Trauma of major surgery: A global problem that is not going away

Geoffrey P Dobson, Geoffrey P Dobson

Abstract

Globally, a staggering 310 million major surgeries are performed each year; around 40 to 50 million in USA and 20 million in Europe. It is estimated that 1-4% of these patients will die, up to 15% will have serious postoperative morbidity, and 5-15% will be readmitted within 30 days. An annual global mortality of around 8 million patients places major surgery comparable with the leading causes of death from cardiovascular disease and stroke, cancer and injury. If surgical complications were classified as a pandemic, like HIV/AIDS or coronavirus (COVID-19), developed countries would work together and devise an immediate action plan and allocate resources to address it. Seeking to reduce preventable deaths and post-surgical complications would save billions of dollars in healthcare costs. Part of the global problem resides in differences in institutional practice patterns in high- and low-income countries, and part from a lack of effective perioperative drug therapies to protect the patient from surgical stress. We briefly review the history of surgical stress and provide a path forward from a systems-based approach. Key to progress is recognizing that the anesthetized brain is still physiologically 'awake' and responsive to the sterile stressors of surgery. New intravenous drug therapies are urgently required after anesthesia and before the first incision to prevent the brain from switching to sympathetic overdrive and activating secondary injury progression such as hyperinflammation, coagulopathy, immune activation and metabolic dysfunction. A systems-based approach targeting central nervous system-mitochondrial coupling may help drive research to improve outcomes following major surgery in civilian and military medicine.

Keywords: Global; Morbidity; Mortality; Perioperative; Surgery; Trauma.

Conflict of interest statement

Geoffrey Dobson is the sole inventor of the ALM concept for cardioplegia, organ preservation, surgery, infection and trauma, and has no financial interests from any entity or organization.

Copyright © 2020 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

Figures

Fig. 1
Fig. 1
Perioperative Complications after Non-Cardiac Major Surgery Major surgery and anesthesia are associated with stress-induced activation of the sympathetic nervous system, hemodynamic compromise, hyperinflammation, coagulopathy, immune dysfunction, metabolic imbalances and hypothermia. Large population studies indicate that ∼8% of adult patients will suffer heart ischemia/injury, and 10% of these will die within 30 days [118,119]. Surgical stress also leads to perioperative complications involving brain [120,121], kidney [122], lung [123], liver [124], and possibly the gut microbiome [97]. Atrial fibrillation [125] and infections [126] are also significant complications following major surgery. It is estimated that around 50% of these complications are potentially preventable [[13], [14], [15]].
Fig. 2
Fig. 2
A Systems-Based Approach to the Trauma of Surgery Surgical stress triggers a myriad of neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that predispose the patient to further injury. The early drivers of surgical stress are sterile local injury, firing of injured peripheral and visceral afferent nerves which activate the brain's emergency response (see text). During and after major surgery, this system can switch to overdrive and exceed the body's normal tolerances of protection. This can lead to secondary injury, slower healing, poor outcomes, and in some cases, death. From a systems-based perspective surgical stress is levelled at: 1) the CNS, 2) left ventricular-arterial coupling, 3) microvascular blood flow distribution 4) the vascular endothelium/glycocalyx, and 5) the gut microbiome. A hypoperfused vascular endothelium can lead to glycocalyx shedding, systemic hyperinflammation, coagulopathy, platelet dysfunction, immune dysfunction, loss of vascular tone, reduced O2 supply and mitochondrial dysfunction. The hypothesis is that if central and local control of cardiac output and ventricular-arterial coupling can be maintained, the endothelium will not activate and tissue O2 delivery will not be compromised. A potential target therefore is to prevent the “awake’ anesthetised brain from switching into overdrive. This may be achieved by shifting the CNS's autonomic balance from a sympathetically-driven system to a more parasympathetic anti-inflammatory one and improve perioperative outcomes. Modified after Dobson [34].

References

    1. Weiser T.G., Regenbogen S.E., Thompson K.D., Haynes A.B., Lipsitz S.R., Berry W.R., Gawande A.A. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet. 2008;372(9633):139–144.
    1. Weiser T.G., Haynes A.B., Molina G., Lipsitz S.R., Esquivel M.M., Uribe-Leitz T., Fu R., Azad T., Chao T.E., Berry W.R., et al. Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes. Lancet. 2015:385.
    1. Maggio P.M., Taheri P.A. Perioperative issues: myocardial ischemia and protection--beta-blockade. Surg. Clin. 2005;85(6):1091–1102.
    1. Patel A.Y., Eagle K.A. Cardiac risk of noncardiac surgery. J. Am. Coll. Cardiol. 2015;66(19):2140–2148.
    1. Kristensen S.D., Knuuti J., Saraste A., Anker S., Bøtker H.E., Hert S.D., Ford I., Gonzalez-Juanatey J.R., Gorenek B., Heyndrickx G.R., et al. 2014 ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assessment and management. Eur. Heart J. 2014;35:2383–2431. Sept 14 (35)
    1. Devereaux P.J., Chan M.T., Alonso-Coello P. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. J. Am. Med. Assoc. 2012;307(21):2295–2304. al. e.
    1. Pearse R.M., Moreno R.P., Bauer P., Pelosi P., Metnitz P., Spies C., Vallet B., Vincent J.L., Hoeft A., Rhodes A. Mortality after surgery in Europe: a 7 day cohort study. Lancet. 2012;380(9847):1059–1065.
    1. Semel M.E., Lipsitz S.R., Funk L.M., Bader A.M., Weiser T.G., Gawande A.A. Rates and patterns of death after surgery in the United States, 1996 and 2006. Surgery. 2012;151(2):171–182.
    1. Xu J., Murphy S.L., Kochanek K.D., Arias E. Mortality in the United States, 2018. NCHS Data Brief. 2020;355:1–8.
    1. Eyob B., Boeck M.A., FaSiOen P., Cawich S., Kluger M.D. Ensuring safe surgical care across resource settings via surgical outcomes data & quality improvement initiatives. Int. J. Surg. 2019;72S:27–32.
    1. Roth G.A., Abate D., Abate K.H., Abay S.M., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., Abdela J., Abdelalim A., et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–1788.
    1. Farmer P.E., Kim J.Y. Surgery and global health: a view from beyond the OR. World J. Surg. 2008;32:533–536.
    1. Anderson O., Davis R., Hanna G.B., Vincent C.A. Surgical adverse events: a systematic review. Am. J. Surg. 2013;206(2):253–262.
    1. Healey M.A., Shackford S.R., Osler T.M., Rogers F.B., Burns E. Complications in surgical patients. Arch. Surg. 2002;137(5):611–618.
    1. Neale G., Woloshynowych M., Vincent C. Exploring the causes of adverse events in NHS hospital practice. J. R. Soc. Med. 2001;94:322–330.
    1. Leape L.L. Hospital readmissions following surgery. Turning complications into 'treasures'. J. Am. Med. Assoc. 2015;313(5):467–468.
    1. Dimick J.B., Ghaferi A.A. Hospital readmission as a quality measure in surgery. J. Am. Med. Assoc. 2015;313(5):512–513.
    1. Biccard B.M., Madiba T.E., Kluyts H.-L., Munlemvo D.M., Madzimbamuto F.D., Basenero A., Gordon C.S., Youssouf C., Rakotoarison S.R., Gobin V., et al. Perioperative patient outcomes in the African Surgical Outcomes Study: a 7-day prospective observational cohort study. Lancet. 2018;391(10130):1589–1598.
    1. Moore F.D. Bodily changes in surgical convelescence. 1.The normal sequence-observations and interpretations. Ann. Surg. 1953;137(3):289–315.
    1. Hall G.M. The anesthetic modification of the endocrine and metabolic response to surgery. Ann. R. Coll. Surg. Engl. 1985;67:25–29.
    1. Desborough J.P. The stress response to trauma and surgery. Br. J. Anaesth. 2000;85(1):109–117.
    1. Burton D., Nicholson G., Hall G. Endocrine and metabolic response to surgery. Continuing Ed Anesthesia Crit Care Pain. 2004;4(5):144–147.
    1. Giannoudis P.V., Dinopoulos H., Chalidis B., Hall G.M. Surgical stress response. Injury. 2006;37(Suppl 5):S3–S9.
    1. Menger M.D., Vollmar B. Surgical trauma: hyperinflammation versus immunosuppression? Langenbeck's Arch. Surg. 2004;389(6):475–484.
    1. Kohl B.A., Deutschman C.S. The inflammatory response to surgery and trauma. Curr. Opin. Crit. Care. 2006;12(4):325–332.
    1. Lin E., Calvano S.E., Lowry S.F. Inflammatory cytokines and cell response in surgery. Surgery. 2000;127(2):117–126.
    1. Lin E., Gletsu-Miller N. Surgical stress induces an amplified inflammatory response in patients with type 2 diabetes. ISRN Obesity. 2013;2013:1–5.
    1. Levy J.H., Goodnough L.T. How I use fibrinogen replacement therapy in acquired bleeding. Blood. 2015;125(9):1387–1393.
    1. Dobson G.P., Morris J.L., Davenport L.M., Letson H.L. Traumatic-induced coagulopathy as a systems failure: a new window into hemostasis. Semin. Thromb. Hemost. 2020;46(2):199–214.
    1. Curry N., Brohi K. Surgery in traumatic injury and perioperative considerations. Semin. Thromb. Hemost. 2020;46:73–82.
    1. Marik P.E., Flemmer M. The immune response to surgery and trauma: implications for treatment. J Trauma Acute Care Surg. 2012;73(4):801–808.
    1. Elenkov I.J., Chrousos G.P. Stress system – organization, physiology and immunoregulation. Neuroimmunomodulation. 2006;13:257–267.
    1. Dragoş D., Tănăsescu M.D. The effect of stress on the defense systems. J Med Life. 2010;3(1):10–18.
    1. Anderson D.J., Chen L.F., Sexton D.J., Kaye K.S. Complex surgical site infections and the devilish details of risk adjustment: important implications for public reporting. Infect. Control Hosp. Epidemiol. 2008;29(10):941–946.
    1. Delogu G., Moretti S., Famularo G., Santini G., Antonucci A., Marandola M., Signore L. Mitochondrial perturbations and oxidant stress in lymphocytes from patients undergoing surgery and general anesthesia. Arch. Surg. 2001;136(10):1190–1196.
    1. Shoemaker W.C., Beez M. Pathophysiology, monitoring, and therapy of shock with organ failure. Appl. Cardiopulm. Pathophysiol. 2010;14:5–15.
    1. Picard M., McManus M.J., Gray J.D., Nasca C., Moffat C., Kopinski P.K., Seifert E.L., McEwen B.S., Wallace D.C. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc. Natl. Acad. Sci. U. S. A. 2015;112(48):E6614–E6623.
    1. Thurairajah K., Briggs G.D., Balogh Z.J. The source of cell-free mitochondrial DNA in trauma and potential therapeutic strategies. Eur. J. Trauma Emerg. Surg. 2018;44(3):325–334.
    1. Choileain N.N., Redmond H.P. Cell response to surgery. Arch. Surg. 2006;141(11)
    1. Li L., Messina J.L. Acute insulin resistance following surgery. Trends Endocrinol. Metabol. 2009;20(9):429–435.
    1. Abdelmalak B.B., Bonilla A.M., Yang D., Chowdary H.T., Gottlieb A., Lyden S.P., Sessler D.I. The hyperglycemic response to major noncardiac surgery and the added effect of steroid administration in patients with and without diabetes. Anesth. Analg. 2013;116(5):1116–1122.
    1. Dobson G.P. Addressing the global burden of trauma in major surgery. Front Surg. 2015;2(Sept):43.
    1. Ueda A., Turner P.M.G. Stress response to laparoscopic liver resection. HPB (Oxford) 2004;6(4):247–252.
    1. Oka Y., Murata A., Nishijima J., Yasuda T., Hiraoka N., Ohmachi Y., Kitagawa K., Yasuda T., Toda H., Tanaka N., et al. Circulating interleukin 6 as a useful marker for predicting postoperative complications. Cytokine. 1992;4(4):298–304.
    1. Weinberg R.L., Eagle K.A. Perioperative statin use in noncardiac surgery: who and when? JAMA Intern Med. 2017;177(2):242–243.
    1. Blessberger H., Kammler J., Steinwender C. Perioperative use of β-blockers in cardiac and noncardiac surgery. J. Am. Med. Assoc. 2015;313(20):2070–2071.
    1. Hollmann C., Fernandes N.L., Biccard B.M. A systematic review of outcomes associated with withholding or continuing angiotensin-converting enzyme inhibitors and angiotensin receptor blockers before noncardiac surgery. Anesth. Analg. 2018;127(3):678–687.
    1. Devereaux P.J., Mrkobrada M., Sessler D.I., Leslie K., Alonso-Coello P., Kurz A., Villar J.C., Sigamani A., Biccard B.M., Meyhoff C.S., et al. Aspirin in patients undergoing noncardiac surgery. N. Engl. J. Med. 2014;370(16):1494–1503.
    1. Miller T.E., Myles P.S. Perioperative fluid therapy for major surgery. Anesthesiology. 2019;130(5):825–832.
    1. Cannon W.B. The emergency function of the adrenal medulla in pain and the major emotions. Am. J. Physiol. 1914;33(3):356–372.
    1. Dobson G.P., Letson H.L. Adenosine, lidocaine and Mg2+ (ALM): from cardiac surgery to combat casualty care: teaching old drugs new tricks. J Trauma and Acute Care Surgery. 2016;80(1):135–145.
    1. Cannon W.B. Organisation for physiological homeostasis. Physiol. Rev. 1929;9(3):399–431.
    1. Cannon W.B. W.W. Norton; 1932. The Wisdom of the Body.
    1. Selye H. The evolution of the stress concept. Am. Sci. 1973;61(6):692–699.
    1. Fink G. Eighty years of stress. Nature. 2016;539:175–176.
    1. Cuthbertson D.P. Symposium on 'surgery and nutrition'. Historical approach. Proc. Nutr. Soc. 1980;39(2):101–105.
    1. Goldstein D.S., Kopin I.J. Evolution of concepts of stress. Stress. 2007;10:109–120.
    1. Harris G.W. The hypothalamus and endocrine glands. Br. Med. Bull. 1950;6:345–350.
    1. O'Connor T.M., O'Halloran D.J., Shanahan F. The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia. Q. J. Med. 2000;93(6):323–333.
    1. Smith S.M., Vale W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006;8(4):383–395.
    1. Crile G.W. The kinetic theory of shock and its prevention through anoci-association {shockless operation) Lancet. 1913;185:7–16.
    1. Crile G. Nitrous oxide anaesthesia and a note on anoci-association, a new principle in operative surgery. Surg. Gynecol. Obstet. 1911;13:170–173.
    1. Nathoo N., Lautzenheiser F.K., Barnett G.H. George W. Crile, Ohio's first neurosurgeon, and his relationship with Harvey Cushing. J. Neurosurg. 2005;103(2):378–386.
    1. Cushing H. On the avoidance of shock in major amputations by cocainization of large nerve-trunks preliminary to their division. Ann. Surg. 1902;36:321–345.
    1. Soto-Ruiz K.M., Varon J. Resuscitation great. George W. Crile: a visionary mind in resuscitation. Resuscitation. 2009;80(1):6–8.
    1. Barman S.M. 2019 Ludwig Lecture: rhythms in sympathetic nerve activity are a key to understanding neural control of the cardiovascular system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020;318:R191–R205.
    1. Charkoudian N., Wallin B.G. Sympathetic neural activity to the cardiovascular system: integrator of systemic physiology and interindividual characteristics. Comp. Physiol. 2014;4:825–850.
    1. Herman J.P. Regulation of hypothalamo-pituitary-adrenocortical responses to stressors by the nucleus of the solitary tract/dorsal vagal complex. Cell. Mol. Neurobiol. 2018;38:25–35.
    1. Burford N.G., Webster N.A., Cruz-Topete D. Hypothalamic-pituitary-adrenal Axis modulation of glucocorticoids in the cardiovascular system. Int. J. Mol. Sci. 2017;18:2150.
    1. Turnbull A.V., Rivier C. Regulation of the HPA axis by cytokines. Brain Behav. Immun. 1995;9(4):253–275.
    1. Prete A., Yan Q., Al-Tarrah K., Akturk H.K., Prokop L.J., Alahdab F., Foster M.A., Lord J.M., Karavitaki N., Wass J.A., et al. The cortisol stress response induced by surgery: a systematic review and meta-analysis. Clin. Endocrinol. 2018;89(5):554–567.
    1. Coote J.H. Landmarks in understanding the central nervous controlof the cardiovascular system. Exp. Physiol. 2007;92(1):3–18.
    1. Thayer J.F. Vagal tone and the inflammatory reflex. Cleve. Clin. J. Med. 2009;76(Suppl 2):S23–S26.
    1. Tracey K.J. Reflex control of immunity. Nat. Rev. Immunol. 2009;9:418–428.
    1. Grill H.J., Hayes M.R. The nucleus tractus solitarius: a portal for visceral afferent signal processing, energy status assessment and integration of their combined effects on food intake. Int. J. Obes. 2009;33(Suppl 1):S11–S15.
    1. Pongratz G., Straub R.H. The sympathetic nervous response in inflammation. Arthritis Res. Ther. 2014;16:504.
    1. Morris J.L., Letson H.L., Gillman R., Hazratwala K., Wilkinson M., McEwen P., Dobson G.P. The CNS theory of osteoarthritis: opportunities beyond the joint. Semin. Arthritis Rheum. 2019;49:331–336.
    1. Olshansky B. Vagus nerve modulation of inflammation: cardiovascular implications. Trends Cardiovasc. Med. 2016;26:1–11.
    1. Coote J.H. The sympathetic innervation of the heart: important new insights. Auton. Neurosci. 2016;199:17–23.
    1. Gebber G.L., Zhong S., Barman S.M. The functional significance of the 10-Hz sympathetic rhythm: a hypothesis. Clin. Exp. Hypertens. 1995;17(1):181–195.
    1. Cannon W.B. D. Appleton and Co.; New York: 1923. Traumatic Shock.
    1. Devereaux P., Sessler D.I. Cardiac complications in patients undergoing major noncardiac surgery. N. Engl. J. Med. 2015;373:2258–2269.
    1. Suga H., Goto Y., Kawaguchi O., Hata K., Takasago T., Saeki T.W., Taylor T.W. In: Burkhoff D., Schaefer J., Schaffner K., Yue D.T., editors. vol. 88. Springer-Verlag; New York: 1993. Ventricular perspective on efficiency; pp. 43–65. (Myocardial Optimization and Efficiency, Evolutionary Aspects and Philosophy of Science Considerations). Suppl.2.
    1. London G.M. Role of arterial wall properties in the pathogenesis of systolic hypertension. Am. J. Hypertens. 2005;18(1 Pt 2):19S–22S.
    1. Kass D.A. Ventricular arterial stiffening: integrating the pathophysiology. Hypertension. 2005;46(1):185–193.
    1. Guarracino F., Baldassarri R., Pinsky M.R. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit. Care. 2013;17(2):213–220.
    1. Cholley B., Le Gall A. Ventriculo-arterial coupling: the comeback? J. Thorac. Dis. 2016;8(9):2287–2289.
    1. Dobson G.P., Arsyad A., Letson H.L. The adenosine hypothesis revisited: a possible role for arterial compliance and its implications to coronary perfusion. Front. Physiol. 2017;8(October) Article 824.
    1. Onorati F., Santini F., Dandale R., Ucci G., Pechlivanidis K., Menon T., Chiominto B., Mazzucco A., Faggian G. Polarizing" microplegia improves cardiac cycle efficiency after CABG for unstable angina. Int. J. Cardiol. 2013;167(6):2739–2746.
    1. Ky B., French B., May Khan A., Plappert T., Wang A., Chirinos J.A., Fang J.C., Sweitzer N.K., Borlaug B.A., Kass D.A., et al. Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure. J. Am. Coll. Cardiol. 2013;62(13):1165–1172.
    1. Axell R.G., Messer S.J., White P.A., McCabe C., Priest A., Statopoulou T., Drozdzynska M., Viscasillas J., Hinchy E.C., Hampton-Till J., et al. Ventriculo-arterial coupling detects occult RV dysfunction in chronic thromboembolic pulmonary vascular disease. Phys. Rep. 2017;5(7)
    1. Granfeldt A., Letson H.L., Hyldebrandt J.A., Wang E.R., Salcedo P.A., Nielson T.K., Tonnesen E., Vinten-Johansen J., Dobson G.P. Small-Volume 7.5% NaCl adenosine, lidocaine and Mg2+ has multiple benefits during hypotensive and blood resuscitation in the pig following severe blood loss: rat to Pig Translation. Crit. Care Med. 2014;42(5):e329–e344.
    1. Mayer Ea K.T., Gupta A. Gut/brain axis and the microbiota. J. Clin. Invest. 2015;125(3):926–938.
    1. Tillisch K. The effects of gut microbiota on CNS function in humans. Gut Microb. 2014;5(3):404–410.
    1. Dobson G.P., Letson H.L., Biros E., Morris J.L. Specific pathogen-free (SPF) animal status as a variable in biomedical research: have we come full circle? EBioMedicine (Lancet) 2019;41(March):42–43.
    1. Letson H.L., Morris J.L., Biros E., Dobson G.P. Conventional and specific-pathogen free rats respond differently to anesthesia and surgical trauma. Sci. Rep. 2019;9(1):9399.
    1. Lederer A.K., Pisarski P., Kousoulas L., Fichtner-Feigl S., Hess C., Huber R. Postoperative changes of the microbiome: are surgical complications related to the gut flora? A systematic review. BMC Surg. 2017;17(1):125.
    1. Riedel B., Rafat N., Browne K., Burbury K., Schier R. Perioperative implications of vascular endothelial dysfunction: current understanding of this critical sensor-effector organ. Current Anesthesiology Reports. 2013;3(3):151–161.
    1. Aird W.C. Spatial and temporal dynamics of the endothelium. J. Thromb. Haemostasis. 2005;3(7):1392–1406.
    1. Huang M.L., Godula K. Nanoscale materials for probing the biological functions of the glycocalyx. Glycobiology. 2016;26(8):797–803.
    1. Astapenko D., Benes J., Pouska J., Lehmann C., Islam S., Cerny V. Endothelial glycocalyx in acute care surgery - what anaesthesiologists need to know for clinical practice. BMC Anesthesiol. 2019;19(1):238.
    1. Ekeloef S., Larsen M.H., Schou-Pedersen A.M., Lykkesfeldt J., Rosenberg J., Gogenur I. Endothelial dysfunction in the early postoperative period after major colon cancer surgery. Br. J. Anaesth. 2017;118(2):200–206.
    1. Song J.W., Goligorsky M.S. Perioperative implication of the endothelial glycocalyx. Korean J Anesthesiol. 2018;71(2):92–102.
    1. Luft J.H. The structure and properties of the cell surface coat. Int. Rev. Cytol. 1976;45:291–382.
    1. Zeng Y., Tarbell J.M. The adaptive remodeling of endothelial glycocalyx in response to fluid shear stress. PloS One. 2014;9(1)
    1. Naumann D.N., Hazeldine J., Davies D.J., Bishop J., Midwinter M.J., Belli A., Harrison P., Lord J.M. Endotheliopathy of trauma is an on-scene phenomenon, and is associated with multiple organ dysfunction syndrome: a prospective observational study. Shock. 2018;49(4):420–428.
    1. Torres Filho I.P., Torres L.N., Salgado C., Dubick M.A. Novel adjunct drugs reverse endothelial glycocalyx damage after hemorrhagic shock in rats. Shock. 2017;48(5):583–589.
    1. Cherry A.D. Mitochondrial dysfunction in cardiac surgery. Anesthesiol. Clin. 2019;37(4):769–785.
    1. Cap A.P., Hunt B. Acute traumatic coagulopathy. Curr. Opin. Crit. Care. 2014;20(6):638–645.
    1. Boudreau L.H., Duchez A.C., Cloutier N., Soulet D., Martin N., Bollinger J., Pare A., Rousseau M., Naika G.S., Levesque T., et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014;124(14):2173–2183.
    1. Hauser C.J., Otterbein L.E. Danger signals from mitochondrial DAMPS in trauma and post-injury sepsis. Eur. J. Trauma Emerg. Surg. 2018;44(3):317–324.
    1. Berthelsen P.G. On the quest for stress-free surgical operations. Acta Anaesthesiol. Scand. 2015;59 246–24.
    1. Letson H.L., Dobson G.P. 3.0% NaCl Adenosine, Lidocaine, Mg2+ (ALM) bolus and 4 hours ‘drip’ infusion reduces non-compressible hemorrhage by 60% in a rat model. J Trauma Acute Care Surg. 2017;82(6):1063–1072.
    1. Letson H.L., Morris J.L., Biros E., Dobson G.P. ALM fluid therapy leads to 72 hr survival after hemorrhagic shock: a model for studying differential gene expression and extending biological time. J Trauma Acute Care Surg. 2019;87(3):606–613.
    1. Letson H.L., Granfeldt A., Jensen T.H., Mattson T.H., Dobson G.P. ALM supports a high flow, hypotensive, vasodilatory state with improved O2 delivery and cerebral protection in a pig model of non-compressible hemorrhage. J. Surg. Res. 2020;253(Sept):127–138.
    1. Davenport L., Letson H.L., Dobson G.P. Immune-inflammatory activation after a single laparotomy in a rat model: effect of adenosine, lidocaine and Mg2+ infusion to dampen the stress response. Innate Immun. 2017;23(5):482–494.
    1. Downing N.S., Shah N.D., Aminawung J.A., Pease A.M., Zeitoun J.D., Krumholz H.M., Ross J.S. Postmarket safety events among novel therapeutics approved by the US food and drug administration between 2001 and 2010. J. Am. Med. Assoc. 2017;317(18):1854–1863.
    1. Botto F., Alonso-Coello P., Chan M.T., Villar J.C., Xavier D., Srinathan S. Myocardial injury after noncardiac surgery: a large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology. 2014;120(3):564–578.
    1. Sessler D.I., Devereaux P. Perioperative troponin screening. Anesth. Analg. 2016;123(2):359–360.
    1. Price C.C., Garvan C.W., Monk T.G. Type and severity of cognitive decline in older adults after noncardiac surgery. Anesthesiology. 2008;108(1):8–17.
    1. Mrkobrada M., Chan M.T.V., Cowan D., Campbell D., Wang C.Y., Torres D., Malaga G., Sanders R.D., Sharma M., Brown C., et al. Perioperative covert stroke in patients undergoing non-cardiac surgery (NeuroVISION): a prospective cohort study. Lancet. 2019;394(10203):1022–1029.
    1. Vaara S.T., Bellomo R. Postoperative renal dysfunction after noncardiac surgery. Curr. Opin. Crit. Care. 2017;23(5):440–446.
    1. Kelkar K.V. Post-operative pulmonary complications after non-cardiothoracic surgery. Indian J. Anaesth. 2015;59(9):599–605.
    1. Kheterpal S., Tremper K.K., Englesbe M.J., O'Reilly M., Shanks A.M., Fetterman D.M., Rosenberg A.L., Swartz R.D. Predictors of postoperative acute renal failure after noncardiac surgery in patients with previously normal renal function. Anesthesiology. 2007;107:892–902.
    1. Danelich I.M., Lose J.M., Wright S.S., Asirvatham S.J., Ballinger B.A., Larson D.W., Lovely J.K. Practical management of postoperative atrial fibrillation after noncardiac surgery. J. Am. Coll. Surg. 2014;219(4):831–841.
    1. Torrance H.D., Pearse R.M., O'Dwyer M.J. Does major surgery induce immune suppression and increase the risk of postoperative infection? Curr. Opin. Anaesthesiol. 2016;29(3):376–383.

Source: PubMed

3
Subscribe