Prevalence of Right Ventricle Strain Changes following Anthracycline Therapy

Michal Laufer-Perl, Moran Perelman-Gvili, Svetlana Sirota Dorfman, Guy Baruch, Ehud Rothschild, Gil Beer, Yaron Arbel, Joshua H Arnold, Zach Rozenbaum, Shmuel Banai, Yan Topilsky, Livia Kapusta, Michal Laufer-Perl, Moran Perelman-Gvili, Svetlana Sirota Dorfman, Guy Baruch, Ehud Rothschild, Gil Beer, Yaron Arbel, Joshua H Arnold, Zach Rozenbaum, Shmuel Banai, Yan Topilsky, Livia Kapusta

Abstract

Background: Anthracycline (ANT) is the most recognized therapy known to cause cardiotoxicity, mainly left ventricle (LV) dysfunction. Global Longitudinal Strain (GLS) is the optimal tool for assessment of subclinical LV dysfunction. Right ventricle (RV) function has been recognized as an independent factor for cardiac outcomes; however, data evaluating RV GLS is limited. We aimed to evaluate the change in RV GLS following ANT therapy.

Methods: The study cohort is part of the Israel Cardio-Oncology Registry (ICOR). All patients performed echocardiography before (T1) and at the end (T3) of ANT therapy. A significant reduction was defined as a relative reduction of ≥10% in RV GLS values.

Results: The study included 40 female patients with breast cancer treated with ANT. During follow-up, both RV GLS and free wall longitudinal strain systolic peak (RV FWLS PK) decreased significantly (p < 0.001 and p = 0.002). Altogether, 30 (75%) and 23 (58%) patients showed RV GLS and RV FWLS PK ≥ 10% relative reduction. At T3, LV ejection fraction and LV GLS were within normal range.

Conclusions: RV GLS and RV FWLS PK reduction following ANT exposure is extremely frequent, comparing to LV GLS reduction.

Keywords: anthracycline; cardio-oncology; cardiotoxicity; right ventricle; strain.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The assessment of right ventricle Global Longitudinal Strain. (A) Determining of the region of interest; (B) evaluating the Global Longitudinal Strain of the right ventricle; (C) evaluating the free wall by excluding the septal wall and including the RV free wall (basal, mid, and apical) segments solely.
Figure 1
Figure 1
The assessment of right ventricle Global Longitudinal Strain. (A) Determining of the region of interest; (B) evaluating the Global Longitudinal Strain of the right ventricle; (C) evaluating the free wall by excluding the septal wall and including the RV free wall (basal, mid, and apical) segments solely.
Figure 2
Figure 2
Right ventricle strain reduction during ANT therapy. (A) Reduction in RV GLS values from T1 to T3; (B) reduction in RV FWLS PK values from T1 to T3; (C) reduction in RV GLS septum PK values form T1 to T3. ANT = Anthracycline, RV = Right Ventricle, GLS = Global Longitudinal Strain, FWLS PK = Free Wall Peak Systolic, PK = Peak Systolic, T1 = baseline before ANT therapy, T2 = during ANT therapy, T3 = end of ANT therapy.
Figure 2
Figure 2
Right ventricle strain reduction during ANT therapy. (A) Reduction in RV GLS values from T1 to T3; (B) reduction in RV FWLS PK values from T1 to T3; (C) reduction in RV GLS septum PK values form T1 to T3. ANT = Anthracycline, RV = Right Ventricle, GLS = Global Longitudinal Strain, FWLS PK = Free Wall Peak Systolic, PK = Peak Systolic, T1 = baseline before ANT therapy, T2 = during ANT therapy, T3 = end of ANT therapy.

References

    1. Siegel R., DeSantis C., Virgo K., Stein K., Mariotto A., Smith T., Cooper D., Gansler T., Lerro C., Fedewa S., et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin. 2012;62:220–241. doi: 10.3322/caac.21149.
    1. Ferlay J., Steliarova-Foucher E., Lortet-Tieulent J., Rosso S., Coebergh J.W., Comber H., Forman D., Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer. 2013;49:1374–1403. doi: 10.1016/j.ejca.2012.12.027.
    1. Bloom M.W., Hamo C.E., Cardinale D., Ky B., Nohria A., Baer L., Skopicki H., Lenihan D.J., Gheorghiade M., Lyon A.R., et al. Cancer Therapy-Related Cardiac Dysfunction and Heart Failure: Part 1: Definitions, Pathophysiology, Risk Factors, and Imaging. Circ. Heart Fail. 2016;9:e002661. doi: 10.1161/CIRCHEARTFAILURE.115.002661.
    1. Vejpongsa P., Yeh E.T. Prevention of anthracycline-induced cardiotoxicity: Challenges and opportunities. J. Am. Coll. Cardiol. 2014;64:938–945. doi: 10.1016/j.jacc.2014.06.1167.
    1. Plana J.C., Galderisi M., Barac A., Ewer M.S., Ky B., Scherrer-Crosbie M., Ganame J., Sebag I.A., Agler D.A., Badano L.P., et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging. 2014;15:1063–1093. doi: 10.1093/ehjci/jeu192.
    1. Hardaway B.W. Adriamycin-associated cardiomyopathy: Where are we now? updates in pathophysiology, dose recommendations, prognosis, and outcomes. Curr. Opin. Cardiol. 2019;34:289–295. doi: 10.1097/HCO.0000000000000617.
    1. Zamorano J.L., Lancellotti P., Rodriguez Muñoz D., Aboyans V., Asteggiano R., Galderisi M., Habib G., Lenihan D.J., Lip G.Y.H., Lyon A.R., et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC) Eur. Heart J. 2016;37:2768–2801. doi: 10.1093/eurheartj/ehw211.
    1. Gulati G., Heck S.L., Ree A.H., Hoffmann P., Schulz-Menger J., Fagerland M.W., Gravdehaug B., von Knobelsdorff-Brenkenhoff F., Bratland Å., Storås T.H., et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): A 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur. Heart J. 2016;37:1671–1680. doi: 10.1093/eurheartj/ehw022.
    1. Eidem B.W. Identification of anthracycline cardiotoxicity: Left ventricular ejection fraction is not enough. J. Am. Soc. Echocardiogr. 2008;21:1290–1292. doi: 10.1016/j.echo.2008.10.008.
    1. Anqi Y., Yu Z., Mingjun X., Xiaoli K., Mengmeng L., Fangfang L., Mei Z. Use of echocardiography to monitor myocardial damage during anthracycline chemotherapy. Echocardiography. 2019;36:495–502. doi: 10.1111/echo.14252.
    1. Santoro C., Arpino G., Esposito R., Lembo M., Paciolla I., Cardalesi C., de Simone G., Trimarco B., De Placido S., Galderisi M. 2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: A balance with feasibility. Eur. Heart J. Cardiovasc. Imaging. 2017;18:930–936. doi: 10.1093/ehjci/jex033.
    1. Çetin S., Babaoğlu K., Başar E.Z., Deveci M., Çorapçıoğlu F. Subclinical anthracycline-induced cardiotoxicity in long-term follow-up of asymptomatic childhood cancer survivors: Assessment by speckle tracking echocardiography. Echocardiography. 2018;35:234–240. doi: 10.1111/echo.13743.
    1. Poterucha J.T., Kutty S., Lindquist R.K., Li L., Eidem B.W. Changes in left ventricular longitudinal strain with anthracycline chemotherapy in adolescents precede subsequent decreased left ventricular ejection fraction. J. Am. Soc. Echocardiogr. 2012;25:733–740. doi: 10.1016/j.echo.2012.04.007.
    1. De Groote P., Millaire A., Foucher-Hossein C., Nugue O., Marchandise X., Ducloux G., Lablanche J.M. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J. Am. Coll. Cardiol. 1998;32:948–954. doi: 10.1016/S0735-1097(98)00337-4.
    1. Boczar K.E., Aseyev O., Sulpher J., Johnson C., Burwash I.G., Turek M., Dent S., Dwivedi G. Right heart function deteriorates in breast cancer patients undergoing anthracycline-based chemotherapy. Echo. Res. Pract. 2016;3:79–84. doi: 10.1530/ERP-16-0020.
    1. Tadic M., Baudisch A., Haßfeld S., Heinzel F., Cuspidi C., Burkhardt F., Escher F., Attanasio P., Pieske B., Genger M. Right ventricular function and mechanics in chemotherapy- and radiotherapy-naive cancer patients. Int. J. Cardiovasc. Imaging. 2018;34:1581–1587. doi: 10.1007/s10554-018-1379-0.
    1. Lee J.H., Park J.H. Strain Analysis of the Right Ventricle Using Two-dimensional Echocardiography. J. Cardiovasc. Imaging. 2018;26:111–124. doi: 10.4250/jcvi.2018.26.e11.
    1. Rudski L.G., Lai W.W., Afilalo J., Hua L., Handschumacher M.D., Chandrasekaran K., Solomon S.D., Louie E.K., Schiller N.B. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010;23:685–713.
    1. Sarvari S.I., Haugaa K.H., Anfinsen O.G., Leren T.P., Smiseth O.A., Kongsgaard E., Amlie J.P., Edvardsen T. Right ventricular mechanical dispersion is related to malignant arrhythmias: A study of patients with arrhythmogenic right ventricular cardiomyopathy and subclinical right ventricular dysfunction. Eur. Heart J. 2011;32:1089–1096. doi: 10.1093/eurheartj/ehr069.
    1. Laufer-Perl M., Arias O., Dorfman S.S., Baruch G., Rothschild E., Beer G., Hasson S.P., Arbel Y., Rozenbaum Z., Topilsky Y., et al. Left Atrial Strain changes in patients with breast cancer during anthracycline therapy. Int. J. Cardiol. 2021;330:238–244. doi: 10.1016/j.ijcard.2021.02.013.
    1. Laufer-Perl M., Arnold J.H., Mor L., Amrami N., Derakhshesh M., Moshkovits Y., Sadeh B., Arbel Y., Topilsky Y., Rozenbaum Z. The association of reduced global longitudinal strain with cancer therapy-related cardiac dysfunction among patients receiving cancer therapy. Clin. Res. Cardiol. 2020;109:255–262. doi: 10.1007/s00392-019-01508-9.
    1. Thavendiranathan P., Poulin F., Lim K.D., Plana J.C., Woo A., Marwick T.H. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: A systematic review. J. Am. Coll. Cardiol. 2014;63:2751–2768. doi: 10.1016/j.jacc.2014.01.073.
    1. Lang R.M., Bierig M., Devereux R.B., Flachskampf F.A., Foster E., Pellikka P.A., Picard M.H., Roman M.J., Seward J., Shanewise J., et al. Recommendations for chamber quantification. Eur. J. Echocardiogr. 2006;7:79–108. doi: 10.1016/j.euje.2005.12.014.
    1. Charbonnel C., Convers-Domart R., Rigaudeau S., Taksin A.L., Baron N., Lambert J., Ghez S., Georges J.L., Farhat H., Lambert J., et al. Assessment of global longitudinal strain at low-dose anthracycline-based chemotherapy, for the prediction of subsequent cardiotoxicity. Eur. Heart J. Cardiovasc. Imaging. 2017;18:392–401. doi: 10.1093/ehjci/jew223.
    1. Muraru D., Onciul S., Peluso D., Soriani N., Cucchini U., Aruta P., Romeo G., Cavalli G., Iliceto S., Badano L.P. Sex- and Method-Specific Reference Values for Right Ventricular Strain by 2-Dimensional Speckle-Tracking Echocardiography. Circ. Cardiovasc. Imaging. 2016;9:e003866. doi: 10.1161/CIRCIMAGING.115.003866.
    1. Baruch G., Rothschild E., Kapusta L., Schwartz L.A., Biner S., Aviram G., Ingbir M., Nachmany I., Keren G., Topilsky Y. Impact of right ventricular dysfunction and end-diastolic pulmonary artery pressure estimated from analysis of tricuspid regurgitant velocity spectrum in patients with preserved ejection fraction. Eur. Heart J. Cardiovasc. Imaging. 2019;20:446–454. doi: 10.1093/ehjci/jey116.
    1. Ho S.Y., Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart. 2006;92((Suppl. 1)):i2–i13. doi: 10.1136/hrt.2005.077875.
    1. Planek M.I.C., Manshad A., Hein K., Hemu M., Ballout F., Varandani R., Venugopal P., Okwuosa T. Prediction of doxorubicin cardiotoxicity by early detection of subclinical right ventricular dysfunction. Cardio-Oncology. 2020;6:10. doi: 10.1186/s40959-020-00066-8.
    1. Arciniegas Calle M.C., Sandhu N.P., Xia H., Cha S.S., Pellikka P.A., Ye Z., Herrmann J., Villarraga H.R. Two-dimensional speckle tracking echocardiography predicts early subclinical cardiotoxicity associated with anthracycline-trastuzumab chemotherapy in patients with breast cancer. BMC Cancer. 2018;18:1037. doi: 10.1186/s12885-018-4935-z.
    1. Zhao R., Shu F., Zhang C., Song F., Xu Y., Guo Y., Xue K., Lin J., Shu X., Hsi D.H., et al. Early Detection and Prediction of Anthracycline-Induced Right Ventricular Cardiotoxicity by 3-Dimensional Echocardiography. Cardio Oncol. 2020;2:13–22. doi: 10.1016/j.jaccao.2020.01.007.
    1. Ylänen K., Poutanen T., Savikurki-Heikkilä P., Rinta-Kiikka I., Eerola A., Vettenranta K. Cardiac magnetic resonance imaging in the evaluation of the late effects of anthracyclines among long-term survivors of childhood cancer. J. Am. Coll. Cardiol. 2013;61:1539–1547. doi: 10.1016/j.jacc.2013.01.019.
    1. Calleja A., Poulin F., Khorolsky C., Shariat M., Bedard P.L., Amir E., Rakowski H., McDonald M., Delgado D., Thavendiranathan P. Right Ventricular Dysfunction in Patients Experiencing Cardiotoxicity during Breast Cancer Therapy. J. Oncol. 2015;2015:609194. doi: 10.1155/2015/609194.
    1. Keramida K., Farmakis D., Bingcang J., Sulemane S., Sutherland S., Bingcang R.A., Ramachandran K., Tzavara C., Charalampopoulos G., Filippiadis D. Longitudinal changes of right ventricular deformation mechanics during trastuzumab therapy in breast cancer patients. Eur. J. Heart Fail. 2019;21:529–535. doi: 10.1002/ejhf.1385.
    1. Monitillo F., Di Terlizzi V., Gioia M.I., Barone R., Grande D., Parisi G., Brunetti N.D., Iacoviello M. Right Ventricular Function in Chronic Heart Failure: From the Diagnosis to the Therapeutic Approach. J. Cardiovasc. Dev. Dis. 2020;7:12.
    1. Bosch L., Lam C.S.P., Gong L., Chan S.P., Sim D., Yeo D., Jaufeerally F., Leong K.T.G., Ong H.Y., Ng T.P., et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur. J. Heart Fail. 2017;19:1664–1671. doi: 10.1002/ejhf.873.

Source: PubMed

3
Subscribe