Transcutaneous Spinal Cord Stimulation Enhances Walking Performance and Reduces Spasticity in Individuals with Multiple Sclerosis

Ursula S Hofstoetter, Brigitta Freundl, Peter Lackner, Heinrich Binder, Ursula S Hofstoetter, Brigitta Freundl, Peter Lackner, Heinrich Binder

Abstract

Gait dysfunction and spasticity are common debilitating consequences of multiple sclerosis (MS). Improvements of these motor impairments by lumbar transcutaneous spinal cord stimulation (tSCS) have been demonstrated in spinal cord injury. Here, we explored for the first time the motor effects of lumbar tSCS applied at 50 Hz for 30 min in 16 individuals with MS and investigated their temporal persistence post-intervention. We used a comprehensive protocol assessing walking ability, different presentations of spasticity, standing ability, manual dexterity, and trunk control. Walking ability, including walking speed and endurance, was significantly improved for two hours beyond the intervention and returned to baseline after 24 h. Muscle spasms, clonus duration, and exaggerated stretch reflexes were reduced for two hours, and clinically assessed lower-extremity muscle hypertonia remained at improved levels for 24 h post-intervention. Further, postural sway during normal standing with eyes open was decreased for two hours. No changes were detected in manual dexterity and trunk control. Our results suggest that transcutaneous lumbar SCS can serve as a clinically accessible method without known side effects that holds the potential for substantial clinical benefit across the disability spectrum of MS.

Keywords: gait dysfunction; human; multiple sclerosis; neuromodulation; non-invasive; spasticity; spinal cord stimulation; standing ability; transcutaneous; walking function.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure A1
Figure A1
Verification of afferent fiber stimulation during transcutaneous spinal cord stimulation at 50 Hz by the elicitation of paraesthesias in L2 to S2 innervated lower-extremity dermatomes. Exemplary distribution of paraesthesias (shaded areas) as perceived by participants 1, 5, and 10 during the intervention.
Figure 1
Figure 1
Overview of the methodology. (a) Study protocol comprising a baseline evaluation (Base) with two assessments, one conducted ~24 h (B1) and the other one immediately (B2) before a 30-min session of 50-Hz transcutaneous (transcut.) spinal cord stimulation; an evaluation of intermediate carry-over effects (Inter) with two assessments, one conducted immediately (I1) and the other one two hours (I2) post-intervention; and an evaluation of longer-lasting carry-over effects (Long) of the stimulation conducted ~24 h post-intervention. Each assessment included, as core tests, the clinical determination of lower-extremity muscle hypertonia based on the Modified Ashworth Scale (MAS) and, in the ambulatory participants, the timed 10-m walk test, the timed up-and-go test, and the 2-min walk test. Supplementary (supplem.) tests were conducted as indicated in B1 or B2 as well as in I1 and I2, and included standing tasks, the trunk control test, the timed nine-hole-peg test, and a surface-EMG (sEMG) based assessment of lower-extremity spasticity. Transcutaneous spinal cord stimulation was applied with the participants lying supine. First, effective electrode (el.) placement (cf. (b)) over the lumbosacral spinal cord was confirmed based on the elicitation of posterior root-muscle reflexes (PRMRs; cf. (c)) in lower-extremity myotomes. Second, for the intervention, transcutaneous spinal cord stimulation was applied for 30 min at 50 Hz and with an amplitude corresponding to 90% of the lowest PRMR threshold. n.t., not tested. (b) Electrode setup with the active paraspinal electrode placed longitudinally over the spine, covering T11 and T12 spinal processes, and a pair of interconnected indifferent electrodes on the lower abdomen. (c) Verification of effective stimulation site over the lumbosacral spinal cord by the elicitation of PRMRs in rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and triceps surae (TS), which demonstrate a characteristic suppression at interstimulus-intervals (ISIs) of 30 ms and 50 ms when tested by paired pulses [39]. At interstimulus-intervals of 100 ms, the responses to the second stimulus had partially recovered. Shaded backgrounds mark times of stimulus application. Three repetitions each superimposed; participant 5.
Figure 2
Figure 2
Intermediate and longer-lasting carry-over effects of transcutaneous spinal cord stimulation on the Modified Ashworth Scale (MAS)-based evaluation of lower-extremity muscle hypertonia. (a) Group results of (i) MAS sum scores obtained in Base, Inter, and Long; and (ii) changes in MAS sum scores per participant in Inter and Long compared to Base, illustrated by box plots. Bold horizontal lines within boxes are medians; boxes span the interquartile range. Whiskers extend to the lowest and largest values that are not outliers (illustrated as circles; see Methods). Brackets and asterisks denote significant results of post-hoc pairwise comparisons (*, p < 0.05; **, p < 0.001). (b) Changes in individual MAS scores (one score per movement, limb, and participant) in Inter and Long compared to Base. Stacked bar charts show percentage of changes classified as clinically meaningful improvement (reduction by ≥ 1; magenta sections of bars); improvement (reduction by 0.5; light magenta); unchanged (grey); and increase (black). Base, baseline evaluation comprising two assessments conducted ~24 h and immediately pre-intervention; Inter, evaluation of intermediate carry-over effects comprising two assessments immediately and two hours post-intervention; Long, evaluation of longer-lasting carry-over effects conducted ~24 h after the stimulation session; MAS, Modified Ashworth Scale.
Figure 3
Figure 3
Intermediate and longer-lasting carry-over effects of transcutaneous spinal cord stimulation on walking function. Group results of the evaluations Base, Inter, and Long of (a) the timed 10-m walk test; (b) the timed up-and-go test; and (c) (i) distance of the 2-min walk test as well as (ii) time required to cover the first 20-m course length, illustrated by box plots. Bold horizontal lines within boxes are medians; boxes span the interquartile range. Whiskers extend to the lowest and largest values that are not outliers (illustrated as circles; see Methods). Brackets and asterisks denote significant results of post-hoc pairwise comparisons (*, p < 0.05). (d) Individual changes in walk tests in (i) Inter and (ii) Long compared to Base. Stacked bar charts of the timed 10-m meter walk test (10mWT), the timed up-and-go test (TUG) and the 2-min walk test (2minWT) show percentage of changes classified as clinically relevant improvement (10mWT, increase of walking speed by ≥ 0.05 m/s; TUG, time reduced by ≥ 15%; and 2minWT, distance increased by ≥ 6.8 m), improvement, and decrease. Base, baseline evaluation comprising two assessments conducted ~24 h and immediately pre-intervention; Inter, evaluation of intermediate carry-over effects comprising two assessments conducted immediately and two hours post-intervention; Long, evaluation of longer-lasting carry-over effects conducted ~24 h post-intervention.
Figure 4
Figure 4
Intermediate carry-over effects of transcutaneous spinal cord stimulation on standing ability. (a) (i) Trajectories of the center of pressure in anterior–posterior and medial–lateral directions recorded during 30 s of normal standing with eyes open in B1 and assessments I1 and I2 of Inter; participant 10. Group results in B1 and Inter of postural sway during (ii) normal standing and (iii) Romberg’s test for 30 s with eyes open and eyes closed as indicated. (b) Difference in weight distribution (percentage of body weight) between lower extremities during 30 s of normal standing with eyes open shown for B1 and Inter. B1, baseline assessment conducted ~24 h pre-intervention; Base, baseline evaluation; Inter, evaluation of intermediate carry-over effects comprising two assessments conducted immediately (I1) and two hours (I2) post-intervention. All group results are illustrated by box plots. Bold horizontal lines within boxes are medians; boxes span the interquartile range. Whiskers extend to the lowest and largest values that are neither outliers (illustrated as circles) nor extreme values (asterisks). Bracket and asterisk denote significant results of post-hoc pairwise comparisons (*, p < 0.05; **, p < 0.001).
Figure 5
Figure 5
Intermediate carry-over effects of transcutaneous spinal cord stimulation on various presentations of lower-extremity spasticity assessed with surface-electromyography. (a) Lower-extremity muscle activation through tonic stretch reflexes during passive unilateral hip and knee flexion (flex.) and extension (ext.) movements. (i) Electromyographic (EMG) recordings derived from rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and triceps surae (TS) in assessments B2 as well as I1 and I2; participant 2. (ii) Group results of the root mean square (RMS) values of the EMG in B2 and Inter. (b) Achilles clonus elicited by a brisk manual dorsiflexion. (i) EMG recordings of TS in B2 as well as I1 and I2; participant 12. Arrows mark onsets of the tests. (ii) Group results of the EMG-RMS values (left) and clonus duration (right) in B2 and Inter. (c) Cutaneous-input evoked lower-extremity spasms. (i) EMG recordings of TA and TS in B2 as well as I1 and I2; participant 1. Arrows mark onsets of the tests. (ii) Group results of the EMG-RMS values in B2 and Inter. B2, baseline assessment conducted immediately pre-intervention; Base, baseline evaluation; Inter, evaluation of intermediate carry-over effects comprising two assessments immediately (I1) and two hours (I2) post-intervention. All group results are illustrated by box plots. Bold horizontal lines within boxes are medians; boxes span the interquartile range. Whiskers extend to the lowest and largest values that are not outliers (illustrated as circles; see Methods) or extreme values (asterisks). Brackets and asterisks denote significant results of post-hoc pairwise comparisons (*, p < 0.05).

References

    1. Harkema S., Gerasimenko Y., Hodes J., Burdick J., Angeli C., Chen Y., Ferreira C., Willhite A., Rejc E., Grossman R.G., et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: A case study. Lancet. 2011;377:1938–1947. doi: 10.1016/S0140-6736(11)60547-3.
    1. Angeli C.A., Edgerton V.R., Gerasimenko Y.P., Harkema S.J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014;137:1394–1409. doi: 10.1093/brain/awu038.
    1. Angeli C.A., Boakye M., Morton R.A., Vogt J., Benton K., Chen Y., Ferreira C.K., Harkema S.J. Recovery of Over-Ground Walking after Chronic Motor Complete Spinal Cord Injury. N. Engl. J. Med. 2018;379:1244–1250. doi: 10.1056/NEJMoa1803588.
    1. Gill M.L., Grahn P.J., Calvert J.S., Linde M.B., Lavrov I.A., Strommen J.A., Beck L.A., Sayenko D.G., Van Straaten M.G., Drubach D.I., et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat. Med. 2018;24:1677–1682. doi: 10.1038/s41591-018-0175-7.
    1. Wagner F.B., Mignardot J.-B., Le Goff-Mignardot C.G., Demesmaeker R., Komi S., Capogrosso M., Rowald A., Seáñez I., Caban M., Pirondini E., et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563:65–71. doi: 10.1038/s41586-018-0649-2.
    1. Minassian K., Persy I., Rattay F., Dimitrijevic M.R., Hofer C., Kern H. Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle Nerve. 2007;35:327–336. doi: 10.1002/mus.20700.
    1. Ladenbauer J., Minassian K., Hofstoetter U.S., Dimitrijevic M.R., Rattay F. Stimulation of the human lumbar spinal cord with implanted and surface electrodes: A computer simulation study. IEEE Trans. Neural Syst. Rehabil. Eng. 2010;18:637–645. doi: 10.1109/TNSRE.2010.2054112.
    1. Hofstoetter U.S., Danner S.M., Minassian K. Paraspinal Magnetic and Transcutaneous Electrical Stimulation. In: Jaeger D., Jung R., editors. Encyclopedia of Computational Neuroscience. Springer; New York, NY, USA: 2014. pp. 1–21.
    1. Rattay F., Minassian K., Dimitrijevic M.R. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling. Spinal Cord. 2000;38:473–489. doi: 10.1038/sj.sc.3101039.
    1. Capogrosso M., Wenger N., Raspopovic S., Musienko P., Beauparlant J., Bassi Luciani L., Courtine G., Micera S. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J. Neurosci. Off. J. Soc. Neurosci. 2013;33:19326–19340. doi: 10.1523/JNEUROSCI.1688-13.2013.
    1. Danner S.M., Hofstoetter U.S., Ladenbauer J., Rattay F., Minassian K. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study. Artif. Organs. 2011;35:257–262. doi: 10.1111/j.1525-1594.2011.01213.x.
    1. Hofstoetter U.S., Perret I., Bayart A., Lackner P., Binder H., Freundl B., Minassian K. Spinal motor mapping by epidural stimulation of lumbosacral posterior roots in humans. iScience. 2020;24:101930. doi: 10.1016/j.isci.2020.101930.
    1. Hofstoetter U.S., Krenn M., Danner S.M., Hofer C., Kern H., McKay W.B., Mayr W., Minassian K. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals. Artif. Organs. 2015;39:E176–E186. doi: 10.1111/aor.12615.
    1. Calvert J.S., Grahn P.J., Strommen J.A., Lavrov I.A., Beck L.A., Gill M.L., Linde M.B., Brown D.A., Van Straaten M.G., Veith D.D., et al. Electrophysiological Guidance of Epidural Electrode Array Implantation over the Human Lumbosacral Spinal Cord to Enable Motor Function after Chronic Paralysis. J. Neurotrauma. 2019;36:1451–1460. doi: 10.1089/neu.2018.5921.
    1. Meyer C., Hofstoetter U.S., Hubli M., Hassani R.H., Rinaldo C., Curt A., Bolliger M. Immediate Effects of Transcutaneous Spinal Cord Stimulation on Motor Function in Chronic, Sensorimotor Incomplete Spinal Cord Injury. J. Clin. Med. 2020;9:3541. doi: 10.3390/jcm9113541.
    1. Al’joboori Y., Massey S.J., Knight S.L., Donaldson N.D., Duffell L.D. The Effects of Adding Transcutaneous Spinal Cord Stimulation (tSCS) to Sit-To-Stand Training in People with Spinal Cord Injury: A Pilot Study. J. Clin. Med. 2020;9:2765. doi: 10.3390/jcm9092765.
    1. Hofstoetter U.S., McKay W.B., Tansey K.E., Mayr W., Kern H., Minassian K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J. Spinal Cord Med. 2014;37:202–211. doi: 10.1179/2045772313Y.0000000149.
    1. Estes S.P., Iddings J.A., Field-Fote E.C. Priming Neural Circuits to Modulate Spinal Reflex Excitability. Front. Neurol. 2017;8:17. doi: 10.3389/fneur.2017.00017.
    1. Hofstoetter U.S., Freundl B., Danner S.M., Krenn M.J., Mayr W., Binder H., Minassian K. Transcutaneous Spinal Cord Stimulation Induces Temporary Attenuation of Spasticity in Individuals with Spinal Cord Injury. J. Neurotrauma. 2020;37:481–493. doi: 10.1089/neu.2019.6588.
    1. Danner S.M., Krenn M., Hofstoetter U.S., Toth A., Mayr W., Minassian K. Body Position Influences Which Neural Structures Are Recruited by Lumbar Transcutaneous Spinal Cord Stimulation. PLoS ONE. 2016;11:e0147479. doi: 10.1371/journal.pone.0147479.
    1. Cook A.W., Weinstein S.P. Chronic dorsal column stimulation in multiple sclerosis. Preliminary report. N. Y. State J. Med. 1973;73:2868–2872.
    1. Siegfried J., Lazorthes Y., Broggi G. Electrical spinal cord stimulation for spastic movement disorders. Appl. Neurophysiol. 1981;44:77–92. doi: 10.1159/000102187.
    1. Cook A.W. Electrical stimulation in multiple sclerosis. Hosp. Pract. 1976;11:51–58. doi: 10.1080/21548331.1976.11706516.
    1. Illis L.S., Oygar A.E., Sedgwick E.M., Awadalla M.A. Dorsal-column stimulation in the rehabilitation of patients with multiple sclerosis. Lancet. 1976;1:1383–1386. doi: 10.1016/S0140-6736(76)93030-0.
    1. Dooley D.M., Sharkey J. Electrostimulation of the nervous system for patients with demyelinating and degenerative diseases of the nervous system and vascular diseases of the extremities. Appl. Neurophysiol. 1977;40:208–217. doi: 10.1159/000102444.
    1. Illis L.S., Sedgwick E.M., Tallis R.C. Spinal cord stimulation in multiple sclerosis: Clinical results. J. Neurol. Neurosurg. Psychiatry. 1980;43:1–14. doi: 10.1136/jnnp.43.1.1.
    1. Waltz J.M. Chronic stimulation for motor disorders. In: Gindelberg P., Tasker R., editors. Textbook for Stereotactic and Functional Neurosurgery. McGraw-Hill; New York, NY, USA: 1998. pp. 1087–1099.
    1. Barnes M.P., Kent R.M., Semlyen J.K., McMullen K.M. Spasticity in Multiple Sclerosis. Neurorehabil. Neural Repair. 2003;17:66–70. doi: 10.1177/0888439002250449.
    1. Rizzo M.A., Hadjimichael O.C., Preiningerova J., Vollmer T.L. Prevalence and treatment of spasticity reported by multiple sclerosis patients. Mult. Scler. J. 2004;10:589–595. doi: 10.1191/1352458504ms1085oa.
    1. Van Asch P. Impact of Mobility Impairment in Multiple Sclerosis 2—Patients’ Perspectives. Eur. Neurol. Rev. 2011;6:115. doi: 10.17925/ENR.2011.06.02.115.
    1. Minassian K., Hofstoetter U., Tansey K., Mayr W. Neuromodulation of lower limb motor control in restorative neurology. Clin. Neurol. Neurosurg. 2012;114:489–497. doi: 10.1016/j.clineuro.2012.03.013.
    1. Kurtzke J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS) Neurology. 1983;33:1444. doi: 10.1212/WNL.33.11.1444.
    1. Bohannon R.W., Smith M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1987;67:206–207. doi: 10.1093/ptj/67.2.206.
    1. Sherwood A.M., McKay W.B., Dimitrijević M.R. Motor control after spinal cord injury: Assessment using surface EMG. Muscle Nerve. 1996;19:966–979. doi: 10.1002/(SICI)1097-4598(199608)19:8<966::AID-MUS5>;2-6.
    1. Sherwood A.M., Graves D.E., Priebe M.M. Altered motor control and spasticity after spinal cord injury: Subjective and objective assessment. J. Rehabil. Res. Dev. 2000;37:41–52.
    1. Kirshblum S., Waring W. Updates for the International Standards for Neurological Classification of Spinal Cord Injury. Phys. Med. Rehabil. Clin. N. Am. 2014;25:505–517. doi: 10.1016/j.pmr.2014.04.001.
    1. Morganti B., Scivoletto G., Ditunno P., Ditunno J.F., Molinari M. Walking index for spinal cord injury (WISCI): Criterion validation. Spinal Cord. 2005;43:27–33. doi: 10.1038/sj.sc.3101658.
    1. Ditunno J.F., Ditunno P.L., Scivoletto G., Patrick M., Dijkers M., Barbeau H., Burns A.S., Marino R.J., Schmidt-Read M. The Walking Index for Spinal Cord Injury (WISCI/WISCI II): Nature, metric properties, use and misuse. Spinal Cord. 2013;51:346–355. doi: 10.1038/sc.2013.9.
    1. Hofstoetter U.S., Freundl B., Binder H., Minassian K. Recovery cycles of posterior root-muscle reflexes evoked by transcutaneous spinal cord stimulation and of the H reflex in individuals with intact and injured spinal cord. PLoS ONE. 2019;14:e0227057. doi: 10.1371/journal.pone.0227057.
    1. Mathias S., Nayak U.S., Isaacs B. Balance in elderly patients: The “get-up and go” test. Arch. Phys. Med. Rehabil. 1986;67:387–389.
    1. Sebastião E., Sandroff B.M., Learmonth Y.C., Motl R.W. Validity of the Timed Up and Go Test as a Measure of Functional Mobility in Persons With Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2016;97:1072–1077. doi: 10.1016/j.apmr.2015.12.031.
    1. Kempen J., de Groot V., Knol D., Polman C., Lankhorst G., Beckerman H. Community walking can be assessed using a 10-metre timed walk test. Mult. Scler. J. 2011;17:980–990. doi: 10.1177/1352458511403641.
    1. Scalzitti D.A., Harwood K.J., Maring J.R., Leach S.J., Ruckert E.A., Costello E. Validation of the 2-Minute Walk Test with the 6-Minute Walk Test and Other Functional Measures in Persons with Multiple Sclerosis. Int. J. MS Care. 2018;20:158–163. doi: 10.7224/1537-2073.2017-046.
    1. Gijbels D., Eijnde B., Feys P. Comparison of the 2- and 6-minute walk test in multiple sclerosis. Mult. Scler. J. 2011;17:1269–1272. doi: 10.1177/1352458511408475.
    1. Khasnis A., Gokula R.M. Romberg’s test. J. Postgrad. Med. 2003;49:169–172.
    1. Feys P., Lamers I., Francis G., Benedict R., Phillips G., LaRocca N., Hudson L.D., Rudick R. The Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis. Mult. Scler. J. 2017;23:711–720. doi: 10.1177/1352458517690824.
    1. Franchignoni F.P., Tesio L., Ricupero C., Martino M.T. Trunk Control Test as an Early Predictor of Stroke Rehabilitation Outcome. Stroke. 1997;28:1382–1385. doi: 10.1161/01.STR.28.7.1382.
    1. Lin C.S.-Y., Chan J.H.L., Pierrot-Deseilligny E., Burke D. Excitability of human muscle afferents studied using threshold tracking of the H reflex. J. Physiol. 2002;545:661–669. doi: 10.1113/jphysiol.2002.026526.
    1. Burke D. Clinical uses of H reflexes of upper and lower limb muscles. Clin. Neurophysiol. Pract. 2016;1:9–17. doi: 10.1016/j.cnp.2016.02.003.
    1. Hofstoetter U.S., Freundl B., Binder H., Minassian K. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes. PLoS ONE. 2018;13:e0192013. doi: 10.1371/journal.pone.0192013.
    1. Kagamihara Y., Hayashi A., Okuma Y., Nagaoka M., Nakajima Y., Tanaka R. Reassessment of H-reflex recovery curve using the double stimulation procedure. Muscle Nerve. 1998;21:352–360. doi: 10.1002/(SICI)1097-4598(199803)21:3<352::AID-MUS9>;2-9.
    1. Pinter M.M., Gerstenbrand F., Dimitrijevic M.R. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control Of spasticity. Spinal Cord. 2000;38:524–531. doi: 10.1038/sj.sc.3101040.
    1. Shaw L., Rodgers H., Price C., van Wijck F., Shackley P., Steen N., Barnes M., Ford G., Graham L. BoTULS: A multicentre randomised controlled trial to evaluate the clinical effectiveness and cost-effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A. Health Technol. Assess. 2010;14:1–13. doi: 10.3310/hta14260.
    1. Brashear A., Gordon M.F., Elovic E., Kassicieh V.D., Marciniak C., Do M., Lee C.-H., Jenkins S., Turkel C. Intramuscular Injection of Botulinum Toxin for the Treatment of Wrist and Finger Spasticity after a Stroke. N. Engl. J. Med. 2002;347:395–400. doi: 10.1056/NEJMoa011892.
    1. Sheikh K., Smith D.S., Meade T.W., Brennan P.J., Ide L. Assessment of motor function in studies of chronic disability. Rheumatology. 1980;19:83–90. doi: 10.1093/rheumatology/19.2.83.
    1. Cetisli Korkmaz N., Can Akman T., Kilavuz Oren G., Bir L.S. Trunk control: The essence for upper limb functionality in patients with multiple sclerosis. Mult. Scler. Relat. Disord. 2018;24:101–106. doi: 10.1016/j.msard.2018.06.013.
    1. Musselman K.E. Clinical significance testing in rehabilitation research: What, why, and how? Phys. Ther. Rev. 2007;12:287–296. doi: 10.1179/108331907X223128.
    1. Hupperts R., Lycke J., Short C., Gasperini C., McNeill M., Medori R., Tofil-Kaluza A., Hovenden M., Mehta L.R., Elkins J. Prolonged-release fampridine and walking and balance in MS: Randomised controlled MOBILE trial. Mult. Scler. J. 2016;22:212–221. doi: 10.1177/1352458515581436.
    1. Hobart J., Ziemssen T., Feys P., Linnebank M., Goodman A.D., Farrell R., Hupperts R., Blight A.R., Englishby V., McNeill M., et al. Assessment of Clinically Meaningful Improvements in Self-Reported Walking Ability in Participants with Multiple Sclerosis: Results from the Randomized, Double-Blind, Phase III ENHANCE Trial of Prolonged-Release Fampridine. CNS Drugs. 2019;33:61–79. doi: 10.1007/s40263-018-0586-5.
    1. Baert I., Freeman J., Smedal T., Dalgas U., Romberg A., Kalron A., Conyers H., Elorriaga I., Gebara B., Gumse J., et al. Responsiveness and Clinically Meaningful Improvement, According to Disability Level, of Five Walking Measures After Rehabilitation in Multiple Sclerosis. Neurorehabil. Neural Repair. 2014;28:621–631. doi: 10.1177/1545968314521010.
    1. Danner S.M., Hofstoetter U.S., Minassian K. Finite Element Models of Transcutaneous Spinal Cord Stimulation. In: Jaeger D., Jung R., editors. Encyclopedia of Computational Neuroscience. Springer; New York, NY, USA: 2014. pp. 1–6.
    1. Minassian K., Persy I., Rattay F., Pinter M.M., Kern H., Dimitrijevic M.R. Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum. Mov. Sci. 2007;26:275–295. doi: 10.1016/j.humov.2007.01.005.
    1. Hunter J.P., Ashby P. Segmental effects of epidural spinal cord stimulation in humans. J. Physiol. 1994;474:407–419. doi: 10.1113/jphysiol.1994.sp020032.
    1. Holsheimer J. Which Neuronal Elements are Activated Directly by Spinal Cord Stimulation. Neuromodulation. 2002;5:25–31. doi: 10.1046/j.1525-1403.2002._2005.x.
    1. Ranck J.B.J. Which elements are excited in electrical stimulation of mammalian central nervous system: A review. Brain Res. 1975;98:417–440. doi: 10.1016/0006-8993(75)90364-9.
    1. Rattay F. The basic mechanism for the electrical stimulation of the nervous system. Neuroscience. 1999;89:335–346. doi: 10.1016/S0306-4522(98)00330-3.
    1. Struijk J.J., Holsheimer J., Boom H.B.K. Excitation of dorsal root fibers in spinal cord stimulation: A theoretical study. IEEE Trans. Biomed. Eng. 1993;40:632–639. doi: 10.1109/10.237693.
    1. Lloyd D. Reflex action in relation to pattern and peripheral source of afferent stimulation. J. Neurophysiol. 1943;6:111–119. doi: 10.1152/jn.1943.6.2.111.
    1. Formento E., Minassian K., Wagner F., Mignardot J.B., Le Goff-Mignardot C.G., Rowald A., Bloch J., Micera S., Capogrosso M., Courtine G. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat. Neurosci. 2018;21:1728–1741. doi: 10.1038/s41593-018-0262-6.
    1. Sedgwick E.M., Illis L.S., Tallis R.C., Thornton A.R., Abraham P., El-Negamy E., Docherty T.B., Soar J.S., Spencer S.C., Taylor F.M. Evoked potentials and contingent negative variation during treatment of multiple sclerosis with spinal cord stimulation. J. Neurol. Neurosurg. Psychiatry. 1980;43:15–24. doi: 10.1136/jnnp.43.1.15.
    1. Hofstoetter U.S., Danner S.M., Freundl B., Binder H., Mayr W., Rattay F., Minassian K. Periodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord. J. Neurophysiol. 2015;114:400–410. doi: 10.1152/jn.00136.2015.
    1. Lin S., Li Y., Lucas-Osma A.M., Hari K., Stephens M.J., Singla R., Heckman C.J., Zhang Y., Fouad K., Fenrich K.K., et al. Locomotor-related V3 interneurons initiate and coordinate muscles spasms after spinal cord injury. J. Neurophysiol. 2019;121:1352–1367. doi: 10.1152/jn.00776.2018.
    1. Dimitrijevic M.R., Gerasimenko Y., Pinter M.M. Evidence for a spinal central pattern generator in humans. Ann. N. Y. Acad. Sci. 1998;860:360–376. doi: 10.1111/j.1749-6632.1998.tb09062.x.
    1. Minassian K., Jilge B., Rattay F., Pinter M.M., Binder H., Gerstenbrand F., Dimitrijevic M.R. Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: Electromyographic study of compound muscle action potentials. Spinal Cord. 2004;42:401–416. doi: 10.1038/sj.sc.3101615.
    1. Minassian K., Hofstoetter U.S., Danner S.M., Mayr W., Bruce J.A., McKay W.B., Tansey K.E. Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord-Injured Individuals. Neurorehabil. Neural Repair. 2016;30:233–243. doi: 10.1177/1545968315591706.
    1. Sivaramakrishnan A., Solomon J.M., Manikandan N. Comparison of transcutaneous electrical nerve stimulation (TENS) and functional electrical stimulation (FES) for spasticity in spinal cord injury—A pilot randomized cross-over trial. J. Spinal Cord Med. 2018;41:397–406. doi: 10.1080/10790268.2017.1390930.
    1. Ping Ho Chung B., Kam Kwan Cheng B. Immediate effect of transcutaneous electrical nerve stimulation on spasticity in patients with spinal cord injury. Clin. Rehabil. 2010;24:202–210. doi: 10.1177/0269215509343235.
    1. Liberson W.T., Holmquest H.J., Scot D., Dow M. Functional electrotherapy: Stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil. 1961;42:101–105.
    1. Trapp B.D., Nave K.-A. Multiple Sclerosis: An Immune or Neurodegenerative Disorder? Annu. Rev. Neurosci. 2008;31:247–269. doi: 10.1146/annurev.neuro.30.051606.094313.
    1. Pearson O.R., Busse M.E., van Deursen R.W.M., Wiles C.M. Quantification of walking mobility in neurological disorders. QJM. 2004;97:463–475. doi: 10.1093/qjmed/hch084.
    1. Confavreux C., Vukusic S., Moreau T., Adeleine P. Relapses and Progression of Disability in Multiple Sclerosis. N. Engl. J. Med. 2000;343:1430–1438. doi: 10.1056/NEJM200011163432001.
    1. Confavreux C. Early clinical predictors and progression of irreversible disability in multiple sclerosis: An amnesic process. Brain. 2003;126:770–782. doi: 10.1093/brain/awg081.
    1. Confavreux C., Vukusic S. Natural history of multiple sclerosis: A unifying concept. Brain. 2006;129:606–616. doi: 10.1093/brain/awl007.
    1. Motl R.W., Learmonth Y.C. Neurological disability and its association with walking impairment in multiple sclerosis: Brief review. Neurodegener. Dis. Manag. 2014;4:491–500. doi: 10.2217/nmt.14.32.
    1. Goldman M.D., Motl R.W., Scagnelli J., Pula J.H., Sosnoff J.J., Cadavid D. Clinically meaningful performance benchmarks in MS: Timed 25-Foot Walk and the real world. Neurology. 2013;81:1856–1863. doi: 10.1212/01.wnl.0000436065.97642.d2.
    1. Learmonth Y.C., Motl R.W., Sandroff B.M., Pula J.H., Cadavid D. Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis. BMC Neurol. 2013;13:37. doi: 10.1186/1471-2377-13-37.
    1. Andersen L.K., Knak K.L., Witting N., Vissing J. Two- and 6-minute walk tests assess walking capability equally in neuromuscular diseases. Neurology. 2016;86:442–445. doi: 10.1212/WNL.0000000000002332.
    1. Nielsen J., Willerslev-Olsen M., Lorentzen J. Pathophysiology of Spasticity. In: Pandyan A., Hermens H., Conway B., editors. Neurological Rehabilitation. Spasticity and Contractures in Clinical Practice and Research. CRC Press; Boca Raton, FL, USA: 2018. pp. 25–57. Imprint.
    1. Faist M., Mazevet D., Dietz V., Pierrot-Deseilligny E. A quantitative assessment of presynaptic inhibition of Ia afferents in spastics. Differences in hemiplegics and paraplegics. Brain. 1994;117:1449–1455. doi: 10.1093/brain/117.6.1449.
    1. Grey M.J., Klinge K., Crone C., Lorentzen J., Biering-Sørensen F., Ravnborg M., Nielsen J.B. Post-activation depression of soleus stretch reflexes in healthy and spastic humans. Exp. Brain Res. 2008;185:189–197. doi: 10.1007/s00221-007-1142-6.
    1. Schindler-Ivens S., Shields R.K. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury. Exp. Brain Res. 2000;133:233–241. doi: 10.1007/s002210000377.
    1. Crone C., Johnsen L.L., Biering-Sørensen F., Nielsen J.B. Appearance of reciprocal facilitation of ankle extensors from ankle flexors in patients with stroke or spinal cord injury. Brain. 2003;126:495–507. doi: 10.1093/brain/awg036.
    1. Boulenguez P., Liabeuf S., Bos R., Bras H., Jean-Xavier C., Brocard C., Stil A., Darbon P., Cattaert D., Delpire E., et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat. Med. 2010;16:302–307. doi: 10.1038/nm.2107.
    1. Hidler J.M., Rymer W.Z. A simulation study of reflex instability in spasticity: Origins of clonus. IEEE Trans. Rehabil. Eng. 1999;7:327–340. doi: 10.1109/86.788469.
    1. Dimitrijevic M.R., Nathan P.W., Sherwood A.M. Clonus: The role of central mechanisms. J. Neurol. Neurosurg. Psychiatry. 1980;43:321–332. doi: 10.1136/jnnp.43.4.321.
    1. Beres-Jones J.A., Johnson T.D., Harkema S.J. Clonus after human spinal cord injury cannot be attributed solely to recurrent muscle-tendon stretch. Exp. Brain Res. 2003;149:222–236. doi: 10.1007/s00221-002-1349-5.
    1. Rossi A., Mazzocchio R., Scarpini C. Clonus in man: A rhythmic oscillation maintained by a reflex mechanism. Electroencephalogr. Clin. Neurophysiol. 1990;75:56–63. doi: 10.1016/0013-4694(90)90152-A.
    1. Murray K.C., Stephens M.J., Ballou E.W., Heckman C.J., Bennett D.J. Motoneuron Excitability and Muscle Spasms Are Regulated by 5-HT 2B and 5-HT 2C Receptor Activity. J. Neurophysiol. 2011;105:731–748. doi: 10.1152/jn.00774.2010.
    1. D’Amico J.M., Murray K.C., Li Y., Chan K.M., Finlay M.G., Bennett D.J., Gorassini M.A. Constitutively active 5-HT 2 /α 1 receptors facilitate muscle spasms after human spinal cord injury. J. Neurophysiol. 2013;109:1473–1484. doi: 10.1152/jn.00821.2012.
    1. Bennett D.J., Li Y., Harvey P.J., Gorassini M. Evidence for plateau potentials in tail motoneurons of awake chronic spinal rats with spasticity. J. Neurophysiol. 2001;86:1972–1982. doi: 10.1152/jn.2001.86.4.1972.
    1. Bellardita C., Caggiano V., Leiras R., Caldeira V., Fuchs A., Bouvier J., Löw P., Kiehn O. Spatiotemporal correlation of spinal network dynamics underlying spasms in chronic spinalized mice. eLife. 2017;6:e23011. doi: 10.7554/eLife.23011.
    1. Jankowska E. Interneuronal relay in spinal pathways from proprioceptors. Prog. Neurobiol. 1992;38:335–378. doi: 10.1016/0301-0082(92)90024-9.
    1. Pierrot-Deseilligny E., Burke D. The Circuitry of the Human Spinal Cord: Spinal and Corticospinal Mechanisms of Movement. Cambridge University Press; Cambridge, UK: 2012.
    1. Hofstoetter U.S., Danner S.M., Freundl B., Binder H., Lackner P., Minassian K. Ipsi- and Contralateral Oligo- and Polysynaptic Reflexes in Humans Revealed by Low-Frequency Epidural Electrical Stimulation of the Lumbar Spinal Cord. Brain Sci. 2021;11:112. doi: 10.3390/brainsci11010112.
    1. Calancie B. Interlimb reflexes following cervical spinal cord injury in man. Exp. Brain Res. 1991;85:458–469. doi: 10.1007/BF00229423.
    1. Butler J.E., Godfrey S., Thomas C.K. Interlimb Reflexes Induced by Electrical Stimulation of Cutaneous Nerves after Spinal Cord Injury. PLoS ONE. 2016;11:e0153063. doi: 10.1371/journal.pone.0153063.
    1. McNulty P.A., Burke D. Self-sustained motor activity triggered by interlimb reflexes in chronic spinal cord injury, evidence of functional ascending propriospinal pathways. PLoS ONE. 2013;8:e72725. doi: 10.1371/journal.pone.0072725.
    1. Cheung J., Rancourt A., Di Poce S., Levine A., Hoang J., Ismail F., Boulias C., Phadke C.P. Patient-Identified Factors That Influence Spasticity in People with Stroke and Multiple Sclerosis Receiving Botulinum Toxin Injection Treatments. Physiother. Can. 2015;67:157–166. doi: 10.3138/ptc.2014-07.
    1. Oreja-Guevara C., González-Segura D., Vila C. Spasticity in multiple sclerosis: Results of a patient survey. Int. J. Neurosci. 2013;123:400–408. doi: 10.3109/00207454.2012.762364.
    1. Lucchinetti C., Brück W., Parisi J., Scheithauer B., Rodriguez M., Lassmann H. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann. Neurol. 2000;47:707–717. doi: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>;2-Q.
    1. Hofstoetter U.S., Freundl B., Binder H., Minassian K. Spinal Cord Stimulation as a Neuromodulatory Intervention for Altered Motor Control Following Spinal Cord Injury. In: Sandrini G., Homberg V., Saltuari L., Smania N., Pedrocchi A., editors. Advanced Technologies in Rehabilitation of Gait and Balance Disorders. Springer; Berlin, Germany: 2018. pp. 501–521.

Source: PubMed

3
Subscribe