Analyzing the Potential Biological Determinants of Autism Spectrum Disorder: From Neuroinflammation to the Kynurenine Pathway

Rosa Savino, Marco Carotenuto, Anna Nunzia Polito, Sofia Di Noia, Marzia Albenzio, Alessia Scarinci, Antonio Ambrosi, Francesco Sessa, Nicola Tartaglia, Giovanni Messina, Rosa Savino, Marco Carotenuto, Anna Nunzia Polito, Sofia Di Noia, Marzia Albenzio, Alessia Scarinci, Antonio Ambrosi, Francesco Sessa, Nicola Tartaglia, Giovanni Messina

Abstract

Autism Spectrum Disorder (ASD) etiopathogenesis is still unclear and no effective preventive and treatment measures have been identified. Research has focused on the potential role of neuroinflammation and the Kynurenine pathway; here we review the nature of these interactions. Pre-natal or neonatal infections would induce microglial activation, with secondary consequences on behavior, cognition and neurotransmitter networks. Peripherally, higher levels of pro-inflammatory cytokines and anti-brain antibodies have been identified. Increased frequency of autoimmune diseases, allergies, and recurring infections have been demonstrated both in autistic patients and in their relatives. Genetic studies have also identified some important polymorphisms in chromosome loci related to the human leukocyte antigen (HLA) system. The persistence of immune-inflammatory deregulation would lead to mitochondrial dysfunction and oxidative stress, creating a self-sustaining cytotoxic loop. Chronic inflammation activates the Kynurenine pathway with an increase in neurotoxic metabolites and excitotoxicity, causing long-term changes in the glutamatergic system, trophic support and synaptic function. Furthermore, overactivation of the Kynurenine branch induces depletion of melatonin and serotonin, worsening ASD symptoms. Thus, in genetically predisposed subjects, aberrant neurodevelopment may derive from a complex interplay between inflammatory processes, mitochondrial dysfunction, oxidative stress and Kynurenine pathway overexpression. To validate this hypothesis a new translational research approach is necessary.

Keywords: KYNA (kynurenic acid); Kynurenine pathway; QUIN (quinolinic acid); autism spectrum disorder; immune deregulation; microglia; mitochondrial disorder; neuroinflammation; oxidative stress; tryptophan catabolites.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
KYNUNERINE PATHWAY: indole-2,3-dioxygenase (IDO) and Tryptophan-2,3-dioxygenase (TDO) lead to Kynurenine synthesis from Tryptophan (TRP), which can be metabolized via two distinct pathways: the neuroprotective kynurenic acid (KYNA) branch via the KYN amino transferase enzyme (KAT), and the neurotoxic branch leading to the production of 3-hydroxy-L-KYN (3-HK) and quinolinic acid (QUIN).
Figure 2
Figure 2
Inflammation significantly shifts tryptophan metabolism to Kynurenine production by activation of activate indole-2,3-dioxygenase (IDO) and Kynurenine monooxygenase (KMO) microglial enzymes. Quinolinic acid (QUIN) is involved in neurotoxicity since it activates N-methyl-D-aspartate (NMDA) receptors, increases neuronal activity, and elevates intracellular calcium concentrations. This leads to the consequent impairment of cytoskeleton homeostasis, decrease of mitochondrial function and finally cell death induction. As an NMDA agonist, it increases neuronal glutamate release, inhibits its uptake by astrocytes, and inhibits astroglial glutamine synthetase leading to excessive microenvironmental glutamate concentrations. In addition, QUIN contributes to free radical generation and oxidative stress.
Figure 3
Figure 3
Kynurenine (KP) as a crossroad between disrupted routes and pathophysiological conditions that are Autism Spectrum Disorder (ASD) related.
Figure 4
Figure 4
Therapeutic targeting of KP.

References

    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. 5th ed. American Psychiatric Association; Washington, DC, USA: 2013.
    1. Baio J., Wiggins L., Christensen D.L., Maenner M.J., Daniels J., Warren Z., Kurzius-Spencer M., Zahorodny W., Robinson Rosenberg C., White T., et al. Prevalence of Autism Spectrum Disorder among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR Surveill. Summ. 2018;67:1–23. doi: 10.15585/mmwr.ss6706a1.
    1. Zhou J., Park C.Y., Theesfeld C.L., Wong A.K., Yuan Y., Scheckel C., Fak J.J., Funk J., Yao K., Tajima Y., et al. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat. Genet. 2019;51:973–980. doi: 10.1038/s41588-019-0420-0.
    1. Chang J., Gilman S.R., Chiang A.H., Sanders S.J., Vitkup D. Genotype to phenotype relationships in autism spectrum disorders. Nat. Neurosci. 2015;18:191–198. doi: 10.1038/nn.3907.
    1. Xu N., Li X., Zhong Y. Inflammatory Cytokines: Potential Biomarkers of Immunologic Dysfunction in Autism Spectrum Disorders. Mediat. Inflamm. 2015;2015:1–10. doi: 10.1155/2015/531518.
    1. Nakashima S., Nacher J.C., Song J., Akutsu T. An Overview of Bioinformatics Methods for Analyzing Autism Spectrum Disorders. CPD. 2020;25:4552–4559. doi: 10.2174/1381612825666191111154837.
    1. Chin E.W.M., Goh E.L.K. Behavioral Characterization of MeCP2 Dysfunction-Associated Rett Syndrome and Neuropsychiatric Disorders. In: Kobeissy F.H., editor. Psychiatric Disorders. Volume 2011. Springer; New York, NY, USA: 2019. pp. 593–605.
    1. Wang Z., Hong Y., Zou L., Zhong R., Zhu B., Shen N., Chen W., Lou J., Ke J., Zhang T., et al. Reelin gene variants and risk of autism spectrum disorders: An integrated meta-analysis. Am. J. Med. Genet. 2014;165:192–200. doi: 10.1002/ajmg.b.32222.
    1. Fernandes D., Santos S.D., Coutinho E., Whitt J.L., Beltrão N., Rondão T., Leite M.I., Buckley C., Lee H.-K., Carvalho A.L. Disrupted AMPA Receptor Function upon Genetic- or Antibody-Mediated Loss of Autism-Associated CASPR2. Cereb. Cortex. 2019;29:4919–4931. doi: 10.1093/cercor/bhz032.
    1. Canali G., Garcia M., Hivert B., Pinatel D., Goullancourt A., Oguievetskaia K., Saint-Martin M., Girault J.-A., Faivre-Sarrailh C., Goutebroze L. Genetic variants in autism-related CNTNAP2 impair axonal growth of cortical neurons. Human Mol. Genet. 2018;27:1941–1954. doi: 10.1093/hmg/ddy102.
    1. Taurines R., Schwenck C., Westerwald E., Sachse M., Siniatchkin M., Freitag C. ADHD and autism: Differential diagnosis or overlapping traits? A selective review. ADHD Atten. Deficit Hyperact. Disord. 2012;4:115–139. doi: 10.1007/s12402-012-0086-2.
    1. Wang C., Geng H., Liu W., Zhang G. Prenatal, perinatal, and postnatal factors associated with autism: A meta-analysis. Medicine. 2017;96:e6696. doi: 10.1097/MD.0000000000006696.
    1. Bauman M.L., Kemper T.L. Neuroanatomic observations of the brain in autism: A review and future directions. Int. J. Dev. Neurosci. 2005;23:183–187. doi: 10.1016/j.ijdevneu.2004.09.006.
    1. Rice D., Barone S. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ. Health Perspect. 2000;108 Suppl 3:511–533. doi: 10.1289/ehp.00108s3511.
    1. Hahamy A., Behrmann M., Malach R. The idiosyncratic brain: Distortion of spontaneous connectivity patterns in autism spectrum disorder. Nat. Neurosci. 2015;18:302–309. doi: 10.1038/nn.3919.
    1. Lacivita E., Perrone R., Margari L., Leopoldo M. Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. J. Med. Chem. 2017;60:9114–9141. doi: 10.1021/acs.jmedchem.7b00965.
    1. Hong H., Kim B.S., Im H.-I. Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders. Int. Neurourol. J. 2016;20:S2–7. doi: 10.5213/inj.1632604.302.
    1. Bryn V., Verkerk R., Skjeldal O.H., Saugstad O.D., Ormstad H. Kynurenine Pathway in Autism Spectrum Disorders in Children. Neuropsychobiology. 2017;76:82–88. doi: 10.1159/000488157.
    1. Wang Q.M., Luo A.Z., Kong X. Microglial Activation in Autism. NAJ Med. Sci. 2014;7:118–122. doi: 10.7156/najms.2014.0703118.
    1. Perry V.H., Teeling J. Microglia and macrophages of the central nervous system: The contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin. Immunopathol. 2013;35:601–612. doi: 10.1007/s00281-013-0382-8.
    1. Vezzani A., Granata T. Brain inflammation in epilepsy: Experimental and clinical evidence. Epilepsia. 2005;46:1724–1743. doi: 10.1111/j.1528-1167.2005.00298.x.
    1. Bergink V., Gibney S.M., Drexhage H.A. Autoimmunity, inflammation, and psychosis: A search for peripheral markers. Biol. Psychiatry. 2014;75:324–331. doi: 10.1016/j.biopsych.2013.09.037.
    1. Albenzio M., Santillo A., Ciliberti M.G., Figliola L., Caroprese M., Polito A.N., Messina G. Milk nutrition and childhood epilepsy: An ex vivo study on cytokines and oxidative stress in response to milk protein fractions. J. Dairy Sci. 2018;101:4842–4852. doi: 10.3168/jds.2017-13104.
    1. Monji A., Kato T.A., Mizoguchi Y., Horikawa H., Seki Y., Kasai M., Yamauchi Y., Yamada S., Kanba S. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2013;42:115–121. doi: 10.1016/j.pnpbp.2011.12.002.
    1. Takano T. Role of Microglia in Autism: Recent Advances. Dev. Neurosci. 2015;37:195–202. doi: 10.1159/000398791.
    1. Morgan J.T., Chana G., Pardo C.A., Achim C., Semendeferi K., Buckwalter J., Courchesne E., Everall I.P. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry. 2010;68:368–376. doi: 10.1016/j.biopsych.2010.05.024.
    1. Vargas D.L., Nascimbene C., Krishnan C., Zimmerman A.W., Pardo C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 2005;57:67–81. doi: 10.1002/ana.20315.
    1. Tetreault N.A., Hakeem A.Y., Jiang S., Williams B.A., Allman E., Wold B.J., Allman J.M. Microglia in the cerebral cortex in autism. J. Autism Dev. Disord. 2012;42:2569–2584. doi: 10.1007/s10803-012-1513-0.
    1. Suzuki K., Sugihara G., Ouchi Y., Nakamura K., Futatsubashi M., Takebayashi K., Yoshihara Y., Omata K., Matsumoto K., Tsuchiya K.J., et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry. 2013;70:49–58. doi: 10.1001/jamapsychiatry.2013.272.
    1. Rodriguez J.I., Kern J.K. Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron Glia Biol. 2011;7:205–213. doi: 10.1017/S1740925X12000142.
    1. Varghese M., Keshav N., Jacot-Descombes S., Warda T., Wicinski B., Dickstein D.L., Harony-Nicolas H., De Rubeis S., Drapeau E., Buxbaum J.D., et al. Autism spectrum disorder: Neuropathology and animal models. Acta Neuropathol. 2017;134:537–566. doi: 10.1007/s00401-017-1736-4.
    1. Morgan J.T., Barger N., Amaral D.G., Schumann C.M. Stereological Study of Amygdala Glial Populations in Adolescents and Adults with Autism Spectrum Disorder. PLoS ONE. 2014;9:e110356. doi: 10.1371/journal.pone.0110356.
    1. Shigemori T., Sakai A., Takumi T., Itoh Y., Suzuki H. Altered Microglia in the Amygdala Are Involved in Anxiety-related Behaviors of a Copy Number Variation Mouse Model of Autism. J. Nippon Med. Sch. 2015;82:92–99. doi: 10.1272/jnms.82.92.
    1. Benros M.E., Nielsen P.R., Nordentoft M., Eaton W.W., Dalton S.O., Mortensen P.B. Autoimmune Diseases and Severe Infections as Risk Factors for Schizophrenia: A 30-Year Population-Based Register Study. AJP. 2011;168:1303–1310. doi: 10.1176/appi.ajp.2011.11030516.
    1. Gentile I., Zappulo E., Militerni R., Pascotto A., Borgia G., Bravaccio C. Etiopathogenesis of autism spectrum disorders: Fitting the pieces of the puzzle together. Med. Hypotheses. 2013;81:26–35. doi: 10.1016/j.mehy.2013.04.002.
    1. Ashwood P., Krakowiak P., Hertz-Picciotto I., Hansen R., Pessah I., Van de Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav. Immun. 2011;25:40–45. doi: 10.1016/j.bbi.2010.08.003.
    1. Abdallah M.W., Larsen N., Grove J., Bonefeld-Jørgensen E.C., Nørgaard-Pedersen B., Hougaard D.M., Mortensen E.L. Neonatal chemokine levels and risk of autism spectrum disorders: Findings from a Danish historic birth cohort follow-up study. Cytokine. 2013;61:370–376. doi: 10.1016/j.cyto.2012.11.015.
    1. Müller N., Weidinger E., Leitner B., Schwarz M.J. The role of inflammation in schizophrenia. Front. Neurosci. 2015;9:372. doi: 10.3389/fnins.2015.00372.
    1. Anderson G., Maes M. Interactions of Tryptophan and Its Catabolites with Melatonin and the Alpha 7 Nicotinic Receptor in Central Nervous System and Psychiatric Disorders: Role of the Aryl Hydrocarbon Receptor and Direct Mitochondria Regulation. Int. J. Tryptophan Res. 2017;10 doi: 10.1177/1178646917691738.
    1. Comi A.M., Zimmerman A.W., Frye V.H., Law P.A., Peeden J.N. Familial Clustering of Autoimmune Disorders and Evaluation of Medical Risk Factors in Autism. J. Child. Neurol. 1999;14:388–394. doi: 10.1177/088307389901400608.
    1. Hughes H.K., Mills Ko E., Rose D., Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front. Cell. Neurosci. 2018;12:405. doi: 10.3389/fncel.2018.00405.
    1. Mouridsen S.E., Rich B., Isager T., Nedergaard N.J. Autoimmune diseases in parents of children with infantile autism: A case-control study. Dev. Med. Child. Neurol. 2007;49:429–432. doi: 10.1111/j.1469-8749.2007.00429.x.
    1. Sweeten T.L., Bowyer S.L., Posey D.J., Halberstadt G.M., McDougle C.J. Increased Prevalence of Familial Autoimmunity in Probands with Pervasive Developmental Disorders. PEDIATRICS. 2003;112:e420. doi: 10.1542/peds.112.5.e420.
    1. Brown A.S., Surcel H.-M., Hinkka-Yli-Salomäki S., Cheslack-Postava K., Bao Y., Sourander A. Maternal thyroid autoantibody and elevated risk of autism in a national birth cohort. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2015;57:86–92. doi: 10.1016/j.pnpbp.2014.10.010.
    1. Chen M.-H., Su T.-P., Chen Y.-S., Hsu J.-W., Huang K.-L., Chang W.-H., Chen T.-J., Bai Y.-M. Comorbidity of allergic and autoimmune diseases in patients with autism spectrum disorder: A nationwide population-based study. Res. Autism Spectr. Disord. 2013;7:205–212. doi: 10.1016/j.rasd.2012.08.008.
    1. Enstrom A.M., Van de Water J.A., Ashwood P. Autoimmunity in autism. Curr. Opin. Investig. Drugs. 2009;10:463–473.
    1. Enstrom A., Krakowiak P., Onore C., Pessah I.N., Hertz-Picciotto I., Hansen R.L., Van de Water J.A., Ashwood P. Increased IgG4 levels in children with autism disorder. Brain Behav. Immun. 2009;23:389–395. doi: 10.1016/j.bbi.2008.12.005.
    1. Gupta S., Aggarwal S., Rashanravan B., Lee T. Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism. J. Neuroimmunol. 1998;85:106–109. doi: 10.1016/S0165-5728(98)00021-6.
    1. Enstrom A.M., Onore C.E., Van de Water J.A., Ashwood P. Differential monocyte responses to TLR ligands in children with autism spectrum disorders. Brain Behav. Immun. 2010;24:64–71. doi: 10.1016/j.bbi.2009.08.001.
    1. Al-Hakbany M., Awadallah S., AL-Ayadhi L. The Relationship of HLA Class I and II Alleles and Haplotypes with Autism: A Case Control Study. Autism Res. Treat. 2014;2014:1–6. doi: 10.1155/2014/242048.
    1. Elmer B.M., McAllister A.K. Major histocompatibility complex class I proteins in brain development and plasticity. Trends Neurosci. 2012;35:660–670. doi: 10.1016/j.tins.2012.08.001.
    1. Chien Y.-L., Wu Y.-Y., Chen C.-H., Gau S.S.-F., Huang Y.-S., Chien W.-H., Hu F.-C., Chao Y.-L. Association of HLA-DRB1 alleles and neuropsychological function in autism. Psychiatr. Genet. 2012;22:46–49. doi: 10.1097/YPG.0b013e32834915ae.
    1. Johnson W.G., Buyske S., Mars A.E., Sreenath M., Stenroos E.S., Williams T.A., Stein R., Lambert G.H. HLA-DR4 as a Risk Allele for Autism Acting in Mothers of Probands Possibly During Pregnancy. Arch. Pediatr. Adolesc. Med. 2009;163:542. doi: 10.1001/archpediatrics.2009.74.
    1. Bennabi M., Gaman A., Delorme R., Boukouaci W., Manier C., Scheid I., Mohammed N.S., Bengoufa D., Charron D., Krishnamoorthy R., et al. HLA-class II haplotypes and Autism Spectrum Disorders. Sci. Rep. 2018;8:7639. doi: 10.1038/s41598-018-25974-9.
    1. Harville T., Rhodes-Clark B., Bennuri S.C., Delhey L., Slattery J., Tippett M., Wynne R., Rose S., Kahler S., Frye R.E. Inheritance of HLA-Cw7 Associated With Autism Spectrum Disorder (ASD) Front. Psychiatry. 2019;10:612. doi: 10.3389/fpsyt.2019.00612.
    1. Torres A.R., Sweeten T.L., Johnson R.C., Odell D., Westover J.B., Bray-Ward P., Ward D.C., Davies C.J., Thomas A.J., Croen L.A., et al. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder. Front. Neurosci. 2016;10:463. doi: 10.3389/fnins.2016.00463.
    1. Torres A.R., Westover J.B., Gibbons C., Johnson R.C., Ward D.C. Activating killer-cell immunoglobulin-like receptors (KIR) and their cognate HLA ligands are significantly increased in autism. Brain Behav. Immun. 2012;26:1122–1127. doi: 10.1016/j.bbi.2012.07.014.
    1. Ramos P.S., Sajuthi S., Langefeld C.D., Walker S.J. Immune function genes CD99L2, JARID2 and TPO show association with autism spectrum disorder. Mol. Autism. 2012;3:4. doi: 10.1186/2040-2392-3-4.
    1. Curatolo P., Moavero R., de Vries P.J. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol. 2015;14:733–745. doi: 10.1016/S1474-4422(15)00069-1.
    1. Tee A.R., Fingar D.C., Manning B.D., Kwiatkowski D.J., Cantley L.C., Blenis J. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc. Nat. Acad. Sci. USA. 2002;99:13571–13576. doi: 10.1073/pnas.202476899.
    1. Zhao H., Dupont J., Yakar S., Karas M., LeRoith D. PTEN inhibits cell proliferation and induces apoptosis by downregulating cell surface IGF-IR expression in prostate cancer cells. Oncogene. 2004;23:786–794. doi: 10.1038/sj.onc.1207162.
    1. Saxton R.A., Sabatini D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;168:960–976. doi: 10.1016/j.cell.2017.02.004.
    1. Porokhovnik L. Individual Copy Number of Ribosomal Genes as a Factor of Mental Retardation and Autism Risk and Severity. Cells. 2019;8:1151. doi: 10.3390/cells8101151.
    1. Velinov M. Genomic Copy Number Variations in the Autism Clinic—Work in Progress. Front. Cell. Neurosci. 2019;13:57. doi: 10.3389/fncel.2019.00057.
    1. Dias C.M., Walsh C.A. Recent Advances in Understanding the Genetic Architecture of Autism. Annu. Rev. Genom. Hum. Genet. 2020;21:289–304. doi: 10.1146/annurev-genom-121219-082309.
    1. Voineagu I., Eapen V. Converging Pathways in Autism Spectrum Disorders: Interplay between Synaptic Dysfunction and Immune Responses. Front. Hum. Neurosci. 2013;7:738. doi: 10.3389/fnhum.2013.00738.
    1. Voineagu I., Wang X., Johnston P., Lowe J.K., Tian Y., Horvath S., Mill J., Cantor R.M., Blencowe B.J., Geschwind D.H. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474:380–384. doi: 10.1038/nature10110.
    1. Young A.M.H., Campbell E., Lynch S., Suckling J., Powis S.J. Aberrant NF-KappaB Expression in Autism Spectrum Condition: A Mechanism for Neuroinflammation. Front. Psychiatry. 2011;2:27. doi: 10.3389/fpsyt.2011.00027.
    1. Young A.M.H., Chakrabarti B., Roberts D., Lai M.-C., Suckling J., Baron-Cohen S. From molecules to neural morphology: Understanding neuroinflammation in autism spectrum condition. Mol. Autism. 2016;7:9. doi: 10.1186/s13229-016-0068-x.
    1. Morris G., Anderson G., Dean O., Berk M., Galecki P., Martin-Subero M., Maes M. The glutathione system: A new drug target in neuroimmune disorders. Mol. Neurobiol. 2014;50:1059–1084. doi: 10.1007/s12035-014-8705-x.
    1. Scaglia F. The role of mitochondrial dysfunction in psychiatric disease. Dev. Disabil. Res. Rev. 2010;16:136–143. doi: 10.1002/ddrr.115.
    1. Rossignol D.A., Frye R.E. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol. Psychiatry. 2012;17:290–314. doi: 10.1038/mp.2010.136.
    1. Watkins C.C., Andrews S.R. Clinical studies of neuroinflammatory mechanisms in schizophrenia. Schizophr. Res. 2016;176:14–22. doi: 10.1016/j.schres.2015.07.018.
    1. Morris G., Berk M. The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med. 2015;13:68. doi: 10.1186/s12916-015-0310-y.
    1. Anderson G., Maes M. Redox Regulation and the Autistic Spectrum: Role of Tryptophan Catabolites, Immuno-inflammation, Autoimmunity and the Amygdala. Curr. Neuropharmacol. 2014;12:148–167. doi: 10.2174/1570159X11666131120223757.
    1. Frustaci A., Neri M., Cesario A., Adams J.B., Domenici E., Dalla Bernardina B., Bonassi S. Oxidative stress-related biomarkers in autism: Systematic review and meta-analyses. Free Radic. Biol. Med. 2012;52:2128–2141. doi: 10.1016/j.freeradbiomed.2012.03.011.
    1. Goldani A.A.S., Downs S.R., Widjaja F., Lawton B., Hendren R.L. Biomarkers in Autism. Front. Psychiatry. 2014;5:100. doi: 10.3389/fpsyt.2014.00100.
    1. Parellada M., Moreno C., Mac-Dowell K., Leza J.C., Giraldez M., Bailón C., Castro C., Miranda-Azpiazu P., Fraguas D., Arango C. Plasma antioxidant capacity is reduced in Asperger syndrome. J. Psychiatr. Res. 2012;46:394–401. doi: 10.1016/j.jpsychires.2011.10.004.
    1. Frye R.E., Rossignol D.A. Mitochondrial dysfunction can connect the diverse medical symptoms associated with autism spectrum disorders. Pediatr. Res. 2011;69:41R–47R. doi: 10.1203/PDR.0b013e318212f16b.
    1. Ghanizadeh A. Increased Glutamate and Homocysteine and Decreased Glutamine Levels in Autism: A Review and Strategies for Future Studies of Amino Acids in Autism. Dis. Markers. 2013;35:281–286. doi: 10.1155/2013/536521.
    1. Cavaliere G., Viggiano E., Trinchese G., De Filippo C., Messina A., Monda V., Valenzano A., Cincione R.I., Zammit C., Cimmino F., et al. Long feeding high-fat diet induces hypothalamic oxidative stress and inflammation, and prolonged hypothalamic AMPK activation in rat animal model. Front. Physiol. 2018;9:818. doi: 10.3389/fphys.2018.00818.
    1. Palmieri L., Persico A.M. Mitochondrial dysfunction in autism spectrum disorders: Cause or effect? Biochim. Biophys. Acta (BBA) Bioenerg. 2010;1797:1130–1137. doi: 10.1016/j.bbabio.2010.04.018.
    1. Markham A., Bains R., Franklin P., Spedding M. Changes in mitochondrial function are pivotal in neurodegenerative and psychiatric disorders: How important is BDNF? Br. J. Pharmacol. 2014;171:2206–2229. doi: 10.1111/bph.12531.
    1. Cohen-Cory S., Kidane A.H., Shirkey N.J., Marshak S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev. Neurobiol. 2010;70:271–288. doi: 10.1002/dneu.20774.
    1. Burkhalter J., Fiumelli H., Allaman I., Chatton J.-Y., Martin J.-L. Brain-Derived Neurotrophic Factor Stimulates Energy Metabolism in Developing Cortical Neurons. J. Neurosci. 2003;23:8212–8220. doi: 10.1523/JNEUROSCI.23-23-08212.2003.
    1. Autry A.E., Monteggia L.M. Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders. Pharmacol. Rev. 2012;64:238–258. doi: 10.1124/pr.111.005108.
    1. Gao R., Penzes P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr. Mol. Med. 2015;15:146–167. doi: 10.2174/1566524015666150303003028.
    1. Rajasekaran A., Venkatasubramanian G., Berk M., Debnath M. Mitochondrial dysfunction in schizophrenia: Pathways, mechanisms and implications. Neurosci. Biobehav. Rev. 2015;48:10–21. doi: 10.1016/j.neubiorev.2014.11.005.
    1. Gleichmann M., Mattson M.P. Neuronal Calcium Homeostasis and Dysregulation. Antioxid. Redox Signal. 2011;14:1261–1273. doi: 10.1089/ars.2010.3386.
    1. Miller M.T., Strömland K., Ventura L., Johansson M., Bandim J.M., Gillberg C. Autism associated with conditions characterized by developmental errors in early embryogenesis: A mini review. Int. J. Dev. Neurosci. 2005;23:201–219. doi: 10.1016/j.ijdevneu.2004.06.007.
    1. Siddiqui M.F., Elwell C., Johnson M.H. Mitochondrial Dysfunction in Autism Spectrum Disorders. Autism. Open. Access. 2016;6:1000190. doi: 10.4172/2165-7890.1000190.
    1. Jones S.P., Franco N.F., Varney B., Sundaram G., Brown D.A., de Bie J., Lim C.K., Guillemin G.J., Brew B.J. Expression of the Kynurenine Pathway in Human Peripheral Blood Mononuclear Cells: Implications for Inflammatory and Neurodegenerative Disease. PLoS ONE. 2015;10:e0131389. doi: 10.1371/journal.pone.0131389.
    1. Fujigaki H., Yamamoto Y., Saito K. L-Tryptophan-kynurenine pathway enzymes are therapeutic target for neuropsychiatric diseases: Focus on cell type differences. Neuropharmacology. 2017;112:264–274. doi: 10.1016/j.neuropharm.2016.01.011.
    1. Myint A.-M., Kim Y.-K. Network beyond IDO in psychiatric disorders: Revisiting neurodegeneration hypothesis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2014;48:304–313. doi: 10.1016/j.pnpbp.2013.08.008.
    1. Esquivel D.G., Ramirez-Ortega D., Pineda B., Castro N., Rios C., de la Cruz V.P. Kynurenine pathway metabolites and enzymes involved in redox reactions. Neuropharmacology. 2017;112:331–345. doi: 10.1016/j.neuropharm.2016.03.013.
    1. Iannone L.F., Preda A., Blottière H.M., Clarke G., Albani D., Belcastro V., Carotenuto M., Cattaneo A., Citraro R., Ferraris C., et al. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Rev. Neurother. 2019;19:1037–1050. doi: 10.1080/14737175.2019.1638763.
    1. Cryan J.F., O’Riordan K.J., Cowan C.S.M., Sandhu K.V., Bastiaanssen T.F.S., Boehme M., Codagnone M.G., Cussotto S., Fulling C., Golubeva A.V., et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019;99:1877–2013. doi: 10.1152/physrev.00018.2018.
    1. Campbell B.M., Charych E., Lee A.W., Möller T. Kynurenines in CNS disease: Regulation by inflammatory cytokines. Front. Neurosci. 2014;8:12. doi: 10.3389/fnins.2014.00012.
    1. Williams M., Zhang Z., Nance E., Drewes J.L., Lesniak W.G., Singh S., Chugani D.C., Rangaramanujam K., Graham D.R., Kannan S. Maternal Inflammation Results in Altered Tryptophan Metabolism in Rabbit Placenta and Fetal Brain. Dev. Neurosci. 2017;39:399–412. doi: 10.1159/000471509.
    1. Notarangelo F.M., Pocivavsek A. Elevated kynurenine pathway metabolism during neurodevelopment: Implications for brain and behavior. Neuropharmacology. 2017;112:275–285. doi: 10.1016/j.neuropharm.2016.03.001.
    1. Sas K., Robotka H., Toldi J., Vécsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J. Neurol. Sci. 2007;257:221–239. doi: 10.1016/j.jns.2007.01.033.
    1. Schwarcz R., Stone T.W. The kynurenine pathway and the brain: Challenges, controversies and promises. Neuropharmacology. 2017;112:237–247. doi: 10.1016/j.neuropharm.2016.08.003.
    1. Savitz J. The kynurenine pathway: A finger in every pie. Mol. Psychiatry. 2020;25:131–147. doi: 10.1038/s41380-019-0414-4.
    1. Schwarcz R., Bruno J.P., Muchowski P.J., Wu H.-Q. Kynurenines in the mammalian brain: When physiology meets pathology. Nat. Rev. Neurosci. 2012;13:465–477. doi: 10.1038/nrn3257.
    1. Perkins M.N., Stone T.W. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res. 1982;247:184–187. doi: 10.1016/0006-8993(82)91048-4.
    1. Lugo-Huitrón R., Ugalde Muñiz P., Pineda B., Pedraza-Chaverrí J., Ríos C., Pérez-de la Cruz V. Quinolinic Acid: An Endogenous Neurotoxin with Multiple Targets. Oxidative Med. Cell. Longev. 2013;2013:1–14. doi: 10.1155/2013/104024.
    1. Maddison D.C., Giorgini F. The kynurenine pathway and neurodegenerative disease. Semin. Cell Dev. Biol. 2015;40:134–141. doi: 10.1016/j.semcdb.2015.03.002.
    1. Lim C.K., Essa M.M., de Paula Martins R., Lovejoy D.B., Bilgin A.A., Waly M.I., Al-Farsi Y.M., Al-Sharbati M., Al-Shaffae M.A., Guillemin G.J. Altered kynurenine pathway metabolism in autism: Implication for immune-induced glutamatergic activity: Altered kynurenine pathway metabolism in ASD. Autism Res. 2016;9:621–631. doi: 10.1002/aur.1565.
    1. Rubenstein J.L.R., Merzenich M.M. Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2:255–267. doi: 10.1034/j.1601-183X.2003.00037.x.
    1. Brown M.S., Singel D., Hepburn S., Rojas D.C. Increased Glutamate Concentration in the Auditory Cortex of Persons with Autism and First-Degree Relatives: A 1 H-MRS Study: Increased glutamate concentration in autism. Autism Res. 2013;6:1–10. doi: 10.1002/aur.1260.
    1. Ghaleiha A., Asadabadi M., Mohammadi M.-R., Shahei M., Tabrizi M., Hajiaghaee R., Hassanzadeh E., Akhondzadeh S. Memantine as adjunctive treatment to risperidone in children with autistic disorder: A randomized, double-blind, placebo-controlled trial. Int. J. Neuropsychopharmacol. 2013;16:783–789. doi: 10.1017/S1461145712000880.
    1. Rios C., Santamaria A. Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem. Res. 1991;16:1139–1143. doi: 10.1007/BF00966592.
    1. Hilmas C., Pereira E.F., Alkondon M., Rassoulpour A., Schwarcz R., Albuquerque E.X. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: Physiopathological implications. J. Neurosci. 2001;21:7463–7473. doi: 10.1523/JNEUROSCI.21-19-07463.2001.
    1. Yakel J.L. Nicotinic ACh receptors in the hippocampal circuit; functional expression and role in synaptic plasticity. J. Physiol. 2014;592:4147–4153. doi: 10.1113/jphysiol.2014.273896.
    1. Luchicchi A., Bloem B., Viaña J.N.M., Mansvelder H.D., Role L.W. Illuminating the role of cholinergic signaling in circuits of attention and emotionally salient behaviors. Front. Synaptic Neurosci. 2014;6:24. doi: 10.3389/fnsyn.2014.00024.
    1. Funakoshi H., Kanai M., Nakamura T. Modulation of tryptophan metabolism, promotion of neurogenesis and alteration of anxiety-related behavior in tryptophan 2,3-dioxygenase-deficient mice. Int. J. Tryptophan Res. 2011;4:7–18. doi: 10.4137/IJTR.S5783.
    1. Platten M., Nollen E.A.A., Röhrig U.F., Fallarino F., Opitz C.A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 2019;18:379–401. doi: 10.1038/s41573-019-0016-5.
    1. Murakami Y., Imamura Y., Saito K., Sakai D., Motoyama J. Altered kynurenine pathway metabolites in a mouse model of human attention-deficit hyperactivity/autism spectrum disorders: A potential new biological diagnostic marker. Sci. Rep. 2019;9:13182. doi: 10.1038/s41598-019-49781-y.
    1. Tordjman S., Anderson G.M., Kermarrec S., Bonnot O., Geoffray M.-M., Brailly-Tabard S., Chaouch A., Colliot I., Trabado S., Bronsard G., et al. Altered circadian patterns of salivary cortisol in low-functioning children and adolescents with autism. Psychoneuroendocrinology. 2014;50:227–245. doi: 10.1016/j.psyneuen.2014.08.010.
    1. White S.W., Roberson-Nay R. Anxiety, Social Deficits, and Loneliness in Youth with Autism Spectrum Disorders. J. Autism Dev. Disord. 2009;39:1006–1013. doi: 10.1007/s10803-009-0713-8.
    1. Heyes M.P., Achim C.L., Wiley C.A., Major E.O., Saito K., Markey S.P. Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem. J. 1996;320:595–597. doi: 10.1042/bj3200595.
    1. Mosienko V., Bert B., Beis D., Matthes S., Fink H., Bader M., Alenina N. Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin. Transl. Psychiatry. 2012;2:e122. doi: 10.1038/tp.2012.44.
    1. McDougle C.J., Naylor S.T., Cohen D.J., Aghajanian G.K., Heninger G.R., Price L.H. Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch. Gen. Psychiatry. 1996;53:993–1000. doi: 10.1001/archpsyc.1996.01830110029004.
    1. Vitalis T., Parnavelas J.G. The Role of Serotonin in Early Cortical Development. Dev. Neurosci. 2003;25:245–256. doi: 10.1159/000072272.
    1. Azmitia E.C. Modern views on an ancient chemical: Serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res. Bull. 2001;56:413–424. doi: 10.1016/S0361-9230(01)00614-1.
    1. Takeuchi Y. Serotonergic Neurotransmission in Autism Spectrum Disorders. In: Eapen V., editor. Autism—A Neurodevelopmental Journey from Genes to Behaviour. InTech; Rijeka, Croatia: 2011.
    1. Jenkins T., Nguyen J., Polglaze K., Bertrand P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients. 2016;8:56. doi: 10.3390/nu8010056.
    1. Nishizawa S., Benkelfat C., Young S.N., Leyton M., Mzengeza S., de Montigny C., Blier P., Diksic M. Differences between males and females in rates of serotonin synthesis in human brain. Proc. Nat. Acad. Sci. USA. 1997;94:5308–5313. doi: 10.1073/pnas.94.10.5308.
    1. Mendelsohn D., Riedel W.J., Sambeth A. Effects of acute tryptophan depletion on memory, attention and executive functions: A systematic review. Neurosci. Biobehav. Rev. 2009;33:926–952. doi: 10.1016/j.neubiorev.2009.03.006.
    1. Monda V., Salerno M., Sessa F., Bernardini R., Valenzano A., Marsala G., Zammit C., Avola R., Carotenuto M., Messina G., et al. Functional Changes of Orexinergic Reaction to Psychoactive Substances. Mol. Neurobiol. 2018;55:6362–6368. doi: 10.1007/s12035-017-0865-z.
    1. Ruddick J.P., Evans A.K., Nutt D.J., Lightman S.L., Rook G.A.W., Lowry C.A. Tryptophan metabolism in the central nervous system: Medical implications. Expert Rev. Mol. Med. 2006;8:1–27. doi: 10.1017/S1462399406000068.
    1. Dunn A.J., Welch J. Stress-and Endotoxin-Induced Increases in Brain Tryptophan and Serotonin Metabolism Depend on Sympathetic Nervous System Activity. J. Neurochem. 1991;57:1615–1622. doi: 10.1111/j.1471-4159.1991.tb06359.x.
    1. Kennett G.A., Curzon G., Hunt A., Patel A.J. Immobilization Decreases Amino Acid Concentrations in Plasma but Maintains or Increases Them in Brain. J. Neurochem. 1986;46:208–212. doi: 10.1111/j.1471-4159.1986.tb12947.x.
    1. O’Kane R.L., Hawkins R.A. Na+ -dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier. Am. J. Physiol. Endocrinol. Metab. 2003;285:E1167–E1173. doi: 10.1152/ajpendo.00193.2003.
    1. Ormstad H., Bryn V., Verkerk R., Skjeldal O.H., Halvorsen B., Saugstad O.D., Isaksen J., Maes M. Serum tryptophan, tryptophan catabolites and brain-derived neurotrophic factor in subgroups of youngsters with autism spectrum disorders. CNSNDDT. 2018;17:626–639. doi: 10.2174/1871527317666180720163221.
    1. Reynolds A.M., Malow B.A. Sleep and autism spectrum disorders. Pediatr. Clin. N. Am. 2011;58:685–698. doi: 10.1016/j.pcl.2011.03.009.
    1. Messina A., Monda V., Sessa F., Valenzano A., Salerno M., Bitetti I., Precenzano F., Marotta R., Lavano F., Lavano S.M., et al. Sympathetic, Metabolic Adaptations, and Oxidative Stress in Autism Spectrum Disorders: How Far From Physiology? Front. Physiol. 2018;9:261. doi: 10.3389/fphys.2018.00261.
    1. Shokouhi G., Tubbs R.S., Shoja M.M., Hadidchi S., Ghorbanihaghjo A., Roshangar L., Farahani R.M., Mesgari M., Oakes W.J. Neuroprotective effects of high-dose vs low-dose melatonin after blunt sciatic nerve injury. Childs Nerv. Syst. 2007;24:111–117. doi: 10.1007/s00381-007-0366-x.
    1. Weishaupt J.H., Bartels C., Pölking E., Dietrich J., Rohde G., Poeggeler B., Mertens N., Sperling S., Bohn M., Hüther G., et al. Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J. Pineal Res. 2006;41:313–323. doi: 10.1111/j.1600-079X.2006.00377.x.
    1. Li Y., Hu N., Yang D., Oxenkrug G., Yang Q. Regulating the balance between the kynurenine and serotonin pathways of tryptophan metabolism. FEBS J. 2017;284:948–966. doi: 10.1111/febs.14026.
    1. Míguez J.M., Simonneaux V., Pévet P. Evidence for a Regulatory Role of Melatonin on Serotonin Release and Uptake in the Pineal Gland. J. Neuroendocrinol. 1995;7:949–956. doi: 10.1111/j.1365-2826.1995.tb00740.x.
    1. El-Ansary A., Al-Ayadhi L. Neuroinflammation in autism spectrum disorders. J. Neuroinflamm. 2012;9:768. doi: 10.1186/1742-2094-9-265.
    1. Suzuki K., Matsuzaki H., Iwata K., Kameno Y., Shimmura C., Kawai S., Yoshihara Y., Wakuda T., Takebayashi K., Takagai S., et al. Plasma Cytokine Profiles in Subjects with High-Functioning Autism Spectrum Disorders. PLoS ONE. 2011;6:e20470. doi: 10.1371/journal.pone.0020470.
    1. El-Ansary A., Al-Ayadhi L. GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. J. Neuroinflamm. 2014;11:189. doi: 10.1186/s12974-014-0189-0.
    1. Moffett J.R., Namboodiri M.A. Tryptophan and the immune response. Immunol. Cell Biol. 2003;81:247–265. doi: 10.1046/j.1440-1711.2003.t01-1-01177.x.
    1. Guillemin G.J. Quinolinic acid, the inescapable neurotoxin: Quinolinic acid, the inescapable neurotoxin. FEBS J. 2012;279:1356–1365. doi: 10.1111/j.1742-4658.2012.08485.x.
    1. Essa M.M., Braidy N., Vijayan K.R., Subash S., Guillemin G.J. Excitotoxicity in the Pathogenesis of Autism. Neurotox. Res. 2013;23:393–400. doi: 10.1007/s12640-012-9354-3.
    1. Havelund J.F., Andersen A.D., Binzer M., Blaabjerg M., Heegaard N.H.H., Stenager E., Færgeman N.J., Gramsbergen J.B. Changes in kynurenine pathway metabolism in Parkinson patients with L-DOPA-induced dyskinesia. J. Neurochem. 2017;142:756–766. doi: 10.1111/jnc.14104.
    1. Gevi F., Zolla L., Gabriele S., Persico A.M. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol. Autism. 2016;7:47. doi: 10.1186/s13229-016-0109-5.
    1. Stone T.W., Darlington L.G. The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders: Kynurenines and CNS disorders. Br. J. Pharmacol. 2013;169:1211–1227. doi: 10.1111/bph.12230.
    1. Nabi R., Serajee F.J., Chugani D.C., Zhong H., Huq A.H.M.M. Association of tryptophan 2,3 dioxygenase gene polymorphism with autism. Am. J. Med. Genet. 2004;125B:63–68. doi: 10.1002/ajmg.b.20147.
    1. Rind H.B., Russo A.F., Whittemore S.R. Developmental regulation of tryptophan hydroxylase messenger RNA expression and enzyme activity in the raphe and its target fields. Neuroscience. 2000;101:665–677. doi: 10.1016/S0306-4522(00)00402-4.
    1. Cascio L., Chen C., Pauly R., Srikanth S., Jones K., Skinner C.D., Stevenson R.E., Schwartz C.E., Boccuto L. Abnormalities in the genes that encode Large Amino Acid Transporters increase the risk of Autism Spectrum Disorder. Mol. Genet. Genom. Med. 2020;8:1–17. doi: 10.1002/mgg3.1036.
    1. Haslinger D., Waltes R., Yousaf A., Lindlar S., Schneider I., Lim C.K., Tsai M.-M., Garvalov B.K., Acker-Palmer A., Krezdorn N., et al. Loss of the Chr16p11.2 ASD candidate gene QPRT leads to aberrant neuronal differentiation in the SH-SY5Y neuronal cell model. Mol. Autism. 2018;9:56. doi: 10.1186/s13229-018-0239-z.
    1. Lee E.-J., Choi S.Y., Kim E. NMDA receptor dysfunction in autism spectrum disorders. Curr. Opin. Pharmacol. 2015;20:8–13. doi: 10.1016/j.coph.2014.10.007.
    1. Bortz D.M., Wu H.-Q., Schwarcz R., Bruno J.P. Oral administration of a specific kynurenic acid synthesis (KAT II) inhibitor attenuates evoked glutamate release in rat prefrontal cortex. Neuropharmacology. 2017;121:69–78. doi: 10.1016/j.neuropharm.2017.04.023.
    1. Chisholm K., Lin A., Abu-Akel A., Wood S.J. The association between autism and schizophrenia spectrum disorders: A review of eight alternate models of co-occurrence. Neurosci. Biobehav. Rev. 2015;55:173–183. doi: 10.1016/j.neubiorev.2015.04.012.
    1. Jacobs K.R., Castellano-Gonzalez G., Guillemin G.J., Lovejoy D.B. Major Developments in the Design of Inhibitors along the Kynurenine Pathway. CMC. 2017;24:2471–2495. doi: 10.2174/0929867324666170502123114.
    1. Moon Y.W., Hajjar J., Hwu P., Naing A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J. Immunother. Cancer. 2015;3:51. doi: 10.1186/s40425-015-0094-9.
    1. Rossignol D.A., Frye R.E. Melatonin in autism spectrum disorders: A systematic review and meta-analysis: Review. Dev. Med. Child Neurol. 2011;53:783–792. doi: 10.1111/j.1469-8749.2011.03980.x.
    1. Tordjman S., Najjar I., Bellissant E., Anderson G., Barburoth M., Cohen D., Jaafari N., Schischmanoff O., Fagard R., Lagdas E., et al. Advances in the Research of Melatonin in Autism Spectrum Disorders: Literature Review and New Perspectives. IJMS. 2013;14:20508–20542. doi: 10.3390/ijms141020508.
    1. Andersen L.P.H., Werner M.U., Rosenkilde M.M., Fenger A.Q., Petersen M.C., Rosenberg J., Gögenur I. Pharmacokinetics of high-dose intravenous melatonin in humans. J. Clin. Pharmacol. 2016;56:324–329. doi: 10.1002/jcph.592.

Source: PubMed

3
Subscribe