/bmjopen-2019-034595.
    1. Gomersall J., Berber S., Middleton P., McDonald S.J., Niermeyer S., El-Naggar W., Davis P.G., Schmölzer G.M., Ovelman C., Soll R.F., International Liaison Committee on Resuscitation Neonatal Life Support Task Force Umbilical cord management at term and late preterm birth: a meta-analysis. Pediatrics. 2021;147 doi: 10.1542/peds.2020-015404.
    1. Georgieff M.K. Iron assessment to protect the developing brain. Am J Clin Nutr. 2017;106(suppl 6):1588S–1593S. doi: 10.3945/ajcn.117.155846.
    1. Kling P.J. Iron nutrition, erythrocytes, and erythropoietin in the NICU: erythropoietic and neuroprotective effects. Neoreviews. 2020;21:e80–e88. doi: 10.1542/neo.21-2-e80.
    1. Gunnarsson B.S., Thorsdottir I., Palsson G., Gretarsson S.J. Iron status at 1 and 6 years versus developmental scores at 6 years in a well-nourished affluent population. Acta Paediatr. 2007;96:391–395. doi: 10.1111/j.1651-2227.2007.00086.x.
    1. Grantham-McGregor S., Ani C. A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr. 2001;131:649S–666S. discussion 666S-668S. doi: 10.1093/jn/131.2.649S.
    1. Lozoff B., Jimenez E., Smith J.B. Double burden of iron deficiency in infancy and low socioeconomic status: a longitudinal analysis of cognitive test scores to age 19 years. Arch Pediatr Adolesc Med. 2006;160:1108–1113. doi: 10.1001/archpedi.160.11.1108.
    1. Perlman J.M., Wyllie J., Kattwinkel J., Atkins D.L., Chameides L., Goldsmith J.P., Guinsburg R., Hazinski M.F., Morley C., Richmond S., on behalf of the Neonatal Resuscitation Chapter Collaborators, et al. Part 11: neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2010;122(suppl 2):S516–S538. doi: 10.1161/CIRCULATIONAHA.110.971127.
    1. Perlman J.M., Wyllie J., Kattwinkel J., Atkins D.L., Chameides L., Goldsmith J.P., Guinsburg R., Hazinski M.F., Morley C., Richmond S., Neonatal Resuscitation Chapter Collaborators, et al. Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Pediatrics. 2010;126:e1319–e1344. doi: 10.1542/peds.2010-2972B.
    1. Wyllie J., Perlman J.M., Kattwinkel J., Atkins D.L., Chameides L., Goldsmith J.P., Guinsburg R., Hazinski M.F., Morley C., Richmond S., Neonatal Resuscitation Chapter Collaborators, et al. Part 11: neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation. 2010;81(suppl 1):e260–e287. doi: 10.1016/j.resuscitation.2010.08.029.
    1. El-Naggar W., Davis P.G., Soll R.F., Costa-Nobre D.T., de Almeida M.F., Fabres J.G., Fawke J., Foglia E.E., Guinsburg R., Hosono S., et al. Cord management at birth for term and late preterm infants. 2021. Accessed March 19, 2021.
    1. Backes C.H., Huang H., Cua C.L., Garg V., Smith C.V., Yin H., Galantowicz M., Bauer J.A., Hoffman T.M. Early versus delayed umbilical cord clamping in infants with congenital heart disease: a pilot, randomized, controlled trial. J Perinatol. 2015;35:826–831. doi: 10.1038/jp.2015.89.
    1. Ceriani Cernadas J.M., Carroli G., Pellegrini L., Ferreira M., Ricci C., Casas O., Lardizabal J., Morasso Mdel C. The effect of early and delayed umbilical cord clamping on ferritin levels in term infants at six months of life: a randomized, controlled trial [in Portuguese]. Arch Argent Pediatr. 2010;108:201–208. doi: 10.1590/S0325-00752010000300005.
    1. Chopra A., Thakur A., Garg P., Kler N., Gujral K. Early versus delayed cord clamping in small for gestational age infants and iron stores at 3 months of age: a randomized controlled trial. BMC Pediatr. 2018;18:234. doi: 10.1186/s12887-018-1214-8.
    1. Datta B.V., Kumar A., Yadav R. A randomized controlled trial to evaluate the role of brief delay in cord clamping in preterm neonates (34-36 weeks) on short-term neurobehavioural outcome. J Trop Pediatr. 2017;63:418–424. doi: 10.1093/tropej/fmx004.
    1. Al-Tawil M.M., Abdel-Aal M.R., Kaddah M.A. A randomized controlled trial on delayed cord clamping and iron status at 3-5 months in term neonates held at the level of maternal pelvis. J Neonatal Perinatal Med. 2012;5:319–326. doi: 10.3233/NPM-1263112.
    1. Chaparro C.M., Neufeld L.M., Tena Alavez G., Eguia-Líz Cedillo R., Dewey K.G. Effect of timing of umbilical cord clamping on iron status in Mexican infants: a randomised controlled trial. Lancet. 2006;367:1997–2004. doi: 10.1016/S0140-6736(06)68889-2.
    1. De Paco C., Herrera J., Garcia C., Corbalán S., Arteaga A., Pertegal M., Checa R., Prieto M.T., Nieto A., Delgado J.L. Effects of delayed cord clamping on the third stage of labour, maternal haematological parameters and acid-base status in fetuses at term. Eur J Obstet Gynecol Reprod Biol. 2016;207:153–156. doi: 10.1016/j.ejogrb.2016.10.031.
    1. Emhamed M.O., van Rheenen P., Brabin B.J. The early effects of delayed cord clamping in term infants born to Libyan mothers. Trop Doct. 2004;34:218–222. doi: 10.1177/004947550403400410.
    1. Fawzy A., Moustafa A., El-Kassar Y., Swelem M., El-agwany A., Diab D. Early versus delayed cord clamping of term births in Shatby Maternity University Hospital. Progresos de Obstetricia y Ginecología. 2015;58:389–392..
    1. Mohammad K., Tailakh S., Fram K., Creedy D. Effects of early umbilical cord clamping versus delayed clamping on maternal and neonatal outcomes: a Jordanian study. J Matern Fetal Neonatal Med. 2021;34:231–237. doi: 10.1080/14767058.2019.1602603.
    1. Salari Z., Rezapour M., Khalili N. Late umbilical cord clamping, neonatal hematocrit and Apgar scores: a randomized controlled trial. J Neonatal Perinatal Med. 2014;7:287–291. doi: 10.3233/NPM-1463913.
    1. Ultee C.A., van der Deure J., Swart J., Lasham C., van Baar A.L. Delayed cord clamping in preterm infants delivered at 34 36 weeks’ gestation: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2008;93:F20–F23. doi: 10.1136/adc.2006.100354.
    1. Yadav A.K., Upadhyay A., Gothwal S., Dubey K., Mandal U., Yadav C.P. Comparison of three types of intervention to enhance placental redistribution in term newborns: randomized control trial. J Perinatol. 2015;35:720–724. doi: 10.1038/jp.2015.65.
    1. Ceriani Cernadas J.M., Carroli G., Pellegrini L., Otaño L., Ferreira M., Ricci C., Casas O., Giordano D., Lardizábal J. The effect of timing of cord clamping on neonatal venous hematocrit values and clinical outcome at term: a randomized, controlled trial. Pediatrics. 2006;117:e779–e786. doi: 10.1542/peds.2005-1156.
    1. Chen X., Li X., Chang Y., Li W., Cui H. Effect and safety of timing of cord clamping on neonatal hematocrit values and clinical outcomes in term infants: a randomized controlled trial. J Perinatol. 2018;38:251–257. doi: 10.1038/s41372-017-0001-y.
    1. Jahazi A., Kordi M., Mirbehbahani N.B., Mazloom S.R. The effect of early and late umbilical cord clamping on neonatal hematocrit. J Perinatol. 2008;28:523–525. doi: 10.1038/jp.2008.55.
    1. Philip A.G. Further observations on placental transfusion. Obstet Gynecol. 1973;42:334–343.
    1. Vural I., Ozdemir H., Teker G., Yoldemir T., Bilgen H., Ozek E. Delayed cord clamping in term large-for-gestational age infants: a prospective randomised study. J Paediatr Child Health. 2019;55:555–560. doi: 10.1111/jpc.14242.
    1. Grajeda R., Pérez-Escamilla R., Dewey K.G. Delayed clamping of the umbilical cord improves hematologic status of Guatemalan infants at 2 mo of age. Am J Clin Nutr. 1997;65:425–431. doi: 10.1093/ajcn/65.2.425.
    1. Krishnan L., Kommu P., Thomas B., Akila B., Daniel M. Should delayed cord clamping be the standard of care in term low risk deliveries? A randomized controlled trial from a medical college hospital in south India. J Clin Neonatol. 2015;4:183–187. doi: 10.4103/2249-4847.159904.
    1. Mercer J.S., Erickson-Owens D.A., Collins J., Barcelos M.O., Parker A.B., Padbury J.F. Effects of delayed cord clamping on residual placental blood volume, hemoglobin and bilirubin levels in term infants: a randomized controlled trial. J Perinatol. 2017;37:260–264. doi: 10.1038/jp.2016.222.
    1. Saigal S., O’Neill A., Surainder Y., Chua L.B., Usher R. Placental transfusion and hyperbilirubinemia in the premature. Pediatrics. 1972;49:406–419.
    1. Salae R., Tanprasertkul C., Somprasit C., Bhamarapravatana K., Suwannarurk K. Efficacy of delayed versus immediate cord clamping in late preterm newborns following normal labor: a randomized control trial. J Med Assoc Thai. 2016;99(suppl 4):S159–S165.
    1. van Rheenen P., de Moor L., Eschbach S., de Grooth H., Brabin B. Delayed cord clamping and haemoglobin levels in infancy: a randomised controlled trial in term babies. Trop Med Int Health. 2007;12:603–616. doi: 10.1111/j.1365-3156.2007.01835.x.
    1. Andersson O., Hellström-Westas L., Andersson D., Domellöf M. Effect of delayed versus early umbilical cord clamping on neonatal outcomes and iron status at 4 months: a randomised controlled trial. BMJ. 2011;343:d7157. doi: 10.1136/bmj.d7157.
    1. Cavallin F., Galeazzo B., Loretelli V., Madella S., Pizzolato M., Visentin S., Trevisanuto D. Delayed cord clamping versus early cord clamping in elective cesarean section: a randomized controlled trial. Neonatology. 2019;116:252–259. doi: 10.1159/000500325.
    1. Mercer J.S., Erickson-Owens D.A., Deoni S.C.L., Dean D.C., 3rd, Collins J., Parker A.B., Wang M., Joelson S., Mercer E.N., Padbury J.F. Effects of delayed cord clamping on 4-month ferritin levels, brain myelin content, and neurodevelopment: a randomized controlled trial. J Pediatr. 2018;203:266–272.e2. doi: 10.1016/j.jpeds.2018.06.006.
    1. Andersson O., Lindquist B., Lindgren M., Stjernqvist K., Domellöf M., Hellström-Westas L. Effect of delayed cord clamping on neurodevelopment at 4 years of age: a randomized clinical trial. JAMA Pediatr. 2015;169:631–638. doi: 10.1001/jamapediatrics.2015.0358.
    1. Erickson-Owens D.A., Mercer J.S., Oh W. Umbilical cord milking in term infants delivered by cesarean section: a randomized controlled trial. J Perinatol. 2012;32:580–584. doi: 10.1038/jp.2011.159.
    1. Upadhyay A., Gothwal S., Parihar R., Garg A., Gupta A., Chawla D., Gulati I.K. Effect of umbilical cord milking in term and near term infants: randomized control trial. Am J Obstet Gynecol. 2013;208:120.e1–120.e6. doi: 10.1016/j.ajog.2012.10.884.
    1. Alzaree F., Elbohoty A., Abdellatif M. Early versus delayed umbilical cord clamping on physiologic anemia of the term newborn infant. Open Access Maced J Med Sci. 2018;6:1399–1404. doi: 10.3889/oamjms.2018.286.
    1. Jaiswal P., Upadhyay A., Gothwal S., Singh D., Dubey K., Garg A., Vishnubhatala S. Comparison of two types of intervention to enhance placental redistribution in term infants: randomized control trial. Eur J Pediatr. 2015;174:1159–1167. doi: 10.1007/s00431-015-2511-y.
    1. Vatansever B., Demirel G., Ciler Eren E., Erel O., Neselioglu S., Karavar H.N., Gundogdu S., Ulfer G., Bahadir S., Tastekin A. Is early cord clamping, delayed cord clamping or cord milking best? J Matern Fetal Neonatal Med. 2018;31:877–880. doi: 10.1080/14767058.2017.1300647.
    1. Andersson O., Rana N., Ewald U., Målqvist M., Stripple G., Basnet O., Subedi K., Kc A. Intact cord resuscitation versus early cord clamping in the treatment of depressed newborn infants during the first 10 minutes of birth (Nepcord III): a randomized clinical trial. Matern Health Neonatol Perinatol. 2019;5:15. doi: 10.1186/s40748-019-0110-z.
    1. Kc A., Rana N., Målqvist M., Jarawka Ranneberg L., Subedi K., Andersson O. Effects of delayed umbilical cord clamping vs early clamping on anemia in infants at 8 and 12 months: a randomized clinical trial. JAMA Pediatr. 2017;171:264–270. doi: 10.1001/jamapediatrics.2016.3971.
    1. Kc A., Singhal N., Gautam J., Rana N., Andersson O. Effect of early versus delayed cord clamping in neonate on heart rate, breathing and oxygen saturation during first 10 minutes of birth: randomized clinical trial. Matern Health Neonatol Perinatol. 2019;5:7. doi: 10.1186/s40748-019-0103-y.
    1. Ishaq F., Anwar A., Shahid N., Mahmood R., Abid H. Impact of early versus delayed cord clamping on mean hemoglobin level in term neonates. Pak Pediatr J. 2016;40:237–241.
    1. Katheria A.C., Brown M.K., Faksh A., Hassen K.O., Rich W., Lazarus D., Steen J., Daneshmand S.S., Finer N.N. Delayed cord clamping in newborns born at term at risk for resuscitation: a feasibility randomized clinical trial. J Pediatr. 2017;187:313–317.e1. doi: 10.1016/j.jpeds.2017.04.033.
    1. Nouraie S., Amiralii, Akbari S., Vameghi R., Akbarzade Baghban A. The effect of the timing of umbilical cord clamping on hemoglobin levels, neonatal outcomes and developmental status in infants at 4 months old. Iran J Child Neurol. 2019;13:45–55.
    1. Spears R.L., Anderson G.V., Brotman S., Farrier J., Kwan J., Masto A., Perrin L., Stebbins R. The effect of early versus late cord clamping on signs of respiratory distress. Am J Obstet Gynecol. 1966;95:564–568. doi: 10.1016/0002-9378(66)90151-7.
    1. Rana N., Kc A., Målqvist M., Subedi K., Andersson O. Effect of delayed cord clamping of term babies on neurodevelopment at 12 months: a randomized controlled trial. Neonatology. 2019;115:36–42. doi: 10.1159/000491994.
    1. Nelson N.M., Enkin M.W., Saigal S., Bennett K.J., Milner R., Sackett D.L. A randomized clinical trial of the Leboyer approach to childbirth. N Engl J Med. 1980;302:655–660. doi: 10.1056/NEJM198003203021203.
    1. Sun M., Song X., Shi W., Li Y., Shan N., Zhang H. Delayed umbilical cord clamping in cesarean section reduces postpartum bleeding and the rate of severe asphyxia. Clin Exp Obstet Gynecol. 2017;44:14–16.
    1. Oxford Midwives Research Group A study of the relationship between the delivery to cord clamping interval and the time of cord separation. Midwifery. 1991;7:167–176. doi: 10.1016/s0266-6138(05)80195-0.
    1. Withanathantrige M., Goonewardene I. Effects of early versus delayed umbilical cord clamping during antepartum lower segment caesarean section on placental delivery and postoperative haemorrhage: a randomised controlled trial. Ceylon Med J. 2017;62:5–11. doi: 10.4038/cmj.v62i1.8425.
    1. Ersdal H.L., Linde J., Mduma E., Auestad B., Perlman J. Neonatal outcome following cord clamping after onset of spontaneous respiration. Pediatrics. 2014;134:265–272. doi: 10.1542/peds.2014-0467.
    1. Roehr C.C., Davis P.G., Weiner G.M., Jonathan Wyllie J., Wyckoff M.H., Trevisanuto D. T-piece resuscitator or self-inflating bag during neonatal resuscitation: a scoping review. Pediatr Res. 2021;89:760–766. doi: 10.1038/s41390-020-1005-4.
    1. Trevisanuto D, Roehr CC, Davis PG, Schmölzer GM, Wyckoff MH, Rabi Y, de Almeida MF, El-Naggar W, Fabres JG, Fawke J, et al. Devices for administering positive pressure ventilation (PPV) at birth: (NLS#870) systematic review.Accessed March 11, 2021.
    1. Dawson J.A., Schmölzer G.M., Kamlin C.O., Te Pas A.B., O’Donnell C.P., Donath S.M., Davis P.G., Morley C.J. Oxygenation with T-piece versus self-inflating bag for ventilation of extremely preterm infants at birth: a randomized controlled trial. J Pediatr. 2011;158:912–918.e1. doi: 10.1016/j.jpeds.2010.12.003.
    1. Kookna S., Ajay Singh K., Pandit S., Dhawan N. T-piece resuscitator or self inflating bag for positive pressure ventilation during neonatal resuscitation: a randomized controlled trial. J Dent Med Sci. IOSR. 2019;18:66–74.
    1. Szyld E., Aguilar A., Musante G.A., Vain N., Prudent L., Fabres J., Carlo W.A., Delivery Room Ventilation Devices Trial Group Comparison of devices for newborn ventilation in the delivery room. J Pediatr. 2014;165:234–239.e3. doi: 10.1016/j.jpeds.2014.02.035.
    1. Thakur A., Saluja S., Modi M., Kler N., Garg P., Soni A., Kaur A., Chetri S. T-piece or self inflating bag for positive pressure ventilation during delivery room resuscitation: an RCT. Resuscitation. 2015;90:21–24. doi: 10.1016/j.resuscitation.2015.01.021.
    1. Guinsburg R., de Almeida M.F.B., de Castro J.S., Gonçalves-Ferri W.A., Marques P.F., Caldas J.P.S., Krebs V.L.J., Souza Rugolo L.M.S., de Almeida J.H.C.L., Luz J.H., et al. T-piece versus self-inflating bag ventilation in preterm neonates at birth. Arch Dis Child Fetal Neonatal Ed. 2018;103:F49–F55. doi: 10.1136/archdischild-2016-312360.
    1. Holte K., Ersdal H., Eilevstjønn J., Gomo Ø, Klingenberg C., Thallinger M., Linde J., Stigum H., Yeconia A., Kidanto H., et al. Positive end-expiratory pressure in newborn resuscitation around term: a randomized controlled trial. Pediatrics. 2020;146:e20200494. doi: 10.1542/peds.2020-0494.
    1. Björklund L.J., Ingimarsson J., Curstedt T., John J., Robertson B., Werner O., Vilstrup C.T. Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res. 1997;42:348–355. doi: 10.1203/00006450-199709000-00016.
    1. Haddad L.B., Mascaretti R.S., Valle L.A.P.A., Rebello C.M. A self-inflating bag may cause hypocapnia in a rabbit model of manual ventilation compared to the T-piece resuscitator. Am J Perinatol. 2017;34:1405–1410. doi: 10.1055/s-0037-1603732.
    1. Hillman N.H., Moss T.J., Kallapur S.G., Bachurski C., Pillow J.J., Polglase G.R., Nitsos I., Kramer B.W., Jobe A.H. Brief, large tidal volume ventilation initiates lung injury and a systemic response in fetal sheep. Am J Respir Crit Care Med. 2007;176:575–581. doi: 10.1164/rccm.200701-051OC.
    1. Hawkes C.P., Ryan C.A., Dempsey E.M. Comparison of the T-piece resuscitator with other neonatal manual ventilation devices: a qualitative review. Resuscitation. 2012;83:797–802. doi: 10.1016/j.resuscitation.2011.12.020.
    1. Hussey S.G., Ryan C.A., Murphy B.P. Comparison of three manual ventilation devices using an intubated mannequin. Arch Dis Child Fetal Neonatal Ed. 2004;89:F490–F493. doi: 10.1136/adc.2003.047712.
    1. Hinder M., McEwan A., Drevhammer T., Donaldson S., Tracy M.B. T-piece resuscitators: how do they compare? Arch Dis Child Fetal Neonatal Ed. 2019;104:F122–F127. doi: 10.1136/archdischild-2018-314860.
    1. Tracy M.B., Halliday R., Tracy S.K., Hinder M.K. Newborn self-inflating manual resuscitators: precision robotic testing of safety and reliability. Arch Dis Child Fetal Neonatal Ed. 2019;104:F403–F408. doi: 10.1136/archdischild-2018-315391.
    1. Dainty K.N., Atkins D.L., Breckwoldt J., Maconochie I., Schexnayder S.M., Skrifvars M.B., Tijssen J., Wyllie J., Furuta M., Aickin R., International Liaison Committee on Resuscitation’s (ILCOR) Pediatric; Neonatal Life Support Task Force; Education, Implementation and Teams Task Force, et al. Family presence during resuscitation in paediatric and neonatal cardiac arrest: a systematic review. Resuscitation. 2021;162:20–34. doi: 10.1016/j.resuscitation.2021.01.017.
    1. Dainty K.N., Atkins D.L., Breckwoldt J., Maconochie I., Schexnayder S.M., Skrifvars M.B., Tijssen J., Wyllie J., Furuta M., International Liaison Committee on Resuscitation’s Pediatric, Neonatal Life Support and Education, Implementation and Teams Task Forces Family presence during resuscitation CoSTR 2021. Accessed March 19 2021.
    1. Zehnder E., Law B.H.Y., Schmölzer G.M. Does parental presence affect workload during neonatal resuscitation? Arch Dis Child Fetal Neonatal Ed. 2020;105:559–561. doi: 10.1136/archdischild-2020-318840.
    1. Arnold L., Sawyer A., Rabe H., Abbott J., Gyte G., Duley L., Ayers S., Very Preterm Birth Qualitative Collaborative Group Parents’ first moments with their very preterm babies: a qualitative study. BMJ Open. 2013;3:e002487. doi: 10.1136/bmjopen-2012-002487.
    1. Harvey M.E., Pattison H.M. Being there: a qualitative interview study with fathers present during the resuscitation of their baby at delivery. Arch Dis Child Fetal Neonatal Ed. 2012;97:F439–F443. doi: 10.1136/archdischild-2011-301482.
    1. Lindberg B., Axelsson K., Ohrling K. The birth of premature infants: experiences from the fathers’ perspective. J Neonatal Nurs. 2007;13:142–149. doi: 10.1016/j.jnn.2007.05.004.
    1. Sawyer A., Ayers S., Bertullies S., Thomas M., Weeks A.D., Yoxall C.W., Duley L. Providing immediate neonatal care and resuscitation at birth beside the mother: parents’ views, a qualitative study. BMJ Open. 2015;5:e008495. doi: 10.1136/bmjopen-2015-008495.
    1. Harvey M.E., Pattison H.M. The impact of a father’s presence during newborn resuscitation: a qualitative interview study with healthcare professionals. BMJ Open. 2013;3:e002547. doi: 10.1136/bmjopen-2013-002547.
    1. Yoxall C.W., Ayers S., Sawyer A., Bertullies S., Thomas M., Weeks A.D., Duley L. Providing immediate neonatal care and resuscitation at birth beside the mother: clinicians’ views, a qualitative study. BMJ Open. 2015;5:e008494. doi: 10.1136/bmjopen-2015-008494.
    1. Katheria A.C., Sorkhi S.R., Hassen K., Faksh A., Ghorishi Z., Poeltler D. Acceptability of bedside resuscitation with intact umbilical cord to clinicians and patients’ families in the United States. Front Pediatr. 2018;6:100. doi: 10.3389/fped.2018.00100.
    1. Bray JE, Eastwood K, Bhanji F, Breckwoldt J, Cheng A, Duff J, Gilfoyle E, Hsieh M, Lauridsen K, Lockey A, et al; ILCOR Education, Implementation, and Teams Task Force. Self-directed digital BLS training: EIT 647 task force systematic review.Accessed March 3, 2021.
    1. Ali S., Athar M., Ahmed S.M. A randomised controlled comparison of video versus instructor-based compression only life support training. Indian J Anaesth. 2019;63:188–193. doi: 10.4103/ija.IJA_737_18.
    1. Assadi T., Mofidi M., Rezai M., Hafezinnoghadam P., Maghsoudi M., Mosaddegh R., Aghdam H. The comparison between two methods of basic life support instruction: video self-instruction versus traditional method. J Emerg Med. Hong Kong. 2015;22:291–296.
    1. Beskind D.L., Stolz U., Thiede R., Hoyer R., Burns W., Brown J., Ludgate M., Tiutan T., Shane R., McMorrow D., et al. Viewing a brief chest-compression-only CPR video improves bystander CPR performance and responsiveness in high school students: a cluster randomized trial. Resuscitation. 2016;104:28–33. doi: 10.1016/j.resuscitation.2016.03.022.
    1. Bylow H., Karlsson T., Lepp M., Claesson A., Lindqvist J., Herlitz J. Effectiveness of web-based education in addition to basic life support learning activities: a cluster randomised controlled trial. PLoS One. 2019;14:e0219341. doi: 10.1371/journal.pone.0219341.
    1. Cerezo Espinosa C., Nieto Caballero S., Juguera Rodríguez L., Castejón-Mochón J.F., Segura Melgarejo F., Sánchez Martínez C.M., López López C.A., Pardo Ríos M. Learning cardiopulmonary resuscitation theory with face-to-face versus audiovisual instruction for secondary school students: a randomized controlled trial. Emergencias. 2018;30:28–34.
    1. Chung C.H., Siu A.Y., Po L.L., Lam C.Y., Wong P.C. Comparing the effectiveness of video self-instruction versus traditional classroom instruction targeted at cardiopulmonary resuscitation skills for laypersons: a prospective randomised controlled trial. Hong Kong Med J. 2010;16:165–170.
    1. de Vries W., Turner N.M., Monsieurs K.G., Bierens J.J., Koster R.W. Comparison of instructor-led automated external defibrillation training and three alternative DVD-based training methods. Resuscitation. 2010;81:1004–1009. doi: 10.1016/j.resuscitation.2010.04.006.
    1. Doucet L., Lammens R., Hendrickx S., Dewolf P. App-based learning as an alternative for instructors in teaching basic life support to school children: a randomized control trial. Acta Clin Belg. 2019;74:317–325. doi: 10.1080/17843286.2018.1500766.
    1. Dracup K., Moser D.K., Doering L.V., Guzy P.M. Comparison of cardiopulmonary resuscitation training methods for parents of infants at high risk for cardiopulmonary arrest. Ann Emerg Med. 1998;32:170–177. doi: 10.1016/s0196-0644(98)70133-7.
    1. Dracup K., Moser D.K., Doering L.V., Guzy P.M., Juarbe T. A controlled trial of cardiopulmonary resuscitation training for ethnically diverse parents of infants at high risk for cardiopulmonary arrest. Crit Care Med. 2000;28:3289–3295. doi: 10.1097/00003246-200009000-00029.
    1. Einspruch E.L., Lynch B., Aufderheide T.P., Nichol G., Becker L. Retention of CPR skills learned in a traditional AHA Heartsaver course versus 30-min video self-training: a controlled randomized study. Resuscitation. 2007;74:476–486. doi: 10.1016/j.resuscitation.2007.01.030.
    1. Hasselager A., Bohnstedt C., Østergaard D., Sønderskov C., Bihrmann K., Tolsgaard M.G., Lauritsen T.L.B. Improving the cost-effectiveness of laypersons’ paediatric basic life support skills training: a randomised non-inferiority study. Resuscitation. 2019;138:28–35. doi: 10.1016/j.resuscitation.2019.02.032.
    1. Heard D.G., Andresen K.H., Guthmiller K.M., Lucas R., Heard K.J., Blewer A.L., Abella B.S., Gent L.M., Sasson C. Hands-only cardiopulmonary resuscitation education: a comparison of on-screen with compression feedback, classroom, and video education. Ann Emerg Med. 2019;73:599–609. doi: 10.1016/j.annemergmed.2018.09.026.
    1. Kim H.S., Kim H.J., Suh E.E. The effect of patient-centered CPR education for family caregivers of patients with cardiovascular diseases. J Korean Acad Nurs. 2016;46:463–474. doi: 10.4040/jkan.2016.46.3.463.
    1. Krogh L.Q., Bjørnshave K., Vestergaard L.D., Sharma M.B., Rasmussen S.E., Nielsen H.V., Thim T., Løfgren B. E-learning in pediatric basic life support: a randomized controlled non-inferiority study. Resuscitation. 2015;90:7–12. doi: 10.1016/j.resuscitation.2015.01.030.
    1. Li F., Zhang J.S., Sheng X.Y., Wang J.L., Shen X.M., Xia W.P., Shen L.X., Jiang F. Effects of three different first-aid training methods on knowledge retention of caregivers and teachers: a randomized and longitudinal cohort study in China. Public Health. 2020;178:97–104. doi: 10.1016/j.puhe.2019.08.021.
    1. Liberman M., Golberg N., Mulder D., Sampalis J. Teaching cardiopulmonary resuscitation to CEGEP students in Quebec: a pilot project. Resuscitation. 2000;47:249–257. doi: 10.1016/s0300-9572(00)00236-7.
    1. Lynch B., Einspruch E.L., Nichol G., Becker L.B., Aufderheide T.P., Idris A. Effectiveness of a 30-min CPR self-instruction program for lay responders: a controlled randomized study. Resuscitation. 2005;67:31–43. doi: 10.1016/j.resuscitation.2005.04.017.
    1. Lynch B., Einspruch E.L. With or without an instructor, brief exposure to CPR training produces significant attitude change. Resuscitation. 2010;81:568–575. doi: 10.1016/j.resuscitation.2009.12.022.
    1. Lyness AL. Effectiveness of interactive video to teach CPR theory and skills.Paper presented at the Annual Convention of the Association for Educational Communications aid Technology (Anaheim, CA, Jan. 17-23, 1985). (ERIC Document Reproduction Service, ED 256 324).
    1. Mancini M.E., Cazzell M., Kardong-Edgren S., Cason C.L. Improving workplace safety training using a self-directed CPR-AED learning program. AAOHN J. 2009;57:159–167. quiz 168. doi: 10.3928/08910162-20090401-02.
    1. Meischke H.W., Rea T., Eisenberg M.S., Schaeffer S.M., Kudenchuk P. Training seniors in the operation of an automated external defibrillator: a randomized trial comparing two training methods. Ann Emerg Med. 2001;38:216–222. doi: 10.1067/mem.2001.115621.
    1. Nas J., Thannhauser J., Vart P., van Geuns R.J., Muijsers H.E.C., Mol J.Q., Aarts G.W.A., Konijnenberg L.S.F., Gommans D.H.F., Ahoud-Schoenmakers S.G.A.M., et al. Effect of face-to-face vs virtual reality training on cardiopulmonary resuscitation quality: a randomized clinical trial. JAMA Cardiol. 2020;5:328–335. doi: 10.1001/jamacardio.2019.4992.
    1. Pedersen T.H., Kasper N., Roman H., Egloff M., Marx D., Abegglen S., Greif R. Self-learning basic life support: a randomised controlled trial on learning conditions. Resuscitation. 2018;126:147–153. doi: 10.1016/j.resuscitation.2018.02.031.
    1. Raaj N., Gopichandran L., Baidya D., Devagourou B. A comparative study to evaluate the effectiveness of mannequin demonstration versus video teaching programme on basic life support to the family members of adult patient at high risk of cardiopulmonary arrest. Int J Nurs Education. 2016;8:142–147.
    1. Reder S., Cummings P., Quan L. Comparison of three instructional methods for teaching cardiopulmonary resuscitation and use of an automatic external defibrillator to high school students. Resuscitation. 2006;69:443–453. doi: 10.1016/j.resuscitation.2005.08.020.
    1. Roppolo L.P., Pepe P.E., Campbell L., Ohman K., Kulkarni H., Miller R., Idris A., Bean L., Bettes T.N., Idris A.H. Prospective, randomized trial of the effectiveness and retention of 30-min layperson training for cardiopulmonary resuscitation and automated external defibrillators: the American Airlines study. Resuscitation. 2007;74:276–285. doi: 10.1016/j.resuscitation.2006.12.017.
    1. Roppolo L.P., Heymann R., Pepe P., Wagner J., Commons B., Miller R., Allen E., Horne L., Wainscott M.P., Idris A.H. A randomized controlled trial comparing traditional training in cardiopulmonary resuscitation (CPR) to self-directed CPR learning in first year medical students: the two-person CPR study. Resuscitation. 2011;82:319–325. doi: 10.1016/j.resuscitation.2010.10.025.
    1. Thorén A.B., Axelsson A.B., Herlitz J. DVD-based or instructor-led CPR education: a comparison. Resuscitation. 2007;72:333–334. doi: 10.1016/j.resuscitation.2006.09.013.
    1. Todd K.H., Braslow A., Brennan R.T., Lowery D.W., Cox R.J., Lipscomb L.E., Kellermann A.L. Randomized, controlled trial of video self-instruction versus traditional CPR training. Ann Emerg Med. 1998;31:364–369. doi: 10.1016/s0196-0644(98)70348-8.
    1. Todd K.H., Heron S.L., Thompson M., Dennis R., O’Connor J., Kellermann A.L. Simple CPR: A randomized, controlled trial of video self-instructional cardiopulmonary resuscitation training in an African American church congregation. Ann Emerg Med. 1999;34:730–737. doi: 10.1016/s0196-0644(99)70098-3.
    1. Van Raemdonck V., Monsieurs K.G., Aerenhouts D., De Martelaer K. Teaching basic life support: a prospective randomized study on low-cost training strategies in secondary schools. Eur J Emerg Med. 2014;21:284–290. doi: 10.1097/MEJ.0000000000000071.
    1. Yeung J., Kovic I., Vidacic M., Skilton E., Higgins D., Melody T., Lockey A. The School Lifesavers Study: a randomised controlled trial comparing the impact of Lifesaver only, face-to-face training only, and Lifesaver with face-to-face training on CPR knowledge, skills and attitudes in UK school children. Resuscitation. 2017;120:138–145. doi: 10.1016/j.resuscitation.2017.08.010.
    1. Barr G.C., Jr, Rupp V.A., Hamilton K.M., Worrilow C.C., Reed J.F., 3rd, Friel K.S., Dusza S.W., Greenberg M.R. Training mothers in infant cardiopulmonary resuscitation with an instructional DVD and manikin. J Am Osteopath Assoc. 2013;113:538–545. doi: 10.7556/jaoa.2013.005.
    1. Batcheller A.M., Brennan R.T., Braslow A., Urrutia A., Kaye W. Cardiopulmonary resuscitation performance of subjects over forty is better following half-hour video self-instruction compared to traditional four-hour classroom training. Resuscitation. 2000;43:101–110. doi: 10.1016/s0300-9572(99)00132-x.
    1. Braslow A., Brennan R.T., Newman M.M., Bircher N.G., Batcheller A.M., Kaye W. CPR training without an instructor: development and evaluation of a video self-instructional system for effective performance of cardiopulmonary resuscitation. Resuscitation. 1997;34:207–220. doi: 10.1016/s0300-9572(97)01096-4.
    1. Edwards M.J., Hannah K.J. An examination of the use of interactive videodisc cardiopulmonary resuscitation instruction for the lay community. Comput Nurs. 1985;3:250–252.
    1. Hasani H., Bahrami M., Malekpour A., Dehghani M., Allahyary E., Amini M., Abdorahimi M., Khani S., Kalantari Meibodi M., Kojuri J. Evaluation of teaching methods in mass CPCR training in different groups of the society: an observational study. Medicine (Baltimore). 2015;94:e859. doi: 10.1097/MD.0000000000000859.
    1. Isbye D.L., Rasmussen L.S., Lippert F.K., Rudolph S.F., Ringsted C.V. Laypersons may learn basic life support in 24min using a personal resuscitation manikin. Resuscitation. 2006;69:435–442. doi: 10.1016/j.resuscitation.2005.10.027.
    1. Jones I., Handley A.J., Whitfield R., Newcombe R., Chamberlain D. A preliminary feasibility study of a short DVD-based distance-learning package for basic life support. Resuscitation. 2007;75:350–356. doi: 10.1016/j.resuscitation.2007.04.030.
    1. Long C.A. Teaching parents infant CPR: lecture or audiovisual tape? MCN Am J Matern Child Nurs. 1992;17:30–32. doi: 10.1097/00005721-199201000-00011.
    1. Djärv T, Douma M, Palmieri T, Meyran D, Berry D, Kloeck D, Bendall J, Morrison LJ, Singletary EM, Zideman D, International Liaison Committee on Resuscitation First Aid and Pediatric Life Support Task Forces. Duration of cooling with water for thermal burns as a first aid intervention: FA 770 systematic review.Accessed March 10, 2021.
    1. Cuttle L., Kravchuk O., Wallis B., Kimble R.M. An audit of first-aid treatment of pediatric burns patients and their clinical outcome. J Burn Care Res. 2009;30:1028–1034. doi: 10.1097/BCR.0b013e3181bfb7d1.
    1. Fein M., Quinn J., Watt K., Nichols T., Kimble R., Cuttle L. Prehospital paediatric burn care: new priorities in paramedic reporting. Emerg Med Australas. 2014;26:609–615. doi: 10.1111/1742-6723.12313.
    1. Griffin B.R., Frear C.C., Babl F., Oakley E., Kimble RM. Cool running water first aid decreases skin grafting requirements in pediatric burns: a cohort study of two thousand four hundred ninety-five children. Ann Emerg Med. 2020;75:75–85. doi: 10.1016/j.annemergmed.2019.06.028.
    1. Wood F.M., Phillips M., Jovic T., Cassidy J.T., Cameron P., Edgar D.W., Steering Committee of the Burn Registry of Australia and New Zealand (BRANZ) Water first aid is beneficial in humans post-burn: evidence from a bi-national cohort study. PLoS One. 2016;11:e0147259. doi: 10.1371/journal.pone.0147259.
    1. Wright E.H., Tyler M., Vojnovic B., Pleat J., Harris A., Furniss D. Human model of burn injury that quantifies the benefit of cooling as a first aid measure. Br J Surg. 2019;106:1472–1479. doi: 10.1002/bjs.11263.
    1. Tung K.Y., Chen M.L., Wang H.J., Chen G.S., Peck M., Yang J., Liu C.C. A seven-year epidemiology study of 12,381 admitted burn patients in Taiwan: using the internet registration system of the Childhood Burn Foundation. Burns. 2005;31(suppl 1):S12–S17. doi: 10.1016/j.burns.2004.10.006.
    1. Cho Y.S., Choi Y.H. Comparison of three cooling methods for burn patients: a randomized clinical trial. Burns. 2017;43:502–508. doi: 10.1016/j.burns.2016.09.010.
    1. Singletary E.M., Zideman D.A., De Buck E.D., Chang W.T., Jensen J.L., Swain J.M., Woodin J.A., Blanchard I.E., Herrington R.A., Pellegrino J.L., on behalf of the First Aid Chapter Collaborators, et al. Part 9: first aid: 2015 International Consensus on First Aid Science With Treatment Recommendations. Circulation. 2015;132(suppl 1):S269–S311. doi: 10.1161/CIR.0000000000000278.
    1. Zideman D.A., Singletary E.M., De Buck E.D., Chang W.T., Jensen J.L., Swain J.M., Woodin J.A., Blanchard I.E., Herrington R.A., Pellegrino J.L., First Aid Chapter Collaborators, et al. Part 9: first aid: 2015 International Consensus on First Aid Science With Treatment Recommendations. Resuscitation. 2015;95:e225–e261. doi: 10.1016/j.resuscitation.2015.07.047.
    1. Borra V, De Brier N, Berry D, Zideman D, Singletary EM, International Liaison Committee on Resuscitation First Aid Task Force. Oral rehydration solutions for treating exertion-related dehydration: FA 584 systematic review.Accessed March 10, 2021.
    1. Amano T., Sugiyama Y., Okumura J., Fujii N., Kenny G.P., Nishiyasu T., Inoue Y., Kondo N., Sasagawa K., Enoki Y., et al. Effects of isomaltulose ingestion on postexercise hydration state and heat loss responses in young men. Exp Physiol. 2019;104:1494–1504. doi: 10.1113/EP087843.
    1. Chang C.Q., Chen Y.B., Chen Z.M., Zhang L.T. Effects of a carbohydrate-electrolyte beverage on blood viscosity after dehydration in healthy adults. Chin Med J (Engl). 2010;123:3220–3225.
    1. Pérez-Idárraga A., Aragón-Vargas L.F. Postexercise rehydration: potassium-rich drinks versus water and a sports drink. Appl Physiol Nutr Metab. 2014;39:1167–1174. doi: 10.1139/apnm-2013-0434.
    1. Shirreffs S.M., Watson P., Maughan R.J. Milk as an effective post-exercise rehydration drink. Br J Nutr. 2007;98:173–180. doi: 10.1017/S0007114507695543.
    1. Utter A.C., Quindry J.C., Emerenziani G.P., Valiente J.S. Effects of rooibos tea, bottled water, and a carbohydrate beverage on blood and urinary measures of hydration after acute dehydration. Res Sports Med. 2010;18:85–96. doi: 10.1080/15438620903321102.
    1. Valiente J.S., Utter A.C., Quindry J.C., Nieman D.C. Effects of commercially formulated water on the hydration status of dehydrated collegiate wrestlers. J Strength Cond Res. 2009;23:2210–2216. doi: 10.1519/JSC.0b013e3181bac56e.
    1. Volterman K.A., Obeid J., Wilk B., Timmons B.W. Effect of milk consumption on rehydration in youth following exercise in the heat. Appl Physiol Nutr Metab. 2014;39:1257–1264. doi: 10.1139/apnm-2014-0047.
    1. Wijnen A.H., Steennis J., Catoire M., Wardenaar F.C., Mensink M. Post-exercise rehydration: effect of consumption of beer with varying alcohol content on fluid balance after mild dehydration. Front Nutr. 2016;3:45. doi: 10.3389/fnut.2016.00045.
    1. Wong S.H., Williams C., Adams N. Effects of ingesting a large volume of carbohydrate-electrolyte solution on rehydration during recovery and subsequent exercise capacity. Int J Sport Nutr Exerc Metab. 2000;10:375–393. doi: 10.1123/ijsnem.10.4.375.
    1. González-Alonso J., Heaps C.L., Coyle E.F. Rehydration after exercise with common beverages and water. Int J Sports Med. 1992;13:399–406. doi: 10.1055/s-2007-1021288.
    1. Niksefat M., Akbari-Fakhrabadi M., Mousavi Z., Ziaee V., Fallah J., Memari A.H. Yogurt drink effectively rehydrates athletes after a strenuous exercise session. Acta Medica Bulgarica. 2019;46:43–49. doi: .
    1. Seifert J., Harmon J., DeClercq P. Protein added to a sports drink improves fluid retention. Int J Sport Nutr Exerc Metab. 2006;16:420–429. doi: 10.1123/ijsnem.16.4.420.
    1. Wong S.H., Chen Y. Effect of a carbohydrate-electrolyte beverage, lemon tea, or water on rehydration during short-term recovery from exercise. Int J Sport Nutr Exerc Metab. 2011;21:300–310. doi: 10.1123/ijsnem.21.4.300.
    1. Kalman D.S., Feldman S., Krieger D.R., Bloomer R.J. Comparison of coconut water and a carbohydrate-electrolyte sport drink on measures of hydration and physical performance in exercise-trained men. J Int Soc Sports Nutr. 2012;9:1. doi: 10.1186/1550-2783-9-1.
    1. Evans G.H., Miller J., Whiteley S., James LJ. A sodium drink enhances fluid retention during 3 hours of post-exercise recovery when ingested with a standard meal. Int J Sport Nutr Exerc Metab. 2017;27:344–350. doi: 10.1123/ijsnem.2016-0196.
    1. Ismail I., Singh R., Sirisinghe R.G. Rehydration with sodium-enriched coconut water after exercise-induced dehydration. Southeast Asian J Trop Med Public Health. 2007;38:769–785.
    1. Saat M., Singh R., Sirisinghe R.G., Nawawi M. Rehydration after exercise with fresh young coconut water, carbohydrate-electrolyte beverage and plain water. J Physiol Anthropol Appl Human Sci. 2002;21:93–104. doi: 10.2114/jpa.21.93.
    1. Seery S., Jakeman P. A metered intake of milk following exercise and thermal dehydration restores whole-body net fluid balance better than a carbohydrate-electrolyte solution or water in healthy young men. Br J Nutr. 2016;116:1013–1021. doi: 10.1017/S0007114516002907.
    1. Lau W.Y., Kato H., Nosaka K. Water intake after dehydration makes muscles more susceptible to cramp but electrolytes reverse that effect. BMJ Open Sport Exerc Med. 2019;5:e000478. doi: 10.1136/bmjsem-2018-000478.
    1. Sayer L., Rodriguez-Sanchez N., Rodriguez-Giustiniani P., Irwin C., McCartney D., Cox G.R., Galloway S.D.R., Desbrow B. Effect of drinking rate on the retention of water or milk following exercise-induced dehydration. Int J Sport Nutr Exerc Metab. 2019:1–11. doi: 10.1123/ijsnem.2019-0176.
    1. Jiménez-Pavón D., Cervantes-Borunda M.S., Díaz L.E., Marcos A., Castillo M.J. Effects of a moderate intake of beer on markers of hydration after exercise in the heat: a crossover study. J Int Soc Sports Nutr. 2015;12:26. doi: 10.1186/s12970-015-0088-5.
    1. Flores-Salamanca R., Aragón-Vargas L.F. Postexercise rehydration with beer impairs fluid retention, reaction time, and balance. Appl Physiol Nutr Metab. 2014;39:1175–1181. doi: 10.1139/apnm-2013-0576.
    1. Charlton N.P., Goolsby C.A., Zideman D.A., Maconochie I.K., Morley P.T., Singletary E.M. Appropriate tourniquet types in the pediatric population: a systematic review. Cureus. 2021;13:e14474. doi: 10.7759/cureus.14474.
    1. Singletary E.M., Zideman D.A., Bendall J.C., Berry D.A., Borra V., Carlson J.N., Cassan P., Chang W.T., Charlton N.P., Djärv T., First Aid Science Collaborators, et al. 2020 International Consensus on First Aid Science With Treatment Recommendations. Resuscitation. 2020;156:A240–A282. doi: 10.1016/j.resuscitation.2020.09.016.
    1. Singletary E.M., Zideman D.A., Bendall J.C., Berry D.C., Borra V., Carlson J.N., Cassan P., Chang W.T., Charlton N.P., Djärv T., on behalf of the First Aid Science Collaborators, et al. 2020 International Consensus on First Aid Science With Treatment Recommendations. Circulation. 2020;142(suppl):S284–S334. doi: 10.1161/CIR.0000000000000897.
    1. Charlton NP, Goolsby CA, Singletary EM, Zideman D, Maconochie I; International Liaison Committee on Resuscitation First Aid and Pediatric Life Support Task Forces. Pediatric tourniquet types: first aid new TF SR.Accessed March 10, 2021.
    1. Harcke H.T., Lawrence L.L., Gripp E.W., Kecskemethy H.H., Kruse R.W., Murphy S.G. Adult tourniquet for use in school-age emergencies. Pediatrics. 2019;143:e20183447. doi: 10.1542/peds.2018-3447.
    1. Kelly J.R., Levy M.J., Reyes J., Anders J. Effectiveness of the combat application tourniquet for arterial occlusion in young children. J Trauma Acute Care Surg. 2020;88:644–647. doi: 10.1097/TA.0000000000002594.
    1. El-Sherif N., Lowndes B., Franz W., Hallbeck M.S., Belau S., Sztajnkrycer M.D. Sweating the little things: tourniquet application efficacy in two models of pediatric limb circumference. Mil Med. 2019;184(suppl 1):361–366. doi: 10.1093/milmed/usy283.
    1. Kragh J.F., Jr, Wright-Aldossari B., Aden J.K., 3rd, Dubick M.A. Ease of use of emergency tourniquets on simulated limbs of infants: deliberate practice. J Spec Oper Med. 2019;19:41–47.
    1. Huygelen V., Borra V., De Buck E., Vandekerckhove P. Effective methods for tick removal: a systematic review. J Evid Based Med. 2017;10:177–188. doi: 10.1111/jebm.12257.
    1. Charlton NP, Carlson JN, Borra V, Singletary EM, Zideman DA; International Liaison Committee on Resuscitation First Aid and Pediatric Life Support Task Forces. Methods of tick removal: first aid systematic review.Accessed March 10, 2021.
    1. Bowles D.E., McHugh C.P., Spradling S.L. Evaluation of devices for removing attached Rhipicephalus sanguineus (Acari: Ixodidae). J Med Entomol. 1992;29:901–902. doi: 10.1093/jmedent/29.5.901.
    1. Duscher G.G., Peschke R., Tichy A. Mechanical tools for the removal of Ixodes ricinus female ticks: differences of instruments and pulling or twisting? Parasitol Res. 2012;111:1505–1511. doi: 10.1007/s00436-012-2987-6.
    1. Zenner L., Drevon-Gaillot E., Callait-Cardinal M.P. Evaluation of four manual tick-removal devices for dogs and cats. Vet Rec. 2006;159:526–529. doi: 10.1136/vr.159.16.526.
    1. Akin Belli A., Dervis E., Kar S., Ergonul O., Gargili A. Revisiting detachment techniques in human-biting ticks. J Am Acad Dermatol. 2016;75:393–397. doi: 10.1016/j.jaad.2016.01.032.
    1. de Boer R., van den Bogaard A.E. Removal of attached nymphs and adults of Ixodes ricinus (Acari: Ixodidae). J Med Entomol. 1993;30:748–752. doi: 10.1093/jmedent/30.4.748.
    1. Needham G.R. Evaluation of five popular methods for tick removal. Pediatrics. 1985;75:997–1002.
    1. Şahin A.R., Hakkoymaz H., Taşdoğan A.M., Kireçci E. Evaluation and comparison of tick detachment techniques and technical mistakes made during tick removal. Ulus Travma Acil Cerrahi Derg. 2020;26:405–410. doi: 10.14744/tjtes.2020.59680.
    1. Stewart R.L., Burgdorfer W., Needham G.R. Evaluation of three commercial tick removal tools. Wilderness Environ Med. 1998;9:137–142. doi: 10.1580/1080-6032(1998)009[0137:eotctr];2.
    1. Berry D., Carlson J.N., Singletary E., Zideman D.A., Ring J. Use of cryotherapy for managing epistaxis in the first aid setting: a scoping review. Cureus. 2021;13:e14832. doi: 10.7759/cureus.14832.
    1. Porter M., Marais J., Tolley N. The effect of ice packs upon nasal mucosal blood flow. Acta Otolaryngol. 1991;111:1122–1125. doi: 10.3109/00016489109100766.
    1. Teymoortash A., Sesterhenn A., Kress R., Sapundzhiev N., Werner J.A. Efficacy of ice packs in the management of epistaxis. Clin Otolaryngol Allied Sci. 2003;28:545–547. doi: 10.1046/j.1365-2273.2003.00773.x.
    1. Porter M.J. A comparison between the effect of ice packs on the forehead and ice cubes in the mouth on nasal submucosal temperature. Rhinology. 1991;29:11–15.
    1. Scheibe M., Wüstenberg E.G., Hüttenbrink K.B., Zahnert T., Hummel T. Studies on the effects of ice collars on nasal blood volume using optical rhinometry. Am J Rhinol. 2006;20:394–396. doi: 10.2500/ajr.2006.20.2883.
    1. Ozturk M., Mutlu F., Kara A., Derin S., Topdag M. Evaluation of the effect of nasal dorsal skin cooling on nasal mucosa by acoustic rhinometry. J Laryngol Otol. 2014;128:1067–1070. doi: 10.1017/S0022215114002886.
    1. Yamagiwa M., Hilberg O., Pedersen O.F., Lundqvist G.R. Evaluation of the effect of localized skin cooling on nasal airway volume by acoustic rhinometry. Am Rev Respir Dis. 1990;141(pt 1):1050–1054. doi: 10.1164/ajrccm/141.4_Pt_1.1050.
    1. Khan M., Conroy K., Ubayasiri K., Constable J., Smith M.E., Williams R.J., Kuhn I., Smith M., Philpott C. Initial assessment in the management of adult epistaxis: systematic review. J Laryngol Otol. 2017;131:1035–1055. doi: 10.1017/S0022215117002031.
    1. Pope L.E., Hobbs C.G. Epistaxis: an update on current management. Postgrad Med J. 2005;81:309–314. doi: 10.1136/pgmj.2004.025007.
    1. Upile T., Jerjes W., Sipaul F., Maaytah M.E., Singh S., Hopper C., Wright A. A change in UK epistaxis management. Eur Arch Otorhinolaryngol. 2008;265:1349–1354. doi: 10.1007/s00405-008-0657-1.
    1. Wong A.S., Anat D.S. Epistaxis: a guide to assessment and management. J Fam Pract. 2018;67:E13–E20.
    1. Beck R., Sorge M., Schneider A., Dietz A. Current approaches to epistaxis treatment in primary and secondary care. Dtsch Arztebl Int. 2018;115:12–22. doi: 10.3238/arztebl.2018.0012.
    1. Record S. Practice guideline: epistaxis in children. J Pediatr Health Care. 2015;29:484–488. doi: 10.1016/j.pedhc.2015.06.002.
    1. O’Sullivan I. Epistaxis. 2005. Accessed February 24, 2021.
    1. Guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care. Part 5: new guidelines for first aid. The American Heart Association in collaboration with the International Liaison Committee on Resuscitation. Circulation. 2000;102 (suppl 1):I-77–I-85. doi: 10.1161/circ.102.suppl_1.I-136.
    1. Australian Resuscitation Council, New Zealand Resuscitation Council. ANZCOR guideline 9.1.1 – first aid for management of bleeding. 2017. Accessed September 17, 2021.
    1. Couper K., Taylor-Phillips S., Grove A., Freeman K., Osokogu O., Court R., Mehrabian A., Morley P.T., Nolan J.P., Soar J., et al. COVID-19 in cardiac arrest and infection risk to rescuers: a systematic review. Resuscitation. 2020;151:59–66. doi: 10.1016/j.resuscitation.2020.04.022.
    1. Perkins G.D., Morley P.T., Nolan J.P., Soar J., Berg K., Olasveengen T., Wyckoff M., Greif R., Singletary N., Castren M., et al. International Liaison Committee on Resuscitation: COVID-19 consensus on science, treatment recommendations and task force insights. Resuscitation. 2020;151:145–147. doi: 10.1016/j.resuscitation.2020.04.035.
    1. Couper K, Taylor-Phillips S, Grove A, Freeman K, Osokogu O, Court R, Mehrabian A, Morley P, Nolan JP, Soar J, et al; International Liaison Committee on Resuscitation.COVID-19 infection risk to rescuers from patients in cardiac arrest.Accessed March 2, 2021.
    1. Ott M., Milazzo A., Liebau S., Jaki C., Schilling T., Krohn A., Heymer J. Exploration of strategies to reduce aerosol-spread during chest compressions: a simulation and cadaver model. Resuscitation. 2020;152:192–198. doi: 10.1016/j.resuscitation.2020.05.012.
    1. Chalumeau M., Bidet P., Lina G., Mokhtari M., André M.C., Gendrel D., Bingen E., Raymond J. Transmission of Panton-Valentine leukocidin-producing Staphylococcus aureus to a physician during resuscitation of a child. Clin Infect Dis. 2005;41:e29–e30. doi: 10.1086/431762.
    1. Nam H.S., Yeon M.Y., Park J.W., Hong J.Y., Son J.W. Healthcare worker infected with Middle East respiratory syndrome during cardiopulmonary resuscitation in Korea, 2015. Epidemiol Health. 2017;39:e2017052. doi: 10.4178/epih.e2017052.
    1. El-Boghdadly K., Wong D.J.N., Owen R., Neuman M.D., Pocock S., Carlisle J.B., Johnstone C., Andruszkiewicz P., Baker P.A., Biccard B.M., et al. Risks to healthcare workers following tracheal intubation of patients with COVID-19: a prospective international multicentre cohort study. Anaesthesia. 2020;75:1437–1447. doi: 10.1111/anae.15170.
    1. Loeb M., McGeer A., Henry B., Ofner M., Rose D., Hlywka T., Levie J., McQueen J., Smith S., Moss L., et al. SARS among critical care nurses, Toronto. Emerg Infect Dis. 2004;10:251–255. doi: 10.3201/eid1002.030838.
    1. Raboud J., Shigayeva A., McGeer A., Bontovics E., Chapman M., Gravel D., Henry B., Lapinsky S., Loeb M., McDonald L.C., et al. Risk factors for SARS transmission from patients requiring intubation: a multicentre investigation in Toronto, Canada. PLoS One. 2010;5:e10717. doi: 10.1371/journal.pone.0010717.
    1. Ran L., Chen X., Wang Y., Wu W., Zhang L., Tan X. Risk factors of healthcare workers with coronavirus disease 2019: a retrospective cohort study in a designated hospital of Wuhan in China. Clin Infect Dis. 2020;71:2218–2221. doi: 10.1093/cid/ciaa287.
    1. Liu W., Tang F., Fang L.-Q., de Vlas S.J., Ma H.-J., Zhou J.-P., Looman C.W.N., Richardus J.H., Cao W.-C. Risk factors for SARS infection among hospital healthcare workers in Beijing: a case control study. Trop Med Int Health. 2009;14(suppl 1):52–59. doi: 10.1111/j.1365-3156.2009.02255.x.
    1. Christian M.D., Loutfy M., McDonald L.C., Martinez K.F., Ofner M., Wong T., Wallington T., Gold W.L., Mederski B., Green K., SARS Investigation Team, et al. Possible SARS coronavirus transmission during cardiopulmonary resuscitation. Emerg Infect Dis. 2004;10:287–293. doi: 10.3201/eid1002.030700.
    1. Kim W.Y., Choi W., Park S.W., Wang E.B., Lee W.J., Jee Y., Lim K.S., Lee H.J., Kim S.M., Lee S.O., et al. Nosocomial transmission of severe fever with thrombocytopenia syndrome in Korea. Clin Infect Dis. 2015;60:1681–1683. doi: 10.1093/cid/civ128.
    1. Knapp J., Weigand M.A., Popp E. Transmission of tuberculosis during cardiopulmonary resuscitation: focus on breathing system filters. Notfall and Rettungsmedizin. 2015;19:48–51. doi: 10.1007/s10049-015-0100-2.
    1. Schumacher J., Gray S.A., Michel S., Alcock R., Brinker A. Respiratory protection during simulated emergency pediatric life support: a randomized, controlled, crossover study. Prehosp Disaster Med. 2013;28:33–38. doi: 10.1017/S1049023X12001525.
    1. Watson L., Sault W., Gwyn R., Verbeek P.R. The “delay effect” of donning a gown during cardiopulmonary resuscitation in a simulation model. CJEM. 2008;10:333–338. doi: 10.1017/s1481803500010332.
    1. Tian Y., Tu X., Zhou X., Yu J., Luo S., Ma L., Liu C., Zhao Y., Jin X. Wearing a N95 mask increases rescuer’s fatigue and decreases chest compression quality in simulated cardiopulmonary resuscitation. Am J Emerg Med. 2021;44:434–438. doi: 10.1016/j.ajem.2020.05.065.
    1. Shin H., Oh J., Lim T.H., Kang H., Song Y., Lee S. Comparing the protective performances of 3 types of N95 filtering facepiece respirators during chest compressions: a randomized simulation study. Medicine (Baltimore). 2017;96:e8308. doi: 10.1097/MD.0000000000008308.
    1. Serin S., Caglar B. The effect of different personal protective equipment masks on health care workers’ cardiopulmonary resuscitation performance during the Covid-19 pandemic. J Emerg Med. 2021;60:292–298. doi: 10.1016/j.jemermed.2020.11.005.
    1. Deakin C.D., O’Neill J.F., Tabor T. Does compression-only cardiopulmonary resuscitation generate adequate passive ventilation during cardiac arrest? Resuscitation. 2007;75:53–59. doi: 10.1016/j.resuscitation.2007.04.002.

Source: PubMed

3
Subscribe