Menstrual cycle rhythmicity: metabolic patterns in healthy women

C F Draper, K Duisters, B Weger, A Chakrabarti, A C Harms, L Brennan, T Hankemeier, L Goulet, T Konz, F P Martin, S Moco, J van der Greef, C F Draper, K Duisters, B Weger, A Chakrabarti, A C Harms, L Brennan, T Hankemeier, L Goulet, T Konz, F P Martin, S Moco, J van der Greef

Abstract

The menstrual cycle is an essential life rhythm governed by interacting levels of progesterone, estradiol, follicular stimulating, and luteinizing hormones. To study metabolic changes, biofluids were collected at four timepoints in the menstrual cycle from 34 healthy, premenopausal women. Serum hormones, urinary luteinizing hormone and self-reported menstrual cycle timing were used for a 5-phase cycle classification. Plasma and urine were analyzed using LC-MS and GC-MS for metabolomics and lipidomics; serum for clinical chemistries; and plasma for B vitamins using HPLC-FLD. Of 397 metabolites and micronutrients tested, 208 were significantly (p < 0.05) changed and 71 reached the FDR 0.20 threshold showing rhythmicity in neurotransmitter precursors, glutathione metabolism, the urea cycle, 4-pyridoxic acid, and 25-OH vitamin D. In total, 39 amino acids and derivatives and 18 lipid species decreased (FDR < 0.20) in the luteal phase, possibly indicative of an anabolic state during the progesterone peak and recovery during menstruation and the follicular phase. The reduced metabolite levels observed may represent a time of vulnerability to hormone related health issues such as PMS and PMDD, in the setting of a healthy, rhythmic state. These results provide a foundation for further research on cyclic differences in nutrient-related metabolites and may form the basis of novel nutrition strategies for women.

Conflict of interest statement

C.F.D., B.W., A.C., S.M. are employees of the Nestlé Group. Funding to conduct this study was provided by Nestle Institute of Health Sciences.

Figures

Figure 1
Figure 1
Hormone levels according to menstrual cycle phase. Changing concentrations of female sex hormones (progesterone, luteinizing hormone, follicular stimulating hormone, estradiol) that characterize the 5 phases (menstrual, follicular, periovulatory, luteal and pre-menstrual) of the menstrual cycle (adapted with permission). Follicular stimulating hormone concentration changes overlayed.
Figure 2
Figure 2
Study schema. Thirty-four women (BMI 22.9 +/− 3.5 kg/m2, age 26.6 +/− 5.9 yrs) provided 4 blood and urine samples that each uniquely fit into 1 of 5 phase timepoints based on 4 sex hormone measurements (LH, FS, estradiol, and progesterone) and self-reported menstrual cycle timing. A total of 401 metabolites were measured which included 263 plasma, 114 urine, and 19 clinical and vitamin analyses. Metabolite profiling was conducted and statistically significant rhythmicity is depicted for the amino acid, lipid and organic acid panels. Biochemical pathway interconnectivity was identified between the urea cycle, 1 carbon metabolism, glutathione metabolism and the citric acid cycle. M-menstrual, F-follicular, O-Periovulatory, L-luteal, P-premenstrual phases.
Figure 3
Figure 3
Metabolites vary across menstrual cycle phase. This heatmap with color gradients indicates rhythmicity across the menstrual cycle. Lower amino acid and lipid metabolite concentrations are visualized in the luteal phase. Phase means of logarithmically transformed metabolite data are row standardized in the heatmap to obtain Z scores. Two cells that are close in color represent similar Z scores, ranging from blue (Z equals minus 2) to red (Z equals plus 2). Amino acid, lipid, organic acid and sex hormone variables are ordered according to main biochemical pathways or classes and depicted at q 

Figure 4

Amino acid variability by cycle…

Figure 4

Amino acid variability by cycle phase. Mean log intensity is depicted along with…

Figure 4
Amino acid variability by cycle phase. Mean log intensity is depicted along with individual variability for threonine, ornithine, arginine, alanine, glycine, serine, methionine, asparagine, proline, glutamine, tyrosine, gamma-glutamyl-alanine, citrulline, o-acetyl-serine, alpha-aminobutyric acid, and gamma-glutamylglutamine at one time point for each of the 5 menstrual phases (M = menstrual, F = follicular, O = periovular, L = luteal, p = premenstrual). Each colored line represents an individual. Amino acids are depicted which have 2 or more contrast comparisons meeting the multiple testing threshold of q 

Figure 5

Rhythmic metabolites in the urea…

Figure 5

Rhythmic metabolites in the urea cycle, neurotransmitter metabolism connect with 1 carbon, glutathione…

Figure 5
Rhythmic metabolites in the urea cycle, neurotransmitter metabolism connect with 1 carbon, glutathione metabolism and the citric acid cycle. The metabolites with FDR controlled rhythmicity participate in inter-related, biochemical pathways including nitrogen metabolism (the urea cycle), neurotransmitter metabolism, methylation (1 carbon metabolism), oxidative stress (glutathione metabolism) and energy metabolism (citric acid cycle). NOS = Nitric oxide synthase; BH4 = Tetrahydrobiopterin; BH2 = Bihydrobiopterin; MTHFR = Methylenetetrahydrofolate reductase; THF = Tetrahydrofolate; MTR = Methionine synthase; DMG = Dimethylglycine; TMG = Trimethylglycine; B6 = Vitamin B6. Compounds boxed with dotted lines (NOS, BH4, BH2, MTHFR, THF, MTR, 5-methyl THF, DMG, TMG, homocysteine) were not evaluated or not significant (dopamine). All metabolites without dotted lines met the multiple testing threshold q 
Similar articles
Cited by
References
    1. Quabbe HJ. Chronobiology of growth hormone secretion. Chronobiologia. 1977;4:217–246. - PubMed
    1. Baker FC, Driver HS. Circadian rhythms, sleep, and the menstrual cycle. Sleep Med. 2007;8:613–622. doi: 10.1016/j.sleep.2006.09.011. - DOI - PubMed
    1. Van Reen E, Kiesner J. Individual differences in self-reported difficulty sleeping across the menstrual cycle. Arch Womens Ment Health. 2016;19:599–608. doi: 10.1007/s00737-016-0621-9. - DOI - PubMed
    1. Glass L. Synchronization and rhythmic processes in physiology. Nature. 2001;410:277–284. doi: 10.1038/35065745. - DOI - PubMed
    1. Shechter A, Lesperance P, Ng Ying Kin NM, Boivin DB. Pilot investigation of the circadian plasma melatonin rhythm across the menstrual cycle in a small group of women with premenstrual dysphoric disorder. PLoS One. 2012;7:e51929. doi: 10.1371/journal.pone.0051929. - DOI - PMC - PubMed
Show all 99 references
Publication types
MeSH terms
Substances
LinkOut - more resources
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Figure 4
Figure 4
Amino acid variability by cycle phase. Mean log intensity is depicted along with individual variability for threonine, ornithine, arginine, alanine, glycine, serine, methionine, asparagine, proline, glutamine, tyrosine, gamma-glutamyl-alanine, citrulline, o-acetyl-serine, alpha-aminobutyric acid, and gamma-glutamylglutamine at one time point for each of the 5 menstrual phases (M = menstrual, F = follicular, O = periovular, L = luteal, p = premenstrual). Each colored line represents an individual. Amino acids are depicted which have 2 or more contrast comparisons meeting the multiple testing threshold of q 

Figure 5

Rhythmic metabolites in the urea…

Figure 5

Rhythmic metabolites in the urea cycle, neurotransmitter metabolism connect with 1 carbon, glutathione…

Figure 5
Rhythmic metabolites in the urea cycle, neurotransmitter metabolism connect with 1 carbon, glutathione metabolism and the citric acid cycle. The metabolites with FDR controlled rhythmicity participate in inter-related, biochemical pathways including nitrogen metabolism (the urea cycle), neurotransmitter metabolism, methylation (1 carbon metabolism), oxidative stress (glutathione metabolism) and energy metabolism (citric acid cycle). NOS = Nitric oxide synthase; BH4 = Tetrahydrobiopterin; BH2 = Bihydrobiopterin; MTHFR = Methylenetetrahydrofolate reductase; THF = Tetrahydrofolate; MTR = Methionine synthase; DMG = Dimethylglycine; TMG = Trimethylglycine; B6 = Vitamin B6. Compounds boxed with dotted lines (NOS, BH4, BH2, MTHFR, THF, MTR, 5-methyl THF, DMG, TMG, homocysteine) were not evaluated or not significant (dopamine). All metabolites without dotted lines met the multiple testing threshold q 
Similar articles
Cited by
References
    1. Quabbe HJ. Chronobiology of growth hormone secretion. Chronobiologia. 1977;4:217–246. - PubMed
    1. Baker FC, Driver HS. Circadian rhythms, sleep, and the menstrual cycle. Sleep Med. 2007;8:613–622. doi: 10.1016/j.sleep.2006.09.011. - DOI - PubMed
    1. Van Reen E, Kiesner J. Individual differences in self-reported difficulty sleeping across the menstrual cycle. Arch Womens Ment Health. 2016;19:599–608. doi: 10.1007/s00737-016-0621-9. - DOI - PubMed
    1. Glass L. Synchronization and rhythmic processes in physiology. Nature. 2001;410:277–284. doi: 10.1038/35065745. - DOI - PubMed
    1. Shechter A, Lesperance P, Ng Ying Kin NM, Boivin DB. Pilot investigation of the circadian plasma melatonin rhythm across the menstrual cycle in a small group of women with premenstrual dysphoric disorder. PLoS One. 2012;7:e51929. doi: 10.1371/journal.pone.0051929. - DOI - PMC - PubMed
Show all 99 references
Publication types
MeSH terms
Substances
LinkOut - more resources
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 5
Figure 5
Rhythmic metabolites in the urea cycle, neurotransmitter metabolism connect with 1 carbon, glutathione metabolism and the citric acid cycle. The metabolites with FDR controlled rhythmicity participate in inter-related, biochemical pathways including nitrogen metabolism (the urea cycle), neurotransmitter metabolism, methylation (1 carbon metabolism), oxidative stress (glutathione metabolism) and energy metabolism (citric acid cycle). NOS = Nitric oxide synthase; BH4 = Tetrahydrobiopterin; BH2 = Bihydrobiopterin; MTHFR = Methylenetetrahydrofolate reductase; THF = Tetrahydrofolate; MTR = Methionine synthase; DMG = Dimethylglycine; TMG = Trimethylglycine; B6 = Vitamin B6. Compounds boxed with dotted lines (NOS, BH4, BH2, MTHFR, THF, MTR, 5-methyl THF, DMG, TMG, homocysteine) were not evaluated or not significant (dopamine). All metabolites without dotted lines met the multiple testing threshold q 

References

    1. Quabbe HJ. Chronobiology of growth hormone secretion. Chronobiologia. 1977;4:217–246.
    1. Baker FC, Driver HS. Circadian rhythms, sleep, and the menstrual cycle. Sleep Med. 2007;8:613–622. doi: 10.1016/j.sleep.2006.09.011.
    1. Van Reen E, Kiesner J. Individual differences in self-reported difficulty sleeping across the menstrual cycle. Arch Womens Ment Health. 2016;19:599–608. doi: 10.1007/s00737-016-0621-9.
    1. Glass L. Synchronization and rhythmic processes in physiology. Nature. 2001;410:277–284. doi: 10.1038/35065745.
    1. Shechter A, Lesperance P, Ng Ying Kin NM, Boivin DB. Pilot investigation of the circadian plasma melatonin rhythm across the menstrual cycle in a small group of women with premenstrual dysphoric disorder. PLoS One. 2012;7:e51929. doi: 10.1371/journal.pone.0051929.
    1. Li R, Cheng S, Wang Z. Circadian clock gene plays a key role on ovarian cycle and spontaneous abortion. Cell Physiol Biochem. 2015;37:911–920. doi: 10.1159/000430218.
    1. Allen AM, et al. Determining menstrual phase in human biobehavioral research: A review with recommendations. Exp Clin Psychopharmacol. 2016;24:1–11. doi: 10.1037/pha0000057.
    1. Strauss, J. F. B. & Robert L. Yen & Jaffe’s Reproductive Endocrinology: Physiology, Pathophysiology, and Clinical Management, Seventh Edition. (Saunders, 2014).
    1. Voet, D. E. A. Biochemistry. Second edn, 1272 (John Wiley & Sons, 1995).
    1. Gugapriya TS, Karthick S, Nagarjuna B. A Prospective Study of Variability in Glycemic Control during Different Phases of the Menstrual Cycle in Type 2 Diabetic Women Using High Sensitivity C - Reactive Protein. Journal of clinical and diagnostic research: JCDR. 2014;8:CC01–04. doi: 10.7860/JCDR/2014/8118.4240.
    1. Varlamov O, Bethea CL, Roberts CT., Jr. Sex-specific differences in lipid and glucose metabolism. Frontiers in endocrinology. 2014;5:241. doi: 10.3389/fendo.2014.00241.
    1. Yen JY, et al. The high-sweet-fat food craving among women with premenstrual dysphoric disorder: emotional response, implicit attitude and rewards sensitivity. Psychoneuroendocrinology. 2010;35:1203–1212. doi: 10.1016/j.psyneuen.2010.02.006.
    1. McNeil J, Cameron JD, Finlayson G, Blundell JE, Doucet E. Greater overall olfactory performance, explicit wanting for high fat foods and lipid intake during the mid-luteal phase of the menstrual cycle. Physiology & behavior. 2013;112-113:84–89. doi: 10.1016/j.physbeh.2013.02.008.
    1. Shechter A, Varin F, Boivin DB. Circadian variation of sleep during the follicular and luteal phases of the menstrual cycle. Sleep. 2010;33:647–656. doi: 10.1093/sleep/33.5.647.
    1. Shechter A, Boivin DB. Sleep, Hormones, and Circadian Rhythms throughout the Menstrual Cycle in Healthy Women and Women with Premenstrual Dysphoric Disorder. International journal of endocrinology. 2010;2010:259345. doi: 10.1155/2010/259345.
    1. Kiesner J. One woman’s low is another woman’s high: Paradoxical effects of the menstrual cycle. Psychoneuroendocrinology. 2011;36:68–76. doi: 10.1016/j.psyneuen.2010.06.007.
    1. Biggs WS, Demuth RH. Premenstrual syndrome and premenstrual dysphoric disorder. Am Fam Physician. 2011;84:918–924.
    1. Ryu A, Kim TH. Premenstrual syndrome: A mini review. Maturitas. 2015;82:436–440. doi: 10.1016/j.maturitas.2015.08.010.
    1. Wallace M, et al. Effects of menstrual cycle phase on metabolomic profiles in premenopausal women. Hum Reprod. 2010;25:949–956. doi: 10.1093/humrep/deq.011.
    1. Fong AK, Kretsch MJ. Changes in dietary intake, urinary nitrogen, and urinary volume across the menstrual cycle. Am J Clin Nutr. 1993;57:43–46. doi: 10.1093/ajcn/57.1.43.
    1. Reed SC, Levin FR, Evans SM. Changes in mood, cognitive performance and appetite in the late luteal and follicular phases of the menstrual cycle in women with and without PMDD (premenstrual dysphoric disorder) Horm Behav. 2008;54:185–193. doi: 10.1016/j.yhbeh.2008.02.018.
    1. Frackiewicz EJ, Shiovitz TM. Evaluation and management of premenstrual syndrome and premenstrual dysphoric disorder. J Am Pharm Assoc (Wash) 2001;41:437–447. doi: 10.1016/S1086-5802(16)31257-8.
    1. Dye L, Blundell JE. Menstrual cycle and appetite control: implications for weight regulation. Hum Reprod. 1997;12:1142–1151. doi: 10.1093/humrep/12.6.1142.
    1. Calloway DH, Kurzer MS. Menstrual cycle and protein requirements of women. The Journal of nutrition. 1982;112:356–366. doi: 10.1093/jn/112.2.356.
    1. Gorczyca AM, et al. Changes in macronutrient, micronutrient, and food group intakes throughout the menstrual cycle in healthy, premenopausal women. Eur J Nutr. 2016;55:1181–1188. doi: 10.1007/s00394-015-0931-0.
    1. Webb P. 24-hour energy expenditure and the menstrual cycle. Am J Clin Nutr. 1986;44:614–619. doi: 10.1093/ajcn/44.5.614.
    1. Montane JL, Perez-Ballester B. Cyclic changes in phospholipid content and composition in human endometrium during the menstrual cycle. J Reprod Fertil. 1985;73:317–321. doi: 10.1530/jrf.0.0730317.
    1. Bonney RC. Measurement of phospholipase A2 activity in human endometrium during the menstrual cycle. J Endocrinol. 1985;107:183–189. doi: 10.1677/joe.0.1070183.
    1. Haoula Z, et al. Lipidomic analysis of plasma samples from women with polycystic ovary syndrome. Metabolomics. 2015;11:657–666. doi: 10.1007/s11306-014-0726-y.
    1. Zhao Y, et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Med. 2012;10:153. doi: 10.1186/1741-7015-10-153.
    1. Battista N, et al. The role of endocannabinoids in gonadal function and fertility along the evolutionary axis. Mol Cell Endocrinol. 2012;355:1–14. doi: 10.1016/j.mce.2012.01.014.
    1. Gorzalka BB, Dang SS. Minireview: Endocannabinoids and gonadal hormones: bidirectional interactions in physiology and behavior. Endocrinology. 2012;153:1016–1024. doi: 10.1210/en.2011-1643.
    1. Carrier EJ, Patel S, Hillard CJ. Endocannabinoids in neuroimmunology and stress. Curr Drug Targets CNS Neurol Disord. 2005;4:657–665. doi: 10.2174/156800705774933023.
    1. Ahn K, McKinney MK, Cravatt BF. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev. 2008;108:1687–1707. doi: 10.1021/cr0782067.
    1. Mai M, et al. Serum levels of acylcarnitines are altered in prediabetic conditions. PLoS One. 2013;8:e82459. doi: 10.1371/journal.pone.0082459.
    1. Rutkowsky JM, et al. Acylcarnitines activate proinflammatory signaling pathways. American journal of physiology. Endocrinology and metabolism. 2014;306:E1378–1387. doi: 10.1152/ajpendo.00656.2013.
    1. Ke C, et al. Plasma Metabolic Profiles in Women are Menopause Dependent. PLoS One. 2015;10:e0141743. doi: 10.1371/journal.pone.0141743.
    1. Barnett JB, et al. Plasma lipid and lipoprotein levels during the follicular and luteal phases of the menstrual cycle. The Journal of clinical endocrinology and metabolism. 2004;89:776–782. doi: 10.1210/jc.2003-030506.
    1. Schisterman EF, Mumford SL, Sjaarda LA. Failure to consider the menstrual cycle phase may cause misinterpretation of clinical and research findings of cardiometabolic biomarkers in premenopausal women. Epidemiol Rev. 2014;36:71–82. doi: 10.1093/epirev/mxt007.
    1. Ahumada Hemer H, et al. Variations in serum lipids and lipoproteins throughout the menstrual cycle. Fertil Steril. 1985;44:80–84. doi: 10.1016/S0015-0282(16)48681-4.
    1. Smith GI, Reeds DN, Okunade AL, Patterson BW, Mittendorfer B. Systemic delivery of estradiol, but not testosterone or progesterone, alters very low density lipoprotein-triglyceride kinetics in postmenopausal women. The Journal of clinical endocrinology and metabolism. 2014;99:E1306–1310. doi: 10.1210/jc.2013-4470.
    1. Dinicola S, Chiu TT, Unfer V, Carlomagno G, Bizzarri M. The rationale of the myo-inositol and D-chiro-inositol combined treatment for polycystic ovary syndrome. J Clin Pharmacol. 2014;54:1079–1092. doi: 10.1002/jcph.362.
    1. Rago R, et al. Effect of myo-inositol and alpha-lipoic acid on oocyte quality in polycystic ovary syndrome non-obese women undergoing in vitro fertilization: a pilot study. J Biol Regul Homeost Agents. 2015;29:913–923.
    1. Carlomagno G, Nordio M, Chiu TT, Unfer V. Contribution of myo-inositol and melatonin to human reproduction. Eur J Obstet Gynecol Reprod Biol. 2011;159:267–272. doi: 10.1016/j.ejogrb.2011.07.038.
    1. Payne JL, Palmer JT, Joffe H. A reproductive subtype of depression: conceptualizing models and moving toward etiology. Harv Rev Psychiatry. 2009;17:72–86. doi: 10.1080/10673220902899706.
    1. Payne JL, et al. Reproductive cycle-associated mood symptoms in women with major depression and bipolar disorder. J Affect Disord. 2007;99:221–229. doi: 10.1016/j.jad.2006.08.013.
    1. Perich TA, et al. Clinical characteristics of women with reproductive cycle-associated bipolar disorder symptoms. Aust N Z J Psychiatry. 2017;51:161–167. doi: 10.1177/0004867416670015.
    1. Vigod SN, Strasburg K, Daskalakis ZJ, Blumberger DM. Systematic review of gamma-aminobutyric-acid inhibitory deficits across the reproductive life cycle. Arch Womens Ment Health. 2014;17:87–95. doi: 10.1007/s00737-013-0403-6.
    1. Amin Z, et al. The interaction of neuroactive steroids and GABA in the development of neuropsychiatric disorders in women. Pharmacol Biochem Behav. 2006;84:635–643. doi: 10.1016/j.pbb.2006.06.007.
    1. Clayton AH, Keller AE, Leslie C, Evans W. Exploratory study of premenstrual symptoms and serotonin variability. Arch Womens Ment Health. 2006;9:51–57. doi: 10.1007/s00737-005-0118-4.
    1. Tully DB, Allgood VE, Cidlowski JA. Modulation of steroid receptor-mediated gene expression by vitamin B6. FASEB J. 1994;8:343–349. doi: 10.1096/fasebj.8.3.8143940.
    1. Kashanian M, Mazinani R, Jalalmanesh S. Pyridoxine (vitamin B6) therapy for premenstrual syndrome. Int J Gynaecol Obstet. 2007;96:43–44. doi: 10.1016/j.ijgo.2006.09.014.
    1. Doll H, Brown S, Thurston A, Vessey M. Pyridoxine (vitamin B6) and the premenstrual syndrome: a randomized crossover trial. J R Coll Gen Pract. 1989;39:364–368.
    1. Damoiseaux VA, Proost JH, Jiawan VC, Melgert BN. Sex differences in the pharmacokinetics of antidepressants: influence of female sex hormones and oral contraceptives. Clin Pharmacokinet. 2014;53:509–519. doi: 10.1007/s40262-014-0145-2.
    1. Beierle I, Meibohm B, Derendorf H. Gender differences in pharmacokinetics and pharmacodynamics. Int J Clin Pharmacol Ther. 1999;37:529–547.
    1. Prediger ME, Gamaro GD, Crema LM, Fontella FU, Dalmaz C. Estradiol protects against oxidative stress induced by chronic variate stress. Neurochem Res. 2004;29:1923–1930. doi: 10.1023/B:NERE.0000042219.98446.e7.
    1. Serviddio G, et al. Modulation of endometrial redox balance during the menstrual cycle: relation with sex hormones. The Journal of clinical endocrinology and metabolism. 2002;87:2843–2848. doi: 10.1210/jcem.87.6.8543.
    1. Massafra C, et al. Effects of estrogens and androgens on erythrocyte antioxidant superoxide dismutase, catalase and glutathione peroxidase activities during the menstrual cycle. J Endocrinol. 2000;167:447–452. doi: 10.1677/joe.0.1670447.
    1. Ha EJ, Smith AM. Plasma selenium and plasma and erythrocyte glutathione peroxidase activity increase with estrogen during the menstrual cycle. J Am Coll Nutr. 2003;22:43–51. doi: 10.1080/07315724.2003.10719274.
    1. Sheng-Huang C, et al. Effects of estrogen on glutathione and catalase levels in human erythrocyte during menstrual cycle. Biomed Rep. 2015;3:266–268. doi: 10.3892/br.2014.412.
    1. Almeida M, et al. Estrogens attenuate oxidative stress and the differentiation and apoptosis of osteoblasts by DNA-binding-independent actions of the ERalpha. J Bone Miner Res. 2010;25:769–781. doi: 10.1359/jbmr.091017.
    1. Abbas AM, Elsamanoudy AZ. Effects of 17beta-estradiol and antioxidant administration on oxidative stress and insulin resistance in ovariectomized rats. Can J Physiol Pharmacol. 2011;89:497–504. doi: 10.1139/Y11-053.
    1. Duvan CI, Cumaoglu A, Turhan NO, Karasu C, Kafali H. Oxidant/antioxidant status in premenstrual syndrome. Arch Gynecol Obstet. 2011;283:299–304. doi: 10.1007/s00404-009-1347-y.
    1. Pal L, et al. Therapeutic implications of vitamin D and calcium in overweight women with polycystic ovary syndrome. Gynecol Endocrinol. 2012;28:965–968. doi: 10.3109/09513590.2012.696753.
    1. Bertone-Johnson ER, Chocano-Bedoya PO, Zagarins SE, Micka AE, Ronnenberg AG. Dietary vitamin D intake, 25-hydroxyvitamin D3 levels and premenstrual syndrome in a college-aged population. J Steroid Biochem Mol Biol. 2010;121:434–437. doi: 10.1016/j.jsbmb.2010.03.076.
    1. Patrick RP, Ames BN. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J. 2014;28:2398–2413. doi: 10.1096/fj.13-246546.
    1. Kim CH. A functional relay from progesterone to vitamin D in the immune system. DNA Cell Biol. 2015;34:379–382. doi: 10.1089/dna.2015.2857.
    1. Mendoza C, Ortega E, Ruiz E, Carreras A, Osorio C. Calcium metabolism in post-menopausal women. Rev Esp Fisiol. 1985;41:447–450.
    1. Irani M, Merhi Z. Role of vitamin D in ovarian physiology and its implication in reproduction: a systematic review. Fertil Steril. 2014;102:460–468 e463. doi: 10.1016/j.fertnstert.2014.04.046.
    1. Knight JA, Wong J, Blackmore KM, Raboud JM, Vieth R. Vitamin D association with estradiol and progesterone in young women. Cancer Causes Control. 2010;21:479–483. doi: 10.1007/s10552-009-9466-0.
    1. Brush MG, Watson SJ, Horrobin DF, Manku MS. Abnormal essential fatty acid levels in plasma of women with premenstrual syndrome. Am J Obstet Gynecol. 1984;150:363–366. doi: 10.1016/S0002-9378(84)80139-8.
    1. Montserrat-de la Paz S, Garcia-Gimenez MD, Angel-Martin M, Perez-Camino MC, Fernandez Arche A. Long-chain fatty alcohols from evening primrose oil inhibit the inflammatory response in murine peritoneal macrophages. J Ethnopharmacol. 2014;151:131–136. doi: 10.1016/j.jep.2013.10.012.
    1. Gold EB, Wells C, Rasor MO. The Association of Inflammation with Premenstrual Symptoms. J Womens Health (Larchmt) 2016;25:865–874. doi: 10.1089/jwh.2015.5529.
    1. Huber M, et al. How should we define health? BMJ. 2011;343:d4163. doi: 10.1136/bmj.d4163.
    1. Stroeve JHM, van Wietmarschen H, Kremer BHA, van Ommen B, Wopereis S. Phenotypic flexibility as a measure of health: the optimal nutritional stress response test. Genes Nutr. 2015;10:13. doi: 10.1007/s12263-015-0459-1.
    1. van Ommen B, van der Greef J, Ordovas JM, Daniel H. Phenotypic flexibility as key factor in the human nutrition and health relationship. Genes Nutr. 2014;9:423. doi: 10.1007/s12263-014-0423-5.
    1. Sohrabi N, Kashanian M, Ghafoori SS, Malakouti SK. Evaluation of the effect of omega-3 fatty acids in the treatment of premenstrual syndrome: “a pilot trial”. Complement Ther Med. 2013;21:141–146. doi: 10.1016/j.ctim.2012.12.008.
    1. Wyatt KM, Dimmock PW, Jones PW, Shaughn O’Brien PM. Efficacy of vitamin B-6 in the treatment of premenstrual syndrome: systematic review. BMJ. 1999;318:1375–1381. doi: 10.1136/bmj.318.7195.1375.
    1. Bianchini F, Vainio H. Isothiocyanates in cancer prevention. Drug Metab Rev. 2004;36:655–667. doi: 10.1081/DMR-200033468.
    1. Lenz EM, et al. Metabonomics, dietary influences and cultural differences: a 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects. J Pharm Biomed Anal. 2004;36:841–849. doi: 10.1016/j.jpba.2004.08.002.
    1. Wallace M, et al. Relationship between the lipidome, inflammatory markers and insulin resistance. Molecular bioSystems. 2014;10:1586–1595. doi: 10.1039/c3mb70529c.
    1. Noga MJ, et al. Metabolomics of cerebrospinal fluid reveals changes in the central nervous system metabolism in a rat model of multiple sclerosis. Metabolomics. 2012;8:253–263. doi: 10.1007/s11306-011-0306-3.
    1. van der Kloet FM, Bobeldijk I, Verheij ER, Jellema RH. Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. J Proteome Res. 2009;8:5132–5141. doi: 10.1021/pr900499r.
    1. Hu C, et al. RPLC-ion-trap-FTMS method for lipid profiling of plasma: method validation and application to p53 mutant mouse model. J Proteome Res. 2008;7:4982–4991. doi: 10.1021/pr800373m.
    1. Kantae V, et al. Endocannabinoid tone is higher in healthy lean South Asian than white Caucasian men. Sci Rep. 2017;7:7558. doi: 10.1038/s41598-017-07980-5.
    1. Peters FT, Drummer OH, Musshoff F. Validation of new methods. Forensic Sci Int. 2007;165:216–224. doi: 10.1016/j.forsciint.2006.05.021.
    1. Abbott Laboratories, D. D. ARCHITECT System Operations Manual 201837-113 - 2016-04-29 (Abbott Park, IL 60064 USA2016).
    1. McCullogh, C. E., Searle, S. R. & Neuhaus, J. M. Generalized, linear, and mixed models, 2nd Edition. 157–187 (John Wiley & Sons, 2008).
    1. Benjamini Y, Hochberg. Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x.
    1. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50:346–363. doi: 10.1002/bimj.200810425.
    1. Bates DMMBBSS. Fitting linear mixed-effects models using Ime4. Journal of Statistical Software. 2015;67:1–48. doi: 10.18637/jss.v067.i01.
    1. T. Z. A. H. Diagnostic checking in regression relationships. R News2, 7–10 (2002).
    1. Thiele I, et al. A community-driven global reconstruction of human metabolism. Nat Biotechnol. 2013;31:419–425. doi: 10.1038/nbt.2488.
    1. Swainston N, Mendes P, Kell DB. An analysis of a ‘community-driven’ reconstruction of the human metabolic network. Metabolomics. 2013;9:757–764. doi: 10.1007/s11306-013-0564-3.
    1. Swainston N, et al. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics. 2016;12:109. doi: 10.1007/s11306-016-1051-4.
    1. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic acids research. 2017;45:D353–D361. doi: 10.1093/nar/gkw1092.
    1. Halbreich U, Borenstein J, Pearlstein T, Kahn LS. The prevalence, impairment, impact, and burden of premenstrual dysphoric disorder (PMS/PMDD) Psychoneuroendocrinology. 2003;28(Suppl 3):1–23.
    1. Schmidt PJ, Nieman LK, Danaceau MA, Adams LF, Rubinow DR. Differential behavioral effects of gonadal steroids in women with and in those without premenstrual syndrome. The New England journal of medicine. 1998;338:209–216. doi: 10.1056/NEJM199801223380401.
    1. Fafouti M, et al. Mood disorder with mixed features due to vitamin B(12) and folate deficiency. Gen Hosp Psychiatry. 2002;24:106–109. doi: 10.1016/S0163-8343(01)00181-5.

Source: PubMed

3
Subscribe