Study of heart rate recovery and cardiovascular autonomic modulation in healthy participants after submaximal exercise

Tábata P Facioli, Stella V Philbois, Ada C Gastaldi, Daniel S Almeida, Karina D Maida, Jhennyfer A L Rodrigues, Juan C Sánchez-Delgado, Hugo C D Souza, Tábata P Facioli, Stella V Philbois, Ada C Gastaldi, Daniel S Almeida, Karina D Maida, Jhennyfer A L Rodrigues, Juan C Sánchez-Delgado, Hugo C D Souza

Abstract

Heart rate variability (HRV), blood pressure variability (BPV), and baroreflex sensitivity (BRS) provide important information on cardiovascular autonomic control. However, little is known about the reorganization of HRV, BPV, and BRS after aerobic exercise. While there is a positive relationship between heart rate (HR) recovery rate and cardiorespiratory fitness, it is unclear whether there is a relationship between cardiorespiratory fitness and reorganization of cardiovascular autonomic modulation during recovery. Thus, this study aimed to investigate whether cardiorespiratory fitness influences the cardiovascular autonomic modulation recovery, after a cardiopulmonary exercise test. Sixty men were assigned into groups according to their cardiorespiratory fitness: low cardiorespiratory fitness (LCF = VO2: 22-38 mL kg-1 min-1), moderate (MCF = VO2: 38-48 mL kg-1 min-1), and high (HCF = VO2 > 48 mL kg-1 min-1). HRV (linear and non-linear analysis) and BPV (spectral analysis), and BRS (sequence method) were performed before and after a cardiopulmonary exercise test. The groups with higher cardiorespiratory fitness had lower baseline HR values and HR recovery time after the cardiopulmonary exercise test. On comparing rest and recovery periods, the spectral analysis of HRV showed a decrease in low-frequency (LF) oscillations in absolute units and high frequency (HF) in absolute and normalized units. It also showed increases in LF oscillations of blood pressure. Nonlinear analysis showed a reduction in approximate entropy (ApEn) and in Poincare Plot parameters (SD1 and SD2), accompanied by increases in detrended fluctuation analysis (DFA) parameters α1 and α2. However, we did not find differences in cardiovascular autonomic modulation parameters and BRS in relation to cardiorespiratory fitness neither before nor after the cardiopulmonary test. We concluded that cardiorespiratory fitness does not affect cardiovascular autonomic modulations after cardiopulmonary exercise test, unlike HR recovery.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Peripheral blood lactate obtained during the maximal cardiopulmonary test at three different moments: resting; VO2max; and 10 min after the start of recovery (Recovery 10 min); mmol L−1, millimol per liter; aP < 0.05 vs. Low Cardiorespiratory Fitness group; bP < 0.05 vs. Moderate Cardiorespiratory Fitness group.

References

    1. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93(5):1043–1065. doi: 10.1161/01.CIR.93.5.1043.
    1. Höcht C. Blood pressure variability: prognostic value and therapeutic implications. ISRN Hypertens. 2013;16:1–13. doi: 10.5402/2013/398485.
    1. Cozza IC, et al. Physical exercise improves cardiac autonomic modulation in hypertensive patients independently of angiotensin-converting enzyme inhibitor treatment. Hypertens. Res. 2012;35(1):82–87. doi: 10.1038/hr.2011.162.
    1. Stauss HM. Identification of blood pressure control mechanisms by power spectral analysis. Clin. Exp. Pharmacol. Physiol. 2007;34(4):362–368. doi: 10.1111/j.1440-1681.2007.04588.x.
    1. Forleo C, et al. Head-up tilt testing for diagnosing vasovagal syncope: a meta-analysis. Int J Cardiol. 2013;168:27–35. doi: 10.1016/j.ijcard.2012.09.023.
    1. Qiu S, et al. Heart rate recovery and risk of cardiovascular events and all-cause mortality: A meta-analysis of prospective cohort studies. J. Am. Heart Assoc. 2017;6(5):e005505. doi: 10.1161/JAHA.117.005505.
    1. van de Vegte YJ, van der Harst P, Verweij N. Heart rate recovery 10 seconds after cessation of exercise predicts death. J. Am. Heart Assoc. 2018;7(8):e008341.
    1. Ellestad MH. Stress Testing: Principles and Practices. Philadelphia: F. A. Davis Co; 1981.
    1. Pollock ML, et al. A comparative analysis of four protocols for maximal treadmill stress testing. Am Heart J. 1976;92(1):39–46. doi: 10.1016/S0002-8703(76)80401-2.
    1. Taylor HI, Buskirk E, Henschel A, Eckberg DL. Maximal oxygen intake as an objective measure of cardio-respiratory performance. J. Appl. Physiol. 1955;8(1):73–80. doi: 10.1152/jappl.1955.8.1.73.
    1. Guelen I, et al. Finometer, finger pressure measurements with the possibility to reconstruct brachial pressure. Blood Press Monit. 2003;8(1):7–30. doi: 10.1097/00126097-200302000-00006.
    1. Dutra SG, et al. Cardiac autonomic modulation is determined by gender and is independent of aerobic physical capacity in healthy subjects. PLoS ONE. 2013;8(10):e77092. doi: 10.1371/journal.pone.0077092.
    1. Tezini GC, Dias DP, Souza HC. Aerobic physical training has little effect on cardiovascular autonomic control in aging rats subjected to early menopause. Exp. Gerontol. 2013;48:147–153. doi: 10.1016/j.exger.2012.11.009.
    1. Harris FJ. On the use of windows for harmonic analysis with the Discrete Fourier Transform. Proc. IEEE. 1978;66:51–83. doi: 10.1109/PROC.1978.10837.
    1. Billman GE. Heart rate variability: A historical perspective. Front. Physiol. 2011;2:86. doi: 10.3389/fphys.2011.00086.
    1. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:482–492. doi: 10.1161/01.CIR.84.2.482.
    1. Montano N, et al. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation. 1994;90:1826–1831. doi: 10.1161/01.CIR.90.4.1826.
    1. Tarvainen MP, Niskanen J-P, Lipponen JA, Ranta-aho PO, Karjalainen PA. Kubios HRV-heart rate variability analysis software. Comput. Methods Programs Biomed. 2014;113(1):210–220. doi: 10.1016/j.cmpb.2013.07.024.
    1. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front. Public Health. 2017;5:46. doi: 10.3389/fpubh.2017.00258.
    1. Silva LEV, Dias DPM, da Silva CAA, Salgado HC, Fazan R. Revisiting the sequence method for baroreflex analysis. Front. Neurosci. 2019;13:17. doi: 10.3389/fnins.2019.00017.
    1. Abergel E, et al. Serial left ventricular adaptations in world-class professional cyclists: Implications for disease screening and follow-up. J. Am. Coll. Cardiol. 2004;44(1):144–149. doi: 10.1016/j.jacc.2004.02.057.
    1. Dawson EA, et al. Preload maintenance and the left ventricular response to prolonged exercise in men. Exp. Physiol. 2007;92(2):383–390. doi: 10.1113/expphysiol.2006.035089.
    1. Kappus RM, et al. Sex differences in autonomic function following maximal exercise. Biol. Sex. Differ. 2015;6:28. doi: 10.1186/s13293-015-0046-6.
    1. Facioli TP, et al. The blood pressure variability and baroreflex sensitivity in healthy participants are not determined by sex or cardiorespiratory fitness. Blood Pressure Monit. 2018;6:1–11.
    1. Dewland TA, Androne AS, Lee FA, Lampert RJ, Katz SD. Effect of acetylcholinesterase inhibition with pyridostigmine on cardiac parasympathetic function in sedentary adults and trained athletes. Am. J. Physiol. Heart Circ. Physiol. 2007;293(1):86–92. doi: 10.1152/ajpheart.01339.2006.
    1. Perini R, Veicsteinas A. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur. J. Appl. Physiol. 2003;90:317–325. doi: 10.1007/s00421-003-0953-9.
    1. Michelini LC, Oleary DS, Raven PB, Nobrega AC. Neural control of circulation and exercise: A translational approach disclosing interactions between central command, arterial baroreflex, and muscle metaboreflex. Am. J. Physiol. Heart Circ. Physiol. 2015;309(3):381–392. doi: 10.1152/ajpheart.00077.2015.
    1. James DV, Barnes AJ, Lopes P, Wood DM. Heart rate variability: Response following a single bout of interval training. Int. J. Sports Med. 2002;23:247–251. doi: 10.1055/s-2002-29077.
    1. Mourot L, Bouhaddi M, Tordi N, Rouillon JD, Regnard J. Short- and long-term effects of a single bout of exercise on heart rate variability: Comparison between constant and interval training exercises. Eur. J. Appl. Physiol. 2004;92:508–517. doi: 10.1007/s00421-004-1119-0.
    1. Stuckey MI, et al. Autonomic recovery following sprint interval exercise. Scand. J. Med. Sci. Sports. 2012;2(6):756–763. doi: 10.1111/j.1600-0838.2011.01320.x.
    1. Buchheit M, Laursen PB, Ahmaidi S. Parasympathetic reactivation after repeated sprint exercise. Am. J. Physiol. Heart Circ. Physiol. 2007;293(1):133–141. doi: 10.1152/ajpheart.00062.2007.
    1. Coote JH. Recovery of heart rate following intense dynamic exercise. Exp. Physiol. 2010;95:431–440. doi: 10.1113/expphysiol.2009.047548.
    1. Gujic M, Laude D, Houssiere UM. Differential effects of metaboreceptor and chemoreceptor activation on sympathetic and cardiac baroreflex control following exercise in hypoxia in human. J. Physiol. 2007;585:165–174. doi: 10.1113/jphysiol.2007.141002.
    1. Niemela TH, et al. Recovery pattern of baroreflex sensitivity after exercise. Med. Sci. Sports Exerc. 2008;40:864–870. doi: 10.1249/MSS.0b013e3181666f08.
    1. Sala Mercado JA, Ichinose M, Hammond RL. Muscle metaboreflex atte-nuates spontaneous heart rate baroreflex sensi-tivity during dynamic exercise. Am. J. Physiol. Heart Circ. Physiol. 2007;292:2867–2873. doi: 10.1152/ajpheart.00043.2007.
    1. Green H, Halestrap A, Mockett C. Increases in muscle MCT are associated with reductions in muscle lactate after a single exercise session in humans. Am. J. Physiol. 2002;282:154–160.
    1. Gmada N, et al. Effect of combined active recovery from supramaximal exercise on blood lactate disappearance in trained and untrained man. Int. J. Sports Med. 2005;26(10):874–879. doi: 10.1055/s-2005-837464.
    1. Charkoudian N. Human thermoregulation from the autonomic perspective. Auton. Neurosci. 2016;196:1–2. doi: 10.1016/j.autneu.2016.02.007.
    1. Niewiadomski W, Gasiorowska A, Krauss B, Mroz A, Cybulski G. Suppression of heart rate variability after supramaximal exertion. Clin. Physiol. Funct. Imaging. 2007;27:309–319. doi: 10.1111/j.1475-097X.2007.00753.x.
    1. Halliwill JR, Taylor JA, Hartwig TD, Eckberg DL. Augmented baroreflex heart rate gain after moderateintensity, dynamic exercise. Am. J. Physiol. 1996;270:420–426.

Source: PubMed

3
Subscribe