Do Semaphorins Play a Role in Development of Fibrosis in Patients with Nonalcoholic Fatty Liver Disease?

Lara Šamadan, Neven Papić, Maja Mijić, Ivana Knežević Štromar, Slavko Gašparov, Adriana Vince, Lara Šamadan, Neven Papić, Maja Mijić, Ivana Knežević Štromar, Slavko Gašparov, Adriana Vince

Abstract

Nonalcoholic fatty liver disease (NAFLD) is associated with systemic changes in immune response linked with chronic low-grade inflammation and disease progression. Semaphorins, a large family of biological response modifiers, were recently recognized as one of the key regulators of immune responses, possibly also associated with chronic liver diseases. The aim of this study was to identify semaphorins associated with NAFLD and their relationship with steatosis and fibrosis stages. In this prospective, case-control study, serum semaphorin concentrations (SEMA3A, -3C, -4A, -4D, -5A and -7A) were measured in 95 NAFLD patients and 35 healthy controls. Significantly higher concentrations of SEMA3A, -3C and -4D and lower concentrations of SEAMA5A and -7A were found in NAFLD. While there was no difference according to steatosis grades, SEMA3C and SEMA4D significantly increased and SEMA3A significantly decreased with fibrosis stages and had better accuracy in predicting fibrosis compared to the FIB-4 score. Immunohistochemistry confirmed higher expression of SEMA4D in hepatocytes, endothelial cells and lymphocytes in NAFLD livers. The SEMA5A rs1319222 TT genotype was more frequent in the NAFLD group and was associated with higher liver stiffness measurements. In conclusion, we provide the first evidence of the association of semaphorins with fibrosis in patients with NAFLD.

Keywords: NAFLD; SEMA3A; SEMA3C; SEMA5A; SEMA7A; cirrhosis; fibrosis; nonalcoholic fatty liver disease; semaphorins; steatosis.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Serum concentrations of semaphorin SEMA3A (a), SEMA3C (b), SEMA4A (c), SEMA4D (d), SEMA5A (e) and SEMA7A (f) measured by ELISA in healthy controls and in patients with NAFLD, stratified by steatosis grade and fibrosis stage. Data are presented as median with interquartile range. The p-values are calculated by Mann–Whitney U-test or Kruskal–Wallis test, as appropriate.
Figure 2
Figure 2
Spearman correlation correlogram. The strength of the correlation between two variables is represented by the color at the intersection of those variables. Colors range from dark blue (strong negative correlation; r = −1.0) to red (strong positive correlation; r = 1.0). Results were not displayed if p > 0.05.
Figure 3
Figure 3
The ROC curve analysis of serum semaphorin concentrations for discrimination of NAFLD (a) and progressed fibrosis (b). Shown are AUC, area under the curve, with corresponding 95% confidence intervals.
Figure 4
Figure 4
Immunohistochemical staining of SEMA4D in healthy (a) and NAFLD livers (bd). While there is no expression of SEMA4D marker in hepatocytes of healthy liver tissue ((a), magnification 60×), in NAFLD liver without significant fibrosis ((b), magnification 60×; in upper right corner hematoxylin-eosin stain showing fat accumulation), there is a moderate expression in hepatocytes, endothelial cells and lymphocytes. In cirrhotic liver ((c,d), magnification 60×), SEMA4D showed a stronger signal. In the upper right quadrant in panel (b), Masson’s trichrome staining of cirrhotic liver is shown.
Figure 5
Figure 5
Association of SEMA5A rs1319222 and rs433755 genotype with SEMA5A serum concentrations (a,c) and liver stiffness (kPa) and controlled-attenuation parameter (db/m) measurements (b,d). Data are presented as median with interquartile range. The p-values are calculated by Kruskal–Wallis test, and significant differences calculated by Dunn’s multiple comparisons test.

References

    1. European Association for the Study of the Liver (EASL) European Association for the Study of Diabetes (EASD) European Association for the Study of Obesity (EASO) EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016;64:1388–1402. doi: 10.1016/j.jhep.2015.11.004.
    1. Chalasani N., Younossi Z., Lavine J.E., Charlton M., Cusi K., Rinella M., Harrison S.A., Brunt E.M., Sanyal A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67:328–357. doi: 10.1002/hep.29367.
    1. Paquissi F.C. Immune Imbalances in Non-Alcoholic Fatty Liver Disease: From General Biomarkers and Neutrophils to Interleukin-17 Axis Activation and New Therapeutic Targets. Front. Immunol. 2016;7:490. doi: 10.3389/fimmu.2016.00490.
    1. He B., Wu L., Xie W., Shao Y., Jiang J., Zhao Z., Yan M., Chen Z., Cui D. The imbalance of Th17/Treg cells is involved in the progression of nonalcoholic fatty liver disease in mice. BMC Immunol. 2017;18:33. doi: 10.1186/s12865-017-0215-y.
    1. Han M.S., White A., Perry R.J., Camporez J.P., Hidalgo J., Shulman G.I., Davis R.J. Regulation of adipose tissue inflammation by interleukin 6. Proc. Natl. Acad. Sci. USA. 2020;117:2751–2760. doi: 10.1073/pnas.1920004117.
    1. Lukas N., Herbert T. Cytokines and fatty liver diseases. Liver Res. 2018;2:14–20. doi: 10.1016/j.livres.2018.03.003.
    1. Kumanogoh A., Kikutani H. Immunological functions of the neuropilins and plexins as receptors for semaphorins. Nat. Rev. Immunol. 2013;13:802–814. doi: 10.1038/nri3545.
    1. Roney K., Holl E., Ting J. Immune plexins and semaphorins: Old proteins, new immune functions. Protein Cell. 2013;4:17–26. doi: 10.1007/s13238-012-2108-4.
    1. Yin Z., Zhang J., Xu S., Liu J., Xu Y., Yu J., Zhao M., Pan W., Wang M., Wan J. The role of semaphorins in cardiovascular diseases: Potential therapeutic targets and novel biomarkers. FASEB J. 2022;36:e22509. doi: 10.1096/fj.202200844R.
    1. Song Y., Wang L., Zhang L., Huang D. The involvement of semaphorin 7A in tumorigenic and immunoinflammatory regulation. J. Cell. Physiol. 2021;236:6235–6248. doi: 10.1002/jcp.30340.
    1. Jiang J., Zhang F., Wan Y., Fang K., Yan Z.D., Ren X.L., Zhang R. Semaphorins as Potential Immune Therapeutic Targets for Cancer. Front. Oncol. 2022;12:793805. doi: 10.3389/fonc.2022.793805.
    1. Papic N., Zidovec Lepej S., Gorenec L., Grgic I., Gasparov S., Filipec Kanizaj T., Vince A. The association of semaphorins 3C, 5A and 6D with liver fibrosis stage in chronic hepatitis C. PLoS ONE. 2018;13:e0209481. doi: 10.1371/journal.pone.0209481.
    1. Bertola A., Bonnafous S., Anty R., Patouraux S., Saint-Paul M.C., Iannelli A., Gugenheim J., Barr J., Mato J.M., Le Marchand-Brustel Y., et al. Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients. PLoS ONE. 2010;5:e13577. doi: 10.1371/journal.pone.0013577.
    1. Ryaboshapkina M., Hammar M. Human hepatic gene expression signature of non-alcoholic fatty liver disease progression, a meta-analysis. Sci. Rep. 2017;7:12361. doi: 10.1038/s41598-017-10930-w.
    1. Paz-Filho G., Mastronardi C.A., Parker B.J., Khan A., Inserra A., Matthaei K.I., Ehrhart-Bornstein M., Bornstein S., Wong M.L., Licinio J. Molecular pathways involved in the improvement of non-alcoholic fatty liver disease. J. Mol. Endocrinol. 2013;51:167–179. doi: 10.1530/JME-13-0072.
    1. European Association for the Study of the Liver. Clinical Practice Guideline Panel. EASL Governing Board representative EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis—2021 update. J. Hepatol. 2021;75:659–689. doi: 10.1016/j.jhep.2021.05.025.
    1. Wang Y., Fan Q., Wang T., Wen J., Wang H., Zhang T. Controlled attenuation parameter for assessment of hepatic steatosis grades: A diagnostic meta-analysis. Int. J. Clin. Exp. Med. 2015;8:17654–17663.
    1. Loaeza-del-Castillo A., Paz-Pineda F., Oviedo-Cardenas E., Sanchez-Avila F., Vargas-Vorackova F. AST to platelet ratio index (APRI) for the noninvasive evaluation of liver fibrosis. Ann. Hepatol. 2008;7:350–357. doi: 10.1016/S1665-2681(19)31836-8.
    1. Sumida Y., Yoneda M., Hyogo H., Itoh Y., Ono M., Fujii H., Eguchi Y., Suzuki Y., Aoki N., Kanemasa K., et al. Validation of the FIB4 index in a Japanese nonalcoholic fatty liver disease population. BMC Gastroenterol. 2012;12:2. doi: 10.1186/1471-230X-12-2.
    1. Buniello A., MacArthur J.A.L., Cerezo M., Harris L.W., Hayhurst J., Malangone C., McMahon A., Morales J., Mountjoy E., Sollis E., et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47:D1005–D1012. doi: 10.1093/nar/gky1120.
    1. Duan Y., Pan X., Luo J., Xiao X., Li J., Bestman P.L., Luo M. Association of Inflammatory Cytokines With Non-Alcoholic Fatty Liver Disease. Front. Immunol. 2022;13:880298. doi: 10.3389/fimmu.2022.880298.
    1. Rienks M., Carai P., Bitsch N., Schellings M., Vanhaverbeke M., Verjans J., Cuijpers I., Heymans S., Papageorgiou A. Sema3A promotes the resolution of cardiac inflammation after myocardial infarction. Basic Res. Cardiol. 2017;112:42. doi: 10.1007/s00395-017-0630-5.
    1. Movassagh H., Saati A., Nandagopal S., Mohammed A., Tatari N., Shan L., Duke-Cohan J.S., Fowke K.R., Lin F., Gounni A.S. Chemorepellent Semaphorin 3E Negatively Regulates Neutrophil Migration In Vitro and In Vivo. J. Immunol. 2017;198:1023–1033. doi: 10.4049/jimmunol.1601093.
    1. Kiseleva E.P., Rutto K.V. Semaphorin 3A in the Immune System: Twenty Years of Study. Biochemistry. 2022;87:640–657. doi: 10.1134/S0006297922070069.
    1. Vadasz Z., Haj T., Halasz K., Rosner I., Slobodin G., Attias D., Kessel A., Kessler O., Neufeld G., Toubi E. Semaphorin 3A is a marker for disease activity and a potential immunoregulator in systemic lupus erythematosus. Arthritis Res. Ther. 2012;14:R146. doi: 10.1186/ar3881.
    1. Catalano A. The neuroimmune semaphorin-3A reduces inflammation and progression of experimental autoimmune arthritis. J. Immunol. 2010;185:6373–6383. doi: 10.4049/jimmunol.0903527.
    1. Liu X., Tan N., Zhou Y., Zhou X., Chen H., Wei H., Chen J., Xu X., Zhang S., Yang G., et al. Semaphorin 3A Shifts Adipose Mesenchymal Stem Cells towards Osteogenic Phenotype and Promotes Bone Regeneration In Vivo. Stem Cells Int. 2016;2016:2545214. doi: 10.1155/2016/2545214.
    1. Li X., Chen Q., Yin D., Shi S., Yu L., Zhou S., Chen E., Zhou Z., Shi Y., Fan J., et al. Novel role of semaphorin 3A in the growth and progression of hepatocellular carcinoma. Oncol. Rep. 2017;37:3313–3320. doi: 10.3892/or.2017.5616.
    1. Mejhert N., Wilfling F., Esteve D., Galitzky J., Pellegrinelli V., Kolditz C.I., Viguerie N., Tordjman J., Naslund E., Trayhurn P., et al. Semaphorin 3C is a novel adipokine linked to extracellular matrix composition. Diabetologia. 2013;56:1792–1801. doi: 10.1007/s00125-013-2931-z.
    1. De Angelis Rigotti F., Wiedmann L., Hubert M.O., Vacca M., Hasan S., Moll I., Carvajal S., Jiménez W., Starostecka M., Billeter A., et al. Semaphorin 3C exacerbates liver fibrosis. Eur. PMC. 2021 doi: 10.1101/2021.07.29.454292.
    1. Nkyimbeng-Takwi E., Chapoval S.P. Biology and function of neuroimmune semaphorins 4A and 4D. Immunol. Res. 2011;50:10–21. doi: 10.1007/s12026-010-8201-y.
    1. Nishide M., Nojima S., Ito D., Takamatsu H., Koyama S., Kang S., Kimura T., Morimoto K., Hosokawa T., Hayama Y., et al. Semaphorin 4D inhibits neutrophil activation and is involved in the pathogenesis of neutrophil-mediated autoimmune vasculitis. Ann. Rheum. Dis. 2017;76:1440–1448. doi: 10.1136/annrheumdis-2016-210706.
    1. Xie J., Wang Z., Wang W. Semaphorin 4D Induces an Imbalance of Th17/Treg Cells by Activating the Aryl Hydrocarbon Receptor in Ankylosing Spondylitis. Front. Immunol. 2020;11:2151. doi: 10.3389/fimmu.2020.02151.
    1. Gras C., Eiz-Vesper B., Jaimes Y., Immenschuh S., Jacobs R., Witte T., Blasczyk R., Figueiredo C. Secreted semaphorin 5A activates immune effector cells and is a biomarker for rheumatoid arthritis. Arthritis Rheumatol. 2014;66:1461–1471. doi: 10.1002/art.38425.
    1. Sadanandam A., Rosenbaugh E.G., Singh S., Varney M., Singh R.K. Semaphorin 5A promotes angiogenesis by increasing endothelial cell proliferation, migration, and decreasing apoptosis. Microvasc. Res. 2010;79:1–9. doi: 10.1016/j.mvr.2009.10.005.
    1. Namjou B., Lingren T., Huang Y., Parameswaran S., Cobb B.L., Stanaway I.B., Connolly J.J., Mentch F.D., Benoit B., Niu X., et al. GWAS and enrichment analyses of non-alcoholic fatty liver disease identify new trait-associated genes and pathways across eMERGE Network. BMC Med. 2019;17:135. doi: 10.1186/s12916-019-1364-z.
    1. Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alfoldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–443. doi: 10.1038/s41586-020-2308-7.
    1. Kang S., Okuno T., Takegahara N., Takamatsu H., Nojima S., Kimura T., Yoshida Y., Ito D., Ohmae S., You D.J., et al. Intestinal epithelial cell-derived semaphorin 7A negatively regulates development of colitis via alphavbeta1 integrin. J. Immunol. 2012;188:1108–1116. doi: 10.4049/jimmunol.1102084.
    1. Korner A., Bernard A., Fitzgerald J.C., Alarcon-Barrera J.C., Kostidis S., Kaussen T., Giera M., Mirakaj V. Sema7A is crucial for resolution of severe inflammation. Proc. Natl. Acad. Sci. USA. 2021;118:e2017527118. doi: 10.1073/pnas.2017527118.
    1. Zhao N., Zhang X., Ding J., Pan Q., Zheng M.H., Liu W.Y., Luo G., Qu J., Li M., Li L., et al. SEMA7AR148W mutation promotes lipid accumulation and NAFLD progression via increased localization on the hepatocyte surface. JCI Insight. 2022;7:e154113. doi: 10.1172/jci.insight.154113.

Source: PubMed

3
Subscribe