The functional and anatomical dissection of somatosensory subpopulations using mouse genetics

Claire E Le Pichon, Alexander T Chesler, Claire E Le Pichon, Alexander T Chesler

Abstract

The word somatosensation comes from joining the Greek word for body (soma) with a word for perception (sensation). Somatosensory neurons comprise the largest sensory system in mammals and have nerve endings coursing throughout the skin, viscera, muscle, and bone. Their cell bodies reside in a chain of ganglia adjacent to the dorsal spinal cord (the dorsal root ganglia) and at the base of the skull (the trigeminal ganglia). While the neuronal cell bodies are intermingled within the ganglia, the somatosensory system is in reality composed of numerous sub-systems, each specialized to detect distinct stimuli, such as temperature and touch. Historically, somatosensory neurons have been classified using a diverse host of anatomical and physiological parameters, such as the size of the cell body, degree of myelination, histological labeling with markers, specialization of the nerve endings, projection patterns in the spinal cord and brainstem, receptive tuning, and conduction velocity of their action potentials. While useful, the picture that emerged was one of heterogeneity, with many markers at least partially overlapping. More recently, by capitalizing on advances in molecular techniques, researchers have identified specific ion channels and sensory receptors expressed in subsets of sensory neurons. These studies have proved invaluable as they allow genetic access to small subsets of neurons for further molecular dissection. Data being generated from transgenic mice favor a model whereby an array of dedicated neurons is responsible for selectively encoding different modalities. Here we review the current knowledge of the different sensory neuron subtypes in the mouse, the markers used to study them, and the neurogenetic strategies used to define their anatomical projections and functional roles.

Keywords: TRP channel; itch; nociception; pain; sensory neuron; somatosensation; thermodetection; touch.

Figures

Figure 1
Figure 1
Anatomy of the somatosensory system. (A) Somatosensory neuron cell bodies reside outside the spinal cord in the dorsal root ganglia (DRG). They have a single process that splits, sending an afferent projection to the periphery and an efferent projection to the spinal cord. (B) Somatosensory neurons residing in the trigeminal send processes that innervate peripheral targets through the face, mouth, and dura and central targets in the brainstem. (C) Somatosensory neurons can be divided into three broad categories based on the size of their cell bodies and degree of myelination. Within these broad categories, numerous sub-specializations exist-for example small diameter C fibers are mostly nociceptors while large diameter A neurons respond to low threshold mechanical stimuli. LTMR, low-threshold mechano-receptor.
Figure 2
Figure 2
TRP channels respond to unique types of stimuli. (A) Natural products from chili peppers, onions/garlic, and mint leaves selectively activate TRP channels (TRPV1, TRPA1, and TRPM8, respectively). The psychophysical effects of these compounds directly correlate with the environmental stimuli to which these TRP channels are responsive. Activation of TRPV1 by either capsaicin from chili peppers or heat evokes a burning sensation, activation of TRPA1 by mustard oil and environmental irritants evokes a stinging pain, and activation of TRPM8 by menthol from mint leaves or cold evokes the sensation of cooling. (B) TRP channels are differentially expressed in somatosensory neurons. Two-color fluorescent in situ hybridization demonstrates little overlap between TRPM8 and TRPV1 (left hand image). Meanwhile, TRPA1 is expressed in a subset of TRPV1 neurons (right hand image). Image courtesy of Mark Hoon, NIH/NIDCD.
Figure 3
Figure 3
TRPV1 Reporter mice reveal the anatomy of neurons that expressed TRPV1 throughout their lineage. (A) Skin section from TRPV1-Cre × YFP reporter strain showing primary afferent arborizations in the various epidermal layers. (B) DRG section from adult TRPV1-PLAP-nlacZ mouse, showing minimal overlap between β-Gal reaction product (green) and IB4 (red). (C) DRG section from adult TRPV1-Cre × LacZ reporter strain. Anti-LacZ (green) shows significantly more overlap with IB4 (red) since the entire TRPV1 lineage is marked. Image courtesy of Danial Cavanaugh and Allan Basbaum, Department of Anatomy UCSF.
Figure 4
Figure 4
Venn diagram illustrating the distribution of markers across different classes of C fibers (not to scale). Numbers reference the mouse lines listed in Table 2.
Figure 5
Figure 5
Delta opioid receptor (DOR-eGFP mice, green) rarely overlaps with TRPV1 (red). Image courtesy of Grégory Scherrer, Stanford University.

References

    1. Abrahamsen B., Zhao J., Asante C. O., Cendan C. M., Marsh S., Martinez-Barbera J. P., et al. (2008). The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321, 702–705 10.1126/science.1156916
    1. Abraira V. E., Ginty D. D. (2013). The sensory neurons of touch. Neuron 79, 618–639 10.1016/j.neuron.2013.07.051
    1. Akopian A. N., Sivilotti L., Wood J. N. (1996). A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257–262 10.1038/379257a0
    1. Arenkiel B. R., Klein M. E., Davison I. G., Katz L. C., Ehlers M. D. (2008). Genetic control of neuronal activity in mice conditionally expressing TRPV1. Nat. Methods 5, 299–302 10.1038/nmeth.1190
    1. Averill S., McMahon S. B., Clary D. O., Reichardt L. F., Priestley J. V. (1995). Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur. J. Neurosci. 7, 1484–1494 10.1111/j.1460-9568.1995.tb01143.x
    1. Bandell M., Macpherson L. J., Patapoutian A. (2007). From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs. Curr. Opin. Neurobiol. 17, 490–497 10.1016/j.conb.2007.07.014
    1. Bardoni R., Tawfik V. L., Wang D., François A., Solorzano C., Shuster S. A., et al. (2014). Delta opioid receptors presynaptically regulate cutaneous mechanosensory neuron input to the spinal cord dorsal horn. Neuron 81, 1–16 10.1016/j.neuron.2014.03.006
    1. Basbaum A. I., Bautista D. M., Scherrer G., Julius D. (2009). Cellular and molecular mechanisms of pain. Cell 139, 267–284 10.1016/j.cell.2009.09.028
    1. Bautista D. M., Jordt S.-E., Nikai T., Tsuruda P. R., Read A. J., Poblete J., et al. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 10.1016/j.cell.2006.02.023
    1. Bautista D. M., Siemens J., Glazer J. M., Tsuruda P. R., Basbaum A. I., Stucky C. L., et al. (2007). The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448, 204–208 10.1038/nature05910
    1. Birdsong W. T., Fierro L., Williams F. G., Spelta V., Naves L. A., Knowles M., et al. (2010). Sensing muscle ischemia: coincident detection of acid and ATP via interplay of two ion channels. Neuron 68, 739–749 10.1016/j.neuron.2010.09.029
    1. Caterina M. J., Leffler A., Malmberg A. B., Martin W. J., Trafton J., Petersen-Zeitz K. R., et al. (2000). Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 10.1126/science.288.5464.306
    1. Caterina M. J., Schumacher M. A., Tominaga M., Rosen T. A., Levine J. D., Julius D. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816 10.1038/39807
    1. Cavanaugh D. J., Chesler A. T., Bráz J. M., Shah N. M., Julius D., Basbaum A. I. (2011a). Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J. Neurosci. 31, 10119–10127 10.1523/JNEUROSCI.1299-11.2011
    1. Cavanaugh D. J., Chesler A. T., Jackson A. C., Sigal Y. M., Yamanaka H., Grant R., et al. (2011b). Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J. Neurosci. 31, 5067–5077 10.1523/JNEUROSCI.6451-10.2011
    1. Cavanaugh D. J., Lee H., Lo L., Shields S. D., Zylka M. J., Basbaum A. I., et al. (2009). Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc. Natl. Acad. Sci. U.S.A. 106, 9075–9080 10.1073/pnas.0901507106
    1. Chávez A. E., Chiu C. Q., Castillo P. E. (2010). TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nat. Neurosci. 13, 1511–1518 10.1038/nn.2684
    1. Chuang H. H., Prescott E. D., Kong H., Shields S., Jordt S. E., Basbaum A. I., et al. (2001). Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 957 10.1038/35082088
    1. Colburn R. W., Lubin M. L., Stone D. J., Jr., Wang Y., Lawrence D., D'Andrea M. R., et al. (2007). Attenuated cold sensitivity in TRPM8 null mice. Neuron 54, 379–386 10.1016/j.neuron.2007.04.017
    1. Coste B., Mathur J., Schmidt M., Earley T. J., Ranade S., Petrus M. J., et al. (2010). Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 10.1126/science.1193270
    1. Daou I., Tuttle A. H., Longo G., Wieskopf J. S., Bonin R. P., Ase A. R., et al. (2013). Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J. Neurosci. 33, 18631–18640 10.1523/JNEUROSCI.2424-13.2013
    1. Darian-Smith I., Johnson K. O., Dykes R. (1973). “Cold” fiber population innervating palmar and digital skin of the monkey: responses to cooling pulses. J. Neurophysiol. 36, 325–346
    1. Delmas P., Hao J., Rodat-Despoix L. (2011). Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat. Rev. Neurosci. 12, 139–153 10.1038/nrn2993
    1. Dhaka A., Earley T. J., Watson J., Patapoutian A. (2008). Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J. Neurosci. 28, 566–575 10.1523/JNEUROSCI.3976-07.2008
    1. Dhaka A., Murray A. N., Mathur J., Earley T. J., Petrus M. J., Patapoutian A. (2007). TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 10.1016/j.neuron.2007.02.024
    1. Dong X., Han S., Zylka M. J., Simon M. I., Anderson D. J. (2001). A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106, 619–632 10.1016/S0092-8674(01)00483-4
    1. Dubner R., Sumino R., Wood W. I. (1975). A peripheral “cold” fiber population responsive to innocuous and noxious thermal stimuli applied to monkey's face. J. Neurophysiol. 38, 1373–1389
    1. Duclaux R., Kenshalo D. R. (1980). Response characteristics of cutaneous warm receptors in the monkey. J. Neurophysiol. 43, 1–15
    1. Dussor G., Zylka M. J., Anderson D. J., McCleskey E. W. (2008). Cutaneous sensory neurons expressing the Mrgprd receptor sense extracellular ATP and are putative nociceptors. J. Neurophysiol. 99, 1581–1589 10.1152/jn.01396.2007
    1. Feil K., Herbert H. (1995). Topographic organization of spinal and trigeminal somatosensory pathways to the rat parabrachial and Kölliker-Fuse nuclei. J. Comp. Neurol. 353, 506–528 10.1002/cne.903530404
    1. Fremeau R. T., Burman J., Qureshi T., Tran C. H., Proctor J., Johnson J., et al. (2002). The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc. Natl. Acad. Sci. U.S.A. 99, 14488–14493 10.1073/pnas.222546799
    1. Fremeau R. T., Voglmaier S., Seal R. P., Edwards R. H. (2004). VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci. 27, 98–103 10.1016/j.tins.2003.11.005
    1. Georgopoulos A. P. (1976). Functional properties of primary afferent units probably related to pain mechanisms in primate glabrous skin. J. Neurophysiol. 39, 71–83
    1. Gomes I., Gupta A., Filipovska J., Szeto H. H., Pintar J. E., Devi L. A. (2004). A role for heterodimerization of μ and δ opiate receptors in enhancing morphine analgesia. Proc. Natl. Acad. Sci. U.S.A. 101, 5145–5139 10.1073/pnas.0307601101
    1. Gong S., Zheng C., Doughty M. L., Losos K., Didkovsky N., Schambra U. B., et al. (2003). A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 10.1038/nature02033
    1. Gras C., Herzog E., Bellenchi G. C., Bernard V., Ravassard P., Pohl M., et al. (2002). A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J. Neurosci. 22, 5442–5451
    1. Grueter B. A., Brasnjo G., Malenka R. C. (2010). Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat. Neurosci. 13, 1519–1525 10.1038/nn.2685
    1. Han L., Ma C., Liu Q., Weng H.-J., Cui Y., Tang Z., et al. (2012). A subpopulation of nociceptors specifically linked to itch. Nat. Neurosci. 16, 174–182 10.1038/nn.3289
    1. He S. Q., Zhang Z. N., Guan J. S., Liu H. R., Zhao B., Wang H. B., et al. (2011). Facilitation of μ-opioid receptor activity by preventing δ-opioid receptor-mediated codegradation. Neuron 69, 123–131 10.1016/j.neuron.2010.12.001
    1. Heintz N. (2001). Bac to the future: the use of bac transgenic mice for neuroscience research. Nat. Rev. Neurosci. 2, 861–870 10.1038/35104049
    1. Hensel H., Iggo A. (1971). Analysis of cutaneous warm and cold fibres in primates. Pflugers Arch. 329, 1–8 10.1007/BF00586896
    1. Imamachi N., Park G. H., Lee H., Anderson D. J., Simon M. I., Basbaum A. I., et al. (2009). TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc. Natl. Acad. Sci. U.S.A. 106, 11330–11335 10.1073/pnas.0905605106
    1. Jasmin L., Burkey A. R., Card J. P., Basbaum A. I. (1997). Transneuronal labeling of a nociceptive pathway, the spino-(trigemino-)parabrachio-amygdaloid, in the rat. J. Neurosci. 17, 3751–3765
    1. Jordt S.-E., Bautista D. M., Chuang H.-H., McKemy D. D., Zygmunt P. M., Högestätt E. D., et al. (2004). Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 10.1038/nature02282
    1. Jordt S. E., McKemy D. D., Julius D. (2003). Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr. Opin. Neurobiol. 13, 487–492 10.1016/S0959-4388(03)00101-6
    1. Kandel E., Schwartz J., Jessell T., Siegelbaum S., Hudspeth A. J. (2012). Principles of Neural Science, 5th Edn. McGraw Hill Professional
    1. Kauer J. A., Gibson H. E. (2009). Hot flash: TRPV channels in the brain. Trends Neurosci. 32, 215–224 10.1016/j.tins.2008.12.006
    1. Knowlton W. M., Bifolck-Fisher A., Bautista D. M., McKemy D. D. (2010). TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 150, 340–350 10.1016/j.pain.2010.05.021
    1. Kwan K. Y., Allchorne A. J., Vollrath M. A., Christensen A. P., Zhang D.-S., Woolf C. J., et al. (2006). TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 10.1016/j.neuron.2006.03.042
    1. Lee H.-M., Giguere P. M., Roth B. L. (2013). DREADDs: novel tools for drug discovery and development. Drug Discov. Today. [Epub ahead of print]. 10.1016/j.drudis.2013.10.018
    1. Li L., Rutlin M., Abraira V. E., Cassidy C., Kus L., Gong S., et al. (2011). The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147, 1615–1627 10.1016/j.cell.2011.11.027
    1. Liu Q., Sikand P., Ma C., Tang Z., Han L., Li Z., et al. (2012). Mechanisms of itch evoked by β-alanine. J. Neurosci. 32, 14532–14537 10.1523/JNEUROSCI.3509-12.2012
    1. Liu Q., Tang Z., Surdenikova L., Kim S., Patel K. N., Kim A., et al. (2009). Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139, 1353–1365 10.1016/j.cell.2009.11.034
    1. Liu Q., Vrontou S., Rice F. L., Zylka M. J., Dong X., Anderson D. J. (2007). Molecular genetic visualization of a rare subset of unmyelinated sensory neurons that may detect gentle touch. Nat. Neurosci. 10, 946–948 10.1038/nn1937
    1. Liu T., Xu Z.-Z., Park C.-K., Berta T., Ji R.-R. (2010). Toll-like receptor 7 mediates pruritis. Nat. Neurosci. 13, 1460–1462 10.1038/nn.2683
    1. Lou S., Duan B., Vong L., Lowell B. B., Ma Q. (2013). Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors. J. Neurosci. 33, 870–882 10.1523/JNEUROSCI.3942-12.2013
    1. Madisen L., Mao T., Koch H., Zhuo J.-M., Berenyi A., Fujisawa S., et al. (2012). A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 10.1038/nn.3078
    1. McCoy E. S., Taylor-Blake B., Street S. E., Pribisko A. L., Zheng J., Zylka M. J. (2013). Peptidergic CGRPα primary sensory neurons encode heat and itch and tonically suppress sensitivity to cold. Neuron 78, 138–151 10.1016/j.neuron.2013.01.030
    1. McKemy D. D. (2013). The molecular and cellular basis of cold sensation. ACS Chem. Neurosci. 4, 238–247 10.1021/cn300193h
    1. McKemy D. D., Neuhausser W. M., Julius D. (2002). Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52 10.1038/nature719
    1. Minett M. S., Nassar M. A., Clark A. K., Passmore G., Dickenson A. H., Wang F., et al. (2012). Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nat. Commun. 3, 791 10.1038/ncomms1795
    1. Mishra S. K., Hoon M. A. (2010). Ablation of TrpV1 neurons reveals their selective role in thermal pain sensation. Mol. Cell. Neurosci. 43, 157–163 10.1016/j.mcn.2009.10.006
    1. Mishra S. K., Tisel S. M., Orestes P., Bhangoo S. K., Hoon M. A. (2011). TRPV1-lineage neurons are required for thermal sensation. EMBO J. 30, 582–593 10.1038/emboj.2010.325
    1. Olausson H., Lamarre Y., Backlund H., Morin C., Wallin B. G., Starck G., et al. (2002). Unmyelinated tactile afferents signal touch and project to insular cortex. Nat. Neurosci. 5, 900–904 10.1038/nn896
    1. Patapoutian A., Tate S., Woolf C. J. (2009). Transient receptor potential channels: targeting pain at the source. Nat. Rev. Drug Discov. 8, 55–68 10.1038/nrd2757
    1. Peier A. M., Moqrich A., Hergarden A. C., Reeve A. J., Andersson D. A., Story G. M., et al. (2002). A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 10.1016/S0092-8674(02)00652-9
    1. Pogorzala L. A., Mishra S. K., Hoon M. A. (2013). The cellular code for mammalian thermosensation. J. Neurosci. 33, 5533–5541 10.1523/JNEUROSCI.5788-12.2013
    1. Purves D., Augustine G. J., Fitzpatrick D., Hall W. C., LaMantia A. S., White L. E. (2012). Neuroscience, 5th Edn. Sinauer Associates, Inc.
    1. Ross S. E., Mardinly A. R., McCord A. E., Zurawski J., Cohen S., Jung C., et al. (2010). Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neuron 65, 886–898 10.1016/j.neuron.2010.02.025
    1. Sakurai K., Akiyama M., Cai B., Scott A., Han B.-X., Takatoh J., et al. (2013). The organization of submodality-specific touch afferent inputs in the vibrissa column. Cell Rep. 5, 87–98 10.1016/j.celrep.2013.08.051
    1. Scherrer G., Imamachi N., Cao Y.-Q., Contet C., Mennicken F., O'Donnell D., et al. (2009). Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 137, 1148–1159 10.1016/j.cell.2009.04.019
    1. Seal R. P., Akil O., Yi E., Weber C. M., Grant L., Yoo J., et al. (2008). Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron 57, 263–275 10.1016/j.neuron.2007.11.032
    1. Seal R. P., Wang X., Guan Y., Raja S. N., Woodbury C. J., Basbaum A. I., et al. (2009). Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 462, 651–655 10.1038/nature08505
    1. Shah N. M., Pisapia D. J., Maniatis S., Mendelsohn M. M. (2004). Visualizing sexual dimorphism in the brain. Neuron 43, 313–319 10.1016/j.neuron.2004.07.008
    1. Sharif Naeini R., Witty M.-F., Séguéla P., Bourque C. W. (2006). An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat. Neurosci. 9, 93–98 10.1038/nn1614
    1. Shim W.-S., Tak M.-H., Lee M.-H., Kim M., Kim M., Koo J.-Y., et al. (2007). TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J. Neurosci. 27, 2331–2337 10.1523/JNEUROSCI.4643-06.2007
    1. Simone D. A., Kajander K. C. (1997). Responses of cutaneous A-fiber nociceptors to noxious cold. J. Neurophysiol. 77, 2049–2060
    1. Sun Y.-G., Chen Z.-F. (2007). A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 448, 700–703 10.1038/nature06029
    1. Sun Y.-G., Zhao Z.-Q., Meng X.-L., Yin J., Liu X.-Y., Chen Z.-F. (2009). Cellular basis of itch sensation. Science 325, 1531–1534 10.1126/science.1174868
    1. Takashima Y., Daniels R. L., Knowlton W., Teng J., Liman E. R., McKemy D. D. (2007). Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J. Neurosci. 27, 14147–14157 10.1523/JNEUROSCI.4578-07.2007
    1. Tian L., Hires S. A., Mao T., Huber D., Chiappe M. E., Chalasani S. H., et al. (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 10.1038/nmeth.1398
    1. Tominaga M., Caterina M. J., Malmberg A. B., Rosen T. A., Gilbert H., Skinner K., et al. (1998). The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 10.1016/S0896-6273(00)80564-4
    1. Vriens J., Owsianik G., Hofmann T., Philipp S. E., Stab J., Chen X., et al. (2011). TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70, 482–494 10.1016/j.neuron.2011.02.051
    1. Vrontou S., Wong A. M., Rau K. K., Koerber H. R., Anderson D. J. (2013). Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo. Nature 493, 669–673 10.1038/nature11810
    1. Wang H., Zylka M. J. (2009). Mrgprd-expressing polymodal nociceptive neurons innervate most known classes of substantia gelatinosa neurons. J. Neurosci. 29, 13202–13209 10.1523/JNEUROSCI.3248-09.2009
    1. Wang H.-B., Zhao B., Zhong Y.-Q., Li K.-C., Li Z.-Y., Wang Q., et al. (2010). Coexpression of δ- and μ-opioid receptors in nociceptive sensory neurons. Proc. Natl. Acad. Sci. U.S.A. 107, 13117–13122 10.1073/pnas.1008382107
    1. Wang X., Zhang J., Eberhart D., Urban R., Meda K., Solorzano C., et al. (2013). Excitatory superficial dorsal horn interneurons are functionally heterogeneous and required for the full behavioral expression of pain and itch. Neuron 78, 312–324 10.1016/j.neuron.2013.03.001
    1. Wilson S. R., Gerhold K. A., Bifolck-Fisher A., Liu Q., Patel K. N., Dong X., et al. (2011). TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat. Neurosci. 14, 595–602 10.1038/nn.2789
    1. Wilson S. R., Thé L., Batia L. M., Beattie K., Katibah G. E., McClain S. P., et al. (2013). The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155, 285–295 10.1016/j.cell.2013.08.057
    1. Xu Y., Lpoes C., Wende H., Guo Z., Cheng L., Birchmeier C., et al. (2013). Ontogeny of excitatory spinal neurons processing distinct somatic sensory modalities. J. Neurosci. 33, 14738–14747 10.1523/JNEUROSCI.5512-12.2013
    1. Zotterman Y. (1939). Touch, pain and tickling: an electro-physiological investigation on cutaneous sensory nerves. J. Physiol. 95, 1–28
    1. Zylka M. J., Rice F. L., Anderson D. J. (2005). Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45, 17–25 10.1016/j.neuron.2004.12.015

Source: PubMed

3
Subscribe