Physical Activity and Diet Shape the Immune System during Aging

Christopher Weyh, Karsten Krüger, Barbara Strasser, Christopher Weyh, Karsten Krüger, Barbara Strasser

Abstract

With increasing age, the immune system undergoes a remodeling process, termed immunosenescence, which is accompanied by considerable shifts in leukocyte subpopulations and a decline in various immune cell functions. Clinically, immunosenescence is characterized by increased susceptibility to infections, a more frequent reactivation of latent viruses, decreased vaccine efficacy, and an increased prevalence of autoimmunity and cancer. Physiologically, the immune system has some adaptive strategies to cope with aging, while in some settings, maladaptive responses aggravate the speed of aging and morbidity. While a lack of physical activity, decreased muscle mass, and poor nutritional status facilitate immunosenescence and inflammaging, lifestyle factors such as exercise and dietary habits affect immune aging positively. This review will discuss the relevance and mechanisms of immunoprotection through physical activity and specific exercise interventions. In the second part, we will focus on the effect of dietary interventions through the supplementation of the essential amino acid tryptophan, n-3 polyunsaturated fatty acids, and probiotics (with a special focus on the kynurenine pathway).

Keywords: aging; exercise; immunosenescence; inflammaging; kynurenine pathway; nutrition.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Immune changes in the innate and adaptive immune system during aging in inactive individuals and in response to a physically active lifestyle.
Figure 2
Figure 2
Aging-associated increases in indoleamine 2,3-dioxygenase (IDO). The process of aging involves proinflammatory pathways, in which the formation of Th1-type cytokine interferon-γ (IFN-γ) is of the utmost relevance. IFN-γ stimulates several enzymes, including indoleamine 2,3-dioxygenase-1 (IDO), which degrades tryptophan into kynurenine, an integral defense mechanism in the cell-mediated immune response. In addition to its role in innate immunity, the kynurenine pathway also plays a role in the regulation of the immune response by slowing down T-cell proliferation. Some tryptophan catabolites have been shown to be involved in the feedback inhibition of T-cell activation via regulatory T-cells, and thus immunosuppression. A supply of certain nutrients and bioactive compounds (such as antioxidants, n-3 PUFAs, or probiotics) can suppress (“−”) IDO activity and slow down Th1-type immune activation cascades. On the other hand, physical exercise stimulates the (“+”) induction of IDO, which is associated with an accelerated tryptophan breakdown and an increased kynurenine/tryptophan ratio [76]. Kynurenine metabolites can affect the brain and several other organs in peripheral tissues, where they induce local and systemic adaptations (see the main text for a description) [67]. Therefore, it is likely that kynurenine and its metabolites may contribute to the mediation of the health benefits of exercise and nutritional supplements.

References

    1. Jin K., Simpkins J.W., Ji X., Leis M., Stambler I. The Critical Need to Promote Research of Aging and Aging-related Diseases to Improve Health and Longevity of the Elderly Population. Aging Dis. 2015;6:1–5. doi: 10.14336/AD.2014.1210.
    1. Lopez-Otin C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039.
    1. Franceschi C., Bonafè M., Valensin S., Olivieri F., De Luca M., Ottaviani E., De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000;908:244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x.
    1. Dugan H.L., Henry C., Wilson P.C. Aging and influenza vaccine-induced immunity. Cell. Immunol. 2019;348:103998. doi: 10.1016/j.cellimm.2019.103998.
    1. Batatinha H.A.P., Rosa Neto J.C., Krüger K. Inflammatory features of obesity and smoke exposure and the immunologic effects of exercise. Exerc. Immunol. Rev. 2019;25:96–111.
    1. Pence B.D., Yarbro J.R. Aging impairs mitochondrial respiratory capacity in classical monocytes. Exp. Gerontol. 2018;108:112–117. doi: 10.1016/j.exger.2018.04.008.
    1. Alack K., Pilat C., Krüger K. Current knowledge and new challenges in exercise immunology. Immunology. 2019;70:250–260. doi: 10.5960/dzsm.2019.391.
    1. Cho K.Y., Miyoshi H., Kuroda S., Yasuda H., Kamiyama K., Nakagawara J., Takigami M., Kondo T., Atsumi T. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J. Stroke Cerebrovasc. Dis. 2013;22:910–918. doi: 10.1016/j.jstrokecerebrovasdis.2012.11.020.
    1. Fauriat C., Long E.O., Ljunggren H.-G., Bryceson Y.T. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010;115:2167–2176. doi: 10.1182/blood-2009-08-238469.
    1. Mocchegiani E., Malavolta M. NK and NKT cell functions in immunosenescence. Aging Cell. 2004;3:177–184. doi: 10.1111/j.1474-9728.2004.00107.x.
    1. Kasakovski D., Xu L., Li Y. T cell senescence and CAR-T cell exhaustion in hematological malignancies. J. Hematol. Oncol. 2018;11:91. doi: 10.1186/s13045-018-0629-x.
    1. Haynes L., Eaton S.M., Burns E.M., Randall T.D., Swain S.L. CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc. Natl. Acad. Sci. USA. 2003;100:15053–15058. doi: 10.1073/pnas.2433717100.
    1. Mou D., Espinosa J., Lo D.J., Kirk A.D. CD28 negative T cells: Is their loss our gain? Am. J. Transplant. 2014;14:2460–2466. doi: 10.1111/ajt.12937.
    1. Sansoni P., Vescovini R., Fagnoni F., Biasini C., Zanni F., Zanlari L., Telera A., Lucchini G., Passeri G., Monti D., et al. The immune system in extreme longevity. Exp. Gerontol. 2008;43:61–65. doi: 10.1016/j.exger.2007.06.008.
    1. Nathan C., Ding A. Nonresolving inflammation. Cell. 2010;140:871–882. doi: 10.1016/j.cell.2010.02.029.
    1. Giunta B., Fernandez F., Nikolic W.V., Obregon D., Rrapo E., Town T., Tan J. Inflammaging as a prodrome to Alzheimer’s disease. J. Neuroinflamm. 2008;5:51. doi: 10.1186/1742-2094-5-51.
    1. Xia S., Zhang X., Zheng S., Khanabdali R., Kalionis B., Wu J., Wan W., Tai X. An Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment. J. Immunol. Res. 2016;2016:8426874. doi: 10.1155/2016/8426874.
    1. Goronzy J.J., Weyand C.M. Successful and Maladaptive T cell Aging. Immunity. 2017;46:364–378. doi: 10.1016/j.immuni.2017.03.010.
    1. Simpson R.J., Lowder T.W., Spielmann G., Bigley A.B., LaVoy E.C., Kunz H. Exercise and the aging immune system. Aging Res. Rev. 2012;11:404–420. doi: 10.1016/j.arr.2012.03.003.
    1. Duggal N.A., Niemiro G., Harridge S.D.R., Simpson R.J., Lord J.M. Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat. Rev. Immunol. 2019;19:563–572. doi: 10.1038/s41577-019-0177-9.
    1. Nieman D.C., Henson D.A., Gusewitch G., Warren B.J., Dotson R.C., Butterworth D.E., Nehlsen-Cannarella S.L. Physical activity and immune function in elderly women. Med. Sci. Sports Exerc. 1993;25:823–831. doi: 10.1249/00005768-199307000-00011.
    1. Bartlett D.B., Fox O., McNulty C.L., Greenwood H.L., Murphy L., Sapey E., Goodman M., Crabtree N., Thøgersen-Ntoumani C., Fisher J.P., et al. Habitual physical activity is associated with the maintenance of neutrophil migratory dynamics in healthy older adults. Brain Behav. Immun. 2016;56:12–20. doi: 10.1016/j.bbi.2016.02.024.
    1. Timmerman K.L., Flynn M.G., Coen P.M., Markofski M.M., Pence B.D. Exercise training-induced lowering of inflammatory (CD14+CD16+) monocytes: A role in the anti-inflammatory influence of exercise? J. Leukoc. Biol. 2008;84:1271–1278. doi: 10.1189/jlb.0408244.
    1. Bartlett D.B., Willis L.H., Slentz C.A., Hoselton A., Kelly L., Huebner J.L., Kraus V.B., Moss J., Muehlbauer M.J., Spielmann G., et al. Ten weeks of high-intensity interval walk training is associated with reduced disease activity and improved innate immune function in older adults with rheumatoid arthritis: A pilot study. Arthritis Res. Ther. 2018;20:127. doi: 10.1186/s13075-018-1624-x.
    1. Shinkai S., Kohno H., Kimura K., Komura T., Asai H., Inai R., Oka K., Kurokawa Y., Shephard R.J. Physical activity and immune senescence in men. Med. Sci. Sports Exerc. 1995;11:1516–1526. doi: 10.1249/00005768-199511000-00008.
    1. Duggal N.A., Pollock R.D., Lazarus N.R., Harridge S., Lord J.M. Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood. Aging Cell. 2018;17:12750. doi: 10.1111/acel.12750.
    1. Spielmann G., McFarlin B.K., O’Connor D.P., Smith P.J.W., Pircher H., Simpson R.J. Aerobic fitness is associated with lower proportions of senescent blood T-cells in man. Brain Behav. Immun. 2011;25:1521–1529. doi: 10.1016/j.bbi.2011.07.226.
    1. Minuzzi L.G., Rama L., Chupel M.U., Rosado F., Valente dos Santos J., Simpson R.J., Martinho A., Paiva A., Teixeira A.M. Effects of lifelong training on senescence and mobilization of T lymphocytes in response to acute exercise. Exerc. Immunol. Rev. 2018;24:72–84.
    1. Simpson R.J., Guy K. Coupling aging immunity with a sedentary lifestyle: Has the damage already been done?—A mini-review. Gerontology. 2010;56:449–458. doi: 10.1159/000270905.
    1. Krüger K., Alack K., Ringseis R., Mink L., Pfeifer E., Schinle M., Gindler K., Kimmelmann L., Walscheid R., Muders K., et al. Apoptosis of T-Cell Subsets after Acute High-Intensity Interval Exercise. Med. Sci. Sports Exerc. 2016;48:2021–2029. doi: 10.1249/MSS.0000000000000979.
    1. Campbell P.T., Wener M.H., Sorensen B., Wood B., Chen-Levy Z., Potter J.D., McTiernan A., Ulrich C.M. Effect of exercise on in vitro immune function: A 12-month randomized, controlled trial among postmenopausal women. J. Appl. Physiol. 2008;104:1648–1655. doi: 10.1152/japplphysiol.01349.2007.
    1. Kapasi Z.F., Ouslander J.G., Schnelle J.F., Kutner M., Fahey J.L. Effects of an exercise intervention on immunologic parameters in frail elderly nursing home residents. J. Gerontol. A Biol. Sci. Med. Sci. 2003;58:636–643. doi: 10.1093/gerona/58.7.M636.
    1. Walsh N.P., Gleeson M., Shephard R.J., Gleeson M., Woods J.A., Bishop N.C., Fleshner M., Green C., Pederson B.K., Hoffman-Goetz L., et al. Position Statement Part one: Immune function and exercise. Exerc. Immunol. Rev. 2011;17:6–63.
    1. Philippe M., Gatterer H., Burtscher M., Weinberger B., Keller M., Grubeck-Loebenstein B., Fleckenstein J., Alack K., Krüger K. Concentric and Eccentric Endurance Exercise Reverse Hallmarks of T-Cell Senescence in Pre-diabetic Subjects. Front. Physiol. 2019;10:684. doi: 10.3389/fphys.2019.00684.
    1. Flynn M.G., Fahlman M., Braun W.A., Lambert C.P., Bouillon L.E., Brolinson P.G., Armstrong C.W. Effects of resistance training on selected indexes of immune function in elderly women. J. Appl. Physiol. 1999;86:1905–1913. doi: 10.1152/jappl.1999.86.6.1905.
    1. Fairey A.S., Courneya K.S., Field C.J., Bell G.J., Jones L.W., Mackey J.R. Randomized controlled trial of exercise and blood immune function in postmenopausal breast cancer survivors. J. Appl. Physiol. 2005;98:1534–1540. doi: 10.1152/japplphysiol.00566.2004.
    1. Rada I., Deldicque L., Francaux M., Zbinden-Foncea H. Toll like receptor expression induced by exercise in obesity and metabolic syndrome: A systematic review. Exerc. Immunol. Rev. 2018;24:60–71.
    1. de Araújo A.L., Silva L.C., Fernandes J.R., Matias M.D., Boas L.S., Machado C.M., Garcez-Leme L.E., Benard G. Elderly men with moderate and intense training lifestyle present sustained higher antibody responses to influenza vaccine. Age. 2015;37:105. doi: 10.1007/s11357-015-9843-4.
    1. Kohut M.L., Arntson B.A., Lee W., Rozeboom K., Yoon K.-J., Cunnick J.E., McElhaney J. Moderate exercise improves antibody response to influenza immunization in older adults. Vaccine. 2004;22:2298–2306. doi: 10.1016/j.vaccine.2003.11.023.
    1. Wong G.C.L., Narang V., Lu Y., Camous X., Nyunt M.S.Z., Carre C., Tan C., Xian C.H., Chong J., Chua M., et al. Hallmarks of Improved Immunological Responses in the Vaccination of More Physically Active Elderly Females. Exerc. Immunol. Rev. 2019;25:20–33.
    1. Turner J.E., Brum P.C. Does Regular Exercise Counter T cell Immunosenescence Reducing the Risk of Developing Cancer and Promoting Successful Treatment of Malignancies? Oxid. Med. Cell. Longev. 2017;2017:4234765. doi: 10.1155/2017/4234765.
    1. Gleeson M., Bishop N.C., Stensel D.J., Lindley M.R., Mastana S.S., Nimmo M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011;11:607–615. doi: 10.1038/nri3041.
    1. Petersen A.M.W., Pedersen B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005;98:1154–1162. doi: 10.1152/japplphysiol.00164.2004.
    1. Colberg S.R., Sigal R.J., Fernhall B., Regensteiner J.G., Blissmer B.J., Rubin R.R., Chasan-Taber L., Albright A.L., Braun B. Exercise and type 2 diabetes: The American College of Sports Medicine and the American Diabetes Association: Joint position statement. Diabetes Care. 2010;33:e147–e167. doi: 10.2337/dc10-9990.
    1. Pedersen B.K. The anti-inflammatory effect of exercise: Its role in diabetes and cardiovascular disease control. Essays Biochem. 2006;42:105–117. doi: 10.1042/bse0420105.
    1. Parsons T.J., Sartini C., Welsh P., Sattar N., Ash S., Lennon L.T., Wannamethee S.G., Lee I.-M., Whincup P.H., Jefferis B.J. Physical Activity, Sedentary Behavior, and Inflammatory and Hemostatic Markers in Men. Med. Sci. Sports Exerc. 2017;49:459–465. doi: 10.1249/MSS.0000000000001113.
    1. Oliveira A.G., Araujo T.G., Carvalho B.M., Guadagnini D., Rocha G.Z., Bagarolli R.A., Carvalheira J.B.C., Saad M.J.A. Acute exercise induces a phenotypic switch in adipose tissue macrophage polarization in diet-induced obese rats. Obesity. 2013;21:2545–2556. doi: 10.1002/oby.20402.
    1. Collao N., Rada I., Francaux M., Deldicque L., Zbinden-Foncea H. Anti-Inflammatory Effect of Exercise Mediated by Toll-Like Receptor Regulation in Innate Immune Cells—A Review. Int. Rev. Immunol. 2019:1–14. doi: 10.1080/08830185.2019.1682569.
    1. Simpson R.J., McFarlin B.K., McSporran C., Spielmann G., ó Hartaigh B., Guy K. Toll-like receptor expression on classic and pro-inflammatory blood monocytes after acute exercise in humans. Brain Behav. Immun. 2009;23:232–239. doi: 10.1016/j.bbi.2008.09.013.
    1. Van Eden W., van der Zee R., Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat. Rev. Immunol. 2005;5:318–330. doi: 10.1038/nri1593.
    1. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010;11:373–384. doi: 10.1038/ni.1863.
    1. Jialal I., Kaur H. The Role of Toll-Like Receptors in Diabetes-Induced Inflammation: Implications for Vascular Complications. Curr. Diabetes Rep. 2012;12:172–179. doi: 10.1007/s11892-012-0258-7.
    1. Stewart L.K., Flynn M.G., Campbell W.W., Craig B.A., Robinson J.P., McFarlin B.K., Timmerman K.L., Coen P.M., Felker J., Talbert E. Influence of exercise training and age on CD14+ cell-surface expression of toll-like receptor 2 and 4. Brain Behav. Immun. 2005;19:389–397. doi: 10.1016/j.bbi.2005.04.003.
    1. Oliveira M., Gleeson M. The influence of prolonged cycling on monocyte Toll-like receptor 2 and 4 expression in healthy men. Eur. J. Appl. Physiol. 2010;109:251–257. doi: 10.1007/s00421-009-1350-9.
    1. Pedersen B.K., Febbraio M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2008;88:1379–1406. doi: 10.1152/physrev.90100.2007.
    1. Pedersen B.K., Febbraio M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012;8:457–465. doi: 10.1038/nrendo.2012.49.
    1. Steensberg A., Fischer C.P., Keller C., Møller K., Pedersen B.K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 2003;285:E433–E437. doi: 10.1152/ajpendo.00074.2003.
    1. Starkie R., Ostrowski S.R., Jauffred S., Febbraio M., Pedersen B.K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J. 2003;17:884–886. doi: 10.1096/fj.02-0670fje.
    1. Minuzzi L.G., Chupel M.U., Rama L., Rosado F., Muñoz V.R., Gaspar R.C., Kuga G.K., Furtado G.E., Pauli J.R., Teixeira A.M. Lifelong exercise practice and immunosenescence: Master athletes cytokine response to acute exercise. Cytokine. 2019;115:1–7. doi: 10.1016/j.cyto.2018.12.006.
    1. Rao R.R., Long J.Z., White J.P., Svensson K.J., Lou J., Lokurkar I., Jedrychowski M.P., Ruas J.L., Wrann C.D., Lo J.C., et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell. 2014;157:1279–1291. doi: 10.1016/j.cell.2014.03.065.
    1. Haugen F., Norheim F., Lian H., Wensaas A.J., Dueland S., Berg O., Funderud A., Skålhegg B.S., Raastad T., Drevon C.A. IL-7 is expressed and secreted by human skeletal muscle cells. Am. J. Physiol. Cell Physiol. 2010;298:C807–C816. doi: 10.1152/ajpcell.00094.2009.
    1. Rinnov A., Yfanti C., Nielsen S., Akerström T.C.A., Peijs L., Zankari A., Fischer C.P., Pedersen B.K. Endurance training enhances skeletal muscle interleukin-15 in human male subjects. Endocrine. 2014;45:271–278. doi: 10.1007/s12020-013-9969-z.
    1. de Oliveira D.S., Misse R.G., Lima F.R., Shinjo S.K. Physical exercise among patients with systemic autoimmune myopathies. Adv. Rheumatol. 2018;58:5. doi: 10.1186/s42358-018-0004-1.
    1. Jenkins T.A., Nguyen J.C., Polglaze K.E., Bertrand P.P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients. 2016;8:56. doi: 10.3390/nu8010056.
    1. Strasser B., Gostner J.M., Fuchs D. Mood, food, and cognition: Role of tryptophan and serotonin. Curr. Opin. Clin. Nutr. Metab. Care. 2016;19:55–61. doi: 10.1097/MCO.0000000000000237.
    1. Strasser B., Volaklis K., Fuchs D., Burtscher M. Role of dietary protein and muscular fitness on longevity and aging. Aging Dis. 2018;9:119–132. doi: 10.14336/AD.2017.0202.
    1. Cervenka I., Agudelo L.Z., Ruas J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357:eaaf9794. doi: 10.1126/science.aaf9794.
    1. Munn D.H., Mellor A.L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34:137–143. doi: 10.1016/j.it.2012.10.001.
    1. Liu J.J., Movassat J., Portha B. Emerging role for kynurenines in metabolic pathologies. Curr. Opin. Clin. Nutr. Metab. Care. 2019;22:82–90. doi: 10.1097/MCO.0000000000000529.
    1. Strasser B., Becker K., Fuchs D., Gostner J.M. Kynurenine pathway metabolism and immune activation: Peripheral measurements in psychiatric and co-morbid conditions. Neuropharmacology. 2017;112:286–296. doi: 10.1016/j.neuropharm.2016.02.030.
    1. Schwarcz R., Bruno J.P., Muchowski P.J., Wu H.Q. Kynurenines in the mammalian brain: When physiology meets pathology. Nat. Rev. Neurosci. 2012;13:465–477. doi: 10.1038/nrn3257.
    1. Agudelo L.Z., Femenía T., Orhan F., Porsmyr-Palmertz M., Goiny M., Martinez-Redondo V., Correia J.C., Izadi M., Bhat M., Schuppe-Koistinen I., et al. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell. 2014;159:33–45. doi: 10.1016/j.cell.2014.07.051.
    1. Fallarino F., Grohmann U., Vacca C., Bianchi R., Orabona C., Spreca A., Fioretti M.C., Puccetti P. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002;9:1069–1077. doi: 10.1038/sj.cdd.4401073.
    1. O’Mahony S.M., Clarke G., Borre Y.E., Dinan T.G., Cryan J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015;277:32–48. doi: 10.1016/j.bbr.2014.07.027.
    1. Cryan J.F., Dinan T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012;13:701–712. doi: 10.1038/nrn3346.
    1. Strasser B., Geiger D., Schauer M., Gatterer H., Burtscher M., Fuchs D. Effects of Exhaustive Aerobic Exercise on Tryptophan-Kynurenine Metabolism in Trained Athletes. PLoS ONE. 2016;11:e0153617. doi: 10.1371/journal.pone.0153617.
    1. Badawy A.A. Tryptophan availability for kynurenine pathway metabolism across the life span: Control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology. 2017;112:248–263. doi: 10.1016/j.neuropharm.2015.11.015.
    1. Strasser B., Geiger D., Schauer M., Gostner J.M., Gatterer H., Burtscher M., Fuchs D. Probiotic Supplements Beneficially Affect Tryptophan-Kynurenine Metabolism and Reduce the Incidence of Upper Respiratory Tract Infections in Trained Athletes: A Randomized, Double-Blinded, Placebo-Controlled Trial. Nutrients. 2016;8:752. doi: 10.3390/nu8110752.
    1. Metcalfe A.J., Koliamitra C., Javelle F., Bloch W., Zimmer P. Acute and chronic effects of exercise on the kynurenine pathway in humans—A brief review and future perspectives. Physiol. Behav. 2018;194:583–587. doi: 10.1016/j.physbeh.2018.07.015.
    1. Strasser B., Berger K., Fuchs D. Effects of a caloric restriction weight loss diet on tryptophan metabolism and inflammatory biomarkers in overweight adults. Eur. J. Nutr. 2015;54:101–107. doi: 10.1007/s00394-014-0690-3.
    1. Strasser B., Kohlboeck G., Hermanky M., Leitzmann M. Role of dietary protein and exercise on biomarkers of immune activation in older patients during hospitalization. Aging Clin. Exp. Res. 2019:1–5. doi: 10.1007/s40520-019-01461-7. [Epub ahead of print]
    1. Kramer I.F., Blokhuis T.J., Verdijk L.B., van Loon L.J.C., Poeze M. Perioperative nutritional supplementation and skeletal muscle mass in older hip-fracture patients. Nutr. Rev. 2019;77:254–266. doi: 10.1093/nutrit/nuy055.
    1. Palego L., Betti L., Rossi A., Giannaccini G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. J. Amino Acids. 2016;2016:8952520. doi: 10.1155/2016/8952520.
    1. Ogbechi J., Clanchy F.I., Huang Y.S., Topping L.M., Stone T.W., Williams R.O. IDO activation, inflammation and musculoskeletal disease. Exp. Gerontol. 2020;131:110820. doi: 10.1016/j.exger.2019.110820.
    1. Post A., Huberts M., Poppe E., Faassen M.V., Kema I.P., Vogels S., Geleijnse J.M., Westerhuis R., Ipema K.J.R., Bakker S.J.L., et al. Tryptophan Intake and Tryptophan Losses in Hemodialysis Patients: A Balance Study. Nutrients. 2019;11:2851. doi: 10.3390/nu11122851.
    1. Yu E., Ruiz-Canela M., Guasch-Ferré M., Zheng Y., Toledo E., Clish C.B., Salas-Salvadó J., Liang L., Wang D.D., Corella D., et al. Increases in Plasma Tryptophan Are Inversely Associated with Incident Cardiovascular Disease in the Prevención con Dieta Mediterránea (PREDIMED) Study. J. Nutr. 2017;147:314–322. doi: 10.3945/jn.116.241711.
    1. Schaap L.A., Pluijm S.M., Deeg D.J., Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am. J. Med. 2006;119:526–e9. doi: 10.1016/j.amjmed.2005.10.049.
    1. Degens H. Age-related skeletal muscle dysfunction: Causes and mechanisms. J. Musculoskelet. Neuronal Interact. 2007;7:246–252.
    1. Volaklis K.A., Halle M., Koenig W., Oberhoffer R., Grill E., Peters A., Strasser B., Heier M., Emeny R., Schulz H., et al. Association between muscular strength and inflammatory markers among elderly persons with cardiac disease: Results from the KORA-Age study. Clin. Res. Cardiol. 2015;104:982–989. doi: 10.1007/s00392-015-0867-7.
    1. Calder P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017;45:1105–1115. doi: 10.1042/BST20160474.
    1. Smith G.I., Julliand S., Reeds D.N., Sinacore D.R., Klein S., Mittendorfer B. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr. 2015;102:115–122. doi: 10.3945/ajcn.114.105833.
    1. Rodacki C.L., Rodacki A.L., Pereira G., Naliwaiko K., Coelho I., Pequito D., Fernandes L.C. Fish-oil supplementation enhances the effects of strength training in elderly women. Am. J. Clin. Nutr. 2012;95:428–436. doi: 10.3945/ajcn.111.021915.
    1. Cornish S.M., Myrie S.B., Bugera E.M., Chase J.E., Turczyn D., Pinder M. Omega-3 supplementation with resistance training does not improve body composition or lower biomarkers of inflammation more so than resistance training alone in older men. Nutr. Res. 2018;60:87–95. doi: 10.1016/j.nutres.2018.09.005.
    1. Strandberg E., Ponsot E., Piehl-Aulin K., Falk G., Kadi F. Resistance Training Alone or Combined With N-3 PUFA-Rich Diet in Older Women: Effects on Muscle Fiber Hypertrophy. J. Gerontol. A Biol. Sci. Med. Sci. 2019;74:489–494. doi: 10.1093/gerona/gly130.
    1. Karlsson T., Strand E., Dierkes J., Drevon C.A., Øyen J., Midttun Ø., Ueland P.M., Gudbrandsen O.A., Pedersen E.R., Nygård O. Associations between intake of fish and n-3 long-chain polyunsaturated fatty acids and plasma metabolites related to the kynurenine pathway in patients with coronary artery disease. Eur. J. Nutr. 2017;56:261–272. doi: 10.1007/s00394-015-1077-9.
    1. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010;8:1461.
    1. Xyda S.E., Vuckovic I., Petterson X.M., Dasari S., Lalia A.Z., Parvizi M., Macura S.I., Lanza I.R. Distinct influence of omega-3 fatty acids on the plasma metabolome of healthy older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2019 doi: 10.1093/gerona/glz141.
    1. Lalia A.Z., Dasari S., Robinson M.M., Abid H., Morse D.M., Klaus K.A., Lanza I.R. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging. 2017;9:1096–1129. doi: 10.18632/aging.101210.
    1. Stavropoulou E., Bezirtzoglou E. Human microbiota in aging and infection: A review. Crit. Rev. Food Sci. Nutr. 2019;59:537–545. doi: 10.1080/10408398.2017.1379469.
    1. Tilg H., Zmora N., Adolph T.E., Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 2020;20:40–54. doi: 10.1038/s41577-019-0198-4.
    1. Grosicki G.J., Fielding R.A., Lustgarten M.S. Gut Microbiota Contribute to Age-Related Changes in Skeletal Muscle Size, Composition, and Function: Biological Basis for a Gut-Muscle Axis. Calcif. Tissue Int. 2018;102:433–442. doi: 10.1007/s00223-017-0345-5.
    1. Boulangé C.L., Neves A.L., Chilloux J., Nicholson J.K., Dumas M.-E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8:42. doi: 10.1186/s13073-016-0303-2.
    1. Rinninella E., Cintoni M., Raoul P., Lopetuso L.R., Scaldaferri F., Pulcini G., Miggiano G.A.D., Gasbarrini A., Mele M.C. Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients. 2019;11:2393. doi: 10.3390/nu11102393.
    1. Clarke S.F., Murphy E.F., O’Sullivan O., Lucey A.J., Humphreys M., Hogan A., Hayes P., O’Reilly M., Jeffery I.B., Wood-Martin R., et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1913–1920. doi: 10.1136/gutjnl-2013-306541.
    1. Stekovic S., Hofer S.J., Tripolt N., Aon M.A., Royer P., Pein L., Stadler J.T., Pendl T., Prietl B., Url J., et al. Alternate Day Fasting Improves Physiological and Molecular Markers of Aging in Healthy, Non-obese Humans. Cell Metab. 2019;30:462–476. doi: 10.1016/j.cmet.2019.07.016.
    1. Kopf J.C., Suhr M.J., Clarke J., Eyun S.I., Riethoven J.M., Ramer-Tait A.E., Rose D.J. Role of whole grains versus fruits and vegetables in reducing subclinical inflammation and promoting gastrointestinal health in individuals affected by overweight and obesity: A randomized controlled trial. Nutr. J. 2018;17:72. doi: 10.1186/s12937-018-0381-7.
    1. Mardinoglu A., Wu H., Bjornson E., Zhang C., Hakkarainen A., Räsänen S.M., Lee S., Mancina R.M., Bergentall M., Pietiläinen K.H., et al. An Integrated Understanding of the Rapid Metabolic Benefits of a Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans. Cell Metab. 2018;27:559–571. doi: 10.1016/j.cmet.2018.01.005.
    1. Markova M., Pivovarova O., Hornemann S., Sucher S., Frahnow T., Wegner K., Machann J., Petzke K.J., Hierholzer J., Lichtinghagen R., et al. Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals with Type 2 Diabetes. Gastroenterology. 2017;152:571–585. doi: 10.1053/j.gastro.2016.10.007.
    1. Costantini L., Molinari R., Farinon B., Merendino N. Impact of Omega-3 Fatty Acids on the Gut Microbiota. Int. J. Mol. Sci. 2017;18:2645. doi: 10.3390/ijms18122645.
    1. Agudelo L.Z., Ferreira D.M.S., Cervenka I., Bryzgalova G., Dadvar S., Jannig P.R., Pettersson-Klein A.T., Lakshmikanth T., Sustarsic E.G., Porsmyr-Palmertz M., et al. Kynurenic Acid and Gpr35 Regulate Adipose Tissue Energy Homeostasis and Inflammation. Cell Metab. 2018;27:378–392. doi: 10.1016/j.cmet.2018.01.004.
    1. Wu D., Lewis E.D., Pae M., Meydani S.N. Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. Front. Immunol. 2019;9:3160. doi: 10.3389/fimmu.2018.03160.
    1. Walsh N.P. Nutrition and Athlete Immune Health: New Perspectives on an Old Paradigm. Sports Med. 2019;49:153–168. doi: 10.1007/s40279-019-01160-3.
    1. Hao Q., Dong B.R., Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst. Rev. 2015;2:CD006895. doi: 10.1002/14651858.CD006895.pub3.
    1. Parker E.A., Roy T., D’Adamo C.R., Wieland L.S. Probiotics and gastrointestinal conditions: An overview of evidence from the Cochrane Collaboration. Nutrition. 2018;45:125–134. doi: 10.1016/j.nut.2017.06.024.
    1. Jäger R., Mohr A.E., Carpenter K.C., Kerksick C.M., Purpura M., Moussa A., Townsend J.R., Lamprecht M., West N.P., Black K., et al. International Society of Sports Nutrition Position Stand: Probiotics. J. Int. Soc. Sports Nutr. 2019;16:62. doi: 10.1186/s12970-019-0329-0.
    1. Colbey C., Cox A.J., Pyne D.B., Zhang P., Cripps A.W., West N.P. Upper Respiratory Symptoms, Gut Health and Mucosal Immunity in Athletes. Sports Med. 2018;48:65–77. doi: 10.1007/s40279-017-0846-4.
    1. Gao J., Xu K., Liu H., Liu G., Bai M., Peng C., Li T., Yin Y. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front. Cell. Infect. Microbiol. 2018;8:13. doi: 10.3389/fcimb.2018.00013.
    1. Maldonado Galdeano C., Cazorla S.I., Lemme Dumit J.M., Vélez E., Perdigón G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann. Nutr. Metab. 2019;74:115–124. doi: 10.1159/000496426.
    1. De LeBlanc A.D., Chaves S., Carmuega E., Weill R., Antoine J., Perdigón G. Effect of long-term continuous consumption of fermented milk containing probiotic bacteria on mucosal immunity and the activity of peritoneal macrophages. Immunobiology. 2008;213:97–108. doi: 10.1016/j.imbio.2007.07.002.
    1. Fukushima Y., Miyaguchi S., Yamano T., Kaburagi T., Iino H., Ushida K., Sato K. Improvement of nutritional status and incidence of infection in hospitalised, enterally fed elderly by feeding of fermented milk containing probiotic Lactobacillus johnsonii La1 (NCC533) Br. J. Nutr. 2007;98:969–977. doi: 10.1017/S0007114507764723.
    1. Guillemard E., Tondu F., Lacoin F., Schrezenmeir J. Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br. J. Nutr. 2010;103:58–68. doi: 10.1017/S0007114509991395.
    1. Turchet P., Laurenzano M., Auboiron S., Antoine J.M. Effect of fermented milk containing the probiotic Lactobacillus casei DN-114001 on winter infections in free-living elderly subjects: A randomised, controlled pilot study. J. Nutr. Health Aging. 2003;7:75–77.
    1. Mañé J., Pedrosa E., Lorén V., Gassull M.A., Espadaler J., Cuñé J., Audivert S., Bonachera M.A., Cabré E. A mixture of Lactobacillus plantarum CECT 7315 and CECT 7316 enhances systemic immunity in elderly subjects. A dose-response, double-blind, placebo-controlled, randomized pilot trial. Nutr. Hosp. 2011;26:228–235.
    1. Ticinesi A., Nouvenne A., Cerundolo N., Catania P., Prati B., Tana C., Meschi T. Gut Microbiota, Muscle Mass and Function in Aging: A Focus on Physical Frailty and Sarcopenia. Nutrients. 2019;11:1633. doi: 10.3390/nu11071633.

Source: PubMed

3
Subscribe