Recent developments and challenges of lower extremity exoskeletons

Bing Chen, Hao Ma, Lai-Yin Qin, Fei Gao, Kai-Ming Chan, Sheung-Wai Law, Ling Qin, Wei-Hsin Liao, Bing Chen, Hao Ma, Lai-Yin Qin, Fei Gao, Kai-Ming Chan, Sheung-Wai Law, Ling Qin, Wei-Hsin Liao

Abstract

The number of people with a mobility disorder caused by stroke, spinal cord injury, or other related diseases is increasing rapidly. To improve the quality of life of these people, devices that can assist them to regain the ability to walk are of great demand. Robotic devices that can release the burden of therapists and provide effective and repetitive gait training have been widely studied recently. By contrast, devices that can augment the physical abilities of able-bodied humans to enhance their performances in industrial and military work are needed as well. In the past decade, robotic assistive devices such as exoskeletons have undergone enormous progress, and some products have recently been commercialized. Exoskeletons are wearable robotic systems that integrate human intelligence and robot power. This paper first introduces the general concept of exoskeletons and reviews several typical lower extremity exoskeletons (LEEs) in three main applications (i.e. gait rehabilitation, human locomotion assistance, and human strength augmentation), and provides a systemic review on the acquisition of a wearer's motion intention and control strategies for LEEs. The limitations of the currently developed LEEs and future research and development directions of LEEs for wider applications are discussed.

Keywords: control strategy; gait rehabilitation; human locomotion assistance; medical device; motion intention acquisition.

Figures

Figure 1
Figure 1
Exoskeletons for gait rehabilitation. (A) The Robotic Orthosis Lokomat (Image credit: Hocoma, Zurich, Switzerland). (B) The Ekso Exoskeleton (Image credit: Ekso Bionics, Richmond, CA, USA).
Figure 2
Figure 2
Exoskeletons for locomotion assistance. (A) The ReWalk Wearable System (Image credit: ReWalk Robotics, Inc., Marlborough, MA, USA). (B) The lower extremity exoskeleton developed at the Chinese University of Hong Kong (Hong Kong, China).
Figure 3
Figure 3
Exoskeletons to augment human strength. (A) The Berkeley Lower Extremity Exoskeleton (BLEEX) (Image credit: Professor Kazerooni of the University of California, Berkeley, CA, USA). (B) The HEXAR-HL35 Exoskeleton (Image credit: Seungnam Yu of the Korea Atomic Energy Research Institute, Daejeon, Korea).
Figure 4
Figure 4
Schematic of the human–exoskeleton cooperation system.

References

    1. United Nations Population Fund (UNFPA). UNFPA report: setting the scene. Chapter 1. Available at: . [accessed 04.10.15].
    1. Lee W.S., Cheung W.H., Qin L., Tang N., Leung K.S. Age-associated decrease of type IIA/B human skeletal muscle fibers. Clin Orthop Relat Res. 2006;450:231–237.
    1. Cheung W.H., Lee W.S., Qin L., Tang N., Hung V.W., Leung K.S. Type IIB Human skeletal muscle fibers positively correlate with bone mineral density irrespective to age. Chin Med J Engl. 2010;123:3009–3014.
    1. Chao E.Y.S., Lim J. Virtual interactive musculoskeletal system (VIMS) in orthopaedic translational research (review) J Orthop Transl. 2013;1:25–40.
    1. Wolf P.A., Abbott R.D., Kannel W.B. Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke. 1991;22:983–988.
    1. Roger V.L., Go A.S., Lloyd-Jones D.M., Benjamin E.J., Berry J.D., Borden W.B., American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;1251:e2.
    1. World Health Organization Media Center. Spinal cord injury. Available at: [accessed 04.10.15].
    1. Cao J., Xie S.Q., Das R., Zhu G.L. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects. Med Eng Phys. 2014;2014(6):1555–1566.
    1. O'Connor P.J. Trends in spinal cord injury. Accid Anal Prev. 2006;38:71–77.
    1. McDonald J.W., Sadowsky C. Spinal-cord injury. The Lancet. 2002;359:417–425.
    1. Phillips L., Ozer M.N., Axelson P., Chizeck H., Britell C.W., Fonseca J. Spinal cord injury: a guide for patient and family. J Spinal Disord Tech. 1990;3:282.
    1. Brown-Triolo D.L., Roach M.J., Nelson K., Triolo R.J. Consumer perspectives on mobility: implications for neuroprosthesis design. Neurorehabil Neural Repair. 2002;39:659–670.
    1. Alcobendas-Maestro M., Esclarín-Ruz A., Casado-López R.M., Muñoz-González A., Pérez-Mateos G., González-Valdizán E. Lokomat robotic- assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion randomized controlled trial. Neurorehabil Neural Repair. 2012;26:1058–1063.
    1. Tsukahara A., Kawanishi R., Hasegawa Y., Sankai Y. Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit HAL. Adv Robot. 2010;24:1615–1638.
    1. Esquenazi A., Talaty M., Packel A., Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012;91:911–921.
    1. Guizzo E., Deyle T. Robotics trends for 2012. IEEE Eng Med Biol Mag. 2012;19:119–123.
    1. Quintero H.A., Farris R.J., Goldfarb M. A method for the autonomous control of a lower limb exoskeleton for persons with paraplegia. J Med Device. 2012;6:041003.
    1. Kim Y.S., Lee J., Lee S., Kim M. A force reflected exoskeleton-type master arm for human-robot interaction. IEEE Trans Syst Man Cybern A Syst Hum. 2005;35:198–212.
    1. Zhang J.F., Fu H.L., Dong Y.M., Zhang Y., Yang C.J., Chen Y. Novel 6-DOF wearable exoskeleton arm with pneumatic force-feedback for bilateral teleoperation. Chin J Mech Eng. 2008;21:58–65.
    1. Zoss A.B., Kazerooni H., Chu A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX) IEEE ASME Trans Mechatron. 2006;11:128–138.
    1. Naruse K., Kawai S., Yokoi H., Kakazu Y. IEEE; Las Vegas, NV, USA: 2003. Development of wearable exoskeleton power assist system for lower back support. vol. 3IEEE International Conference on Intelligent Robots and Systems; pp. 3630–3635.
    1. Zhang J.F., Yang C.J., Chen Y., Zhang Y., Dong Y.M. Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton. Mechatronics. 2008;18:448–457.
    1. Ferris D.P., Gordon K.E., Sawicki G.S., Peethambaran A. An improved powered ankle-foot orthosis using proportional myoelectric control. Gait Posture. 2006;23:425–428.
    1. Agrawal A., Banala S.K., Agrawal S.K., Binder-Macleod S. IEEE; Chicago, IL, USA: 2005. Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation. IEEE International Conference on Robotic Rehabilitation; pp. 41–44.
    1. Riener R., Lünenburger L., Jezernik S., Anderschitz M., Colombo G., Dietz V. Patient- cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005;13:380–394.
    1. Jezernik S., Colombo G., Keller T., Frueh H., Morari M. Robotic Orthosis Lokomat: a rehabilitation and research tool. Neuromodulation. 2003;6:108–115.
    1. Banala S.K., Agrawal S.K., Scholz J.P. IEEE; Noordwijk, The Netherlands: 2007. Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. IEEE International Conference on Rehabilitation Robotics; pp. 401–407.
    1. Banala S.K., Kim S.H., Agrawal S.K., Scholz J.P. Robot assisted gait training with Active Leg Exoskeleton (ALEX) IEEE Trans Neural Syst Rehabil Eng. 2009;17:2–8.
    1. Banala S.K., Agrawal S.K., Kim S.H., Scholz J.P. Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE ASME Trans Mechatron. 2010;15:216–225.
    1. Ekso Bionics. Available at: [accessed 04.10.15].
    1. Pransky J. The Pransky interview: Russ Angold, co-founder and president of Ekso™ Labs. Industrial Robot: An Int J. 2014;41:329–334.
    1. Zwecker M., Dudkiewicz I., Bloch A., Esquenazi A. Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J Spinal Cord Med. 2012;35:96–101.
    1. Talaty M., Esquenazi A., Briceno J.E. IEEE; Seattle; Washington USA: 2013. Differentiating ability in users of the ReWalkTM powered exoskeleton: an analysis of walking kinematics. IEEE International Conference on Rehabilitation Robotics (ICORR) pp. 1–5.
    1. CADTH. ReWalk: robotic exoskeletons for spinal cord injury. Available at: [accessed 04.10.15].
    1. Farris R.J., Quintero H.A., Murray S., Ha K.H., Hartigan C., Goldfarb M. A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia. IEEE Trans Neural Syst Rehabil Eng. 2014;22:482–490.
    1. Chu A., Kazerooni H., Zoss A. IEEE; Barcelona, Spain: 2005. On the biomimetic design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE International Conference on Robotics and Automation; pp. 4345–4352.
    1. Kawabata T., Satoh H., Sankai Y. IEEE; Guilin, China: 2009. Working posture control of robot suit HAL for reducing structural stress. IEEE International Conference on Robotics and Biomimetics; pp. 2013–2018.
    1. Sankai Y. Springer: Berlin and Heidelberg; Germany: 2011. HAL: hybrid assistive limb based on Cybernics. Robotics research; pp. 25–34.
    1. Taketomi T., Sankai Y. IEEE; Fukuoka, Japan: 2012. Stair ascent assistance for cerebral palsy with robot suit HAL. IEEE/SICE International Symposium on System Integration (SII) pp. 331–336.
    1. Yu S.N., Lee H.D., Lee S.H., Kim W.S., Han J.S., Han C.S. Design of an under-actuated exoskeleton system for walking assist while load carrying. Adv Robot. 2012;26(5–6):561–580.
    1. Kim W., Lee H., Kim D., Han J., Han C. IEEE; 2014. Mechanical design of the Hanyang Exoskeleton Assistive Robot (HEXAR). International Conference on Control, Automation and Systems (ICCAS), Gyeonggi-do, Korea; pp. 479–484.
    1. Forner-Cordero A., Pons J.L., Turowska E.A., Schiele A., Baydal-Bertomeu J.M., Garrido D. Wearable robots: biomechatronic exoskeletons. Wiley; Hoboken, NJ, USA: 2008. Kinematics and dynamics of wearable robots; pp. 47–85.
    1. van Asseldonk E.H.F., van der Kooij H. Springer; London, United Kingdom: 2012. Robot- aided gait training with lopes. Neurorehabilitation technology; pp. 379–396.
    1. Unluhisarcikli O., Pietrusinski M., Weinberg B., Bonato P., Mavroidis C. IEEE; San Francisco, CA, USA: 2011. Design and control of a robotic lower extremity exoskeleton for gait rehabilitation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) pp. 4893–4898.
    1. Yin Y.H., Fan Y.J., Xu L.D. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton. IEEE Trans Inf Technol Biomed. 2012;16:542–549.
    1. HERCULE Exoskeleton Suit. Available at: [accessed 04.10.15].
    1. Yamamoto K., Hyodo K., Ishii M., Matsuo T. Development of power assisting suit for assisting nurse labor. JSME Int J Ser C. 2002;45:703–711.
    1. Wehner M., Quinlivan B., Aubin P.M., Martinez-Villalpando E., Baumann M., Stirling L. IEEE; Germany: 2013. A lightweight soft exosuit for gait assistance. IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe; pp. 3362–3369.
    1. Walsh C.J., Paluska D., Pasch K., Grand W., Valiente A., Herr H. IEEE; Orlando, FL, USA: 2006. Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. IEEE International Conference on Robotics and Automation; pp. 3485–3491.
    1. Walsh C.J., Endo K., Herr H. A quasi-passive leg exoskeleton for load-carrying augmentation. Int J HR. 2007;4:487–506.
    1. Rosen J., Perry J.C. Upper limb powered exoskeleton. Int J HR. 2007;4:529–548.
    1. Kawakami K., Kumano S., Moromugi S., Ishimatsu T. International Society for Optics and Photonics; Pattaya, Thailand: 2007. Powered glove with electro-pneumatic actuation unit for the disabled. International Workshop and Conference on Photonics and Nanotechnology. 67943H-1–5.
    1. Tsutsui Y., Sakata Y., Tanaka T., Kaneko S., Feng M.Q. IEEE; Atlanta, Georgia, USA: 2007. Human joint movement recognition by using ultrasound echo based on test feature classifier. IEEE SENSORS 2007 Conference; pp. 1205–1208.
    1. Tsukahara A., Hasegawa Y., Sankai Y. IEEE; San Francisco, CA, USA: 2011. Gait support for complete spinal cord injury patient by synchronized leg-swing with HAL. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) pp. 1737–1742.
    1. Hussain S., Xie S.Q., Jamwal P.K. Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Trans Cybern. 2013;43:1025–1034.
    1. Hussain S., Xie S.Q., Jamwal P.K. Control of a robotic orthosis for gait rehabilitation. Rob Auton Syst. 2013;61:911–919.
    1. Veneman J.F., Ekkelenkamp R., Kruidhof R., van der Helm F.C., van der Kooij H. A series elastic- and Bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int J Rob Res. 2006;25:261–281.
    1. Colombo G., Joerg M., Schreier R., Dietz V. Treadmill training of paraplegic patients using a robotics orthosis. J Rehabil Res Dev. 2010;37:693–700.
    1. Suzuki K., Mito G., Kawamoto H. Intention-based walking support for paraplegia patients with robot suit HAL. Adv Robot. 2007;21:1441–1469.
    1. Duschau-Wicke A., Von Zitzewitz J., Caprez A., Lünenburger L., Riener R. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2010;18:38–48.
    1. Emken J.L., Harkema S.J., Beres-Jones J., Ferreira C.K., Reinkensmeyer D.J. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans Biomed Eng. 2008;55:322–334.
    1. Swift T.A. University of California at Berkeley; CA, USA: 2011. Control and trajectory generation of a wearable mobility exoskeleton for spinal cord injury patients. Ph.D. thesis.
    1. Vallery H., Van Asseldonk E.H.F., Buss M., van der Kooij H. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation. IEEE Trans Neural Syst Rehabil Eng. 2009;17:23–30.
    1. Balasubramanian S., Wei R., He J. IEEE; Vancouver, British Columbia, Canada: 2008. RUPERT Closed loop control design. 30th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society; pp. 3467–3470.
    1. Farris R.J., Quintero H.A., Withrow T.J., Goldfarb M. IEEE, Kyoto International Conference Center; Japan: 2009. Design of a joint-coupled orthosis for FES-aided gait. IEEE International Conference on Rehabilitation Robotics; pp. 246–252.
    1. Kazerooni H., Steger R., Huang L. Hybrid control of the Berkeley Lower Extremity Exoskeleton (BLEEX) Int J Rob Res. 2006;25(5–6):561–573.
    1. Guo H., Liao W.H. IEEE; Budapest, Hungary: 2011. Optimization of a multifunctional actuator utilizing magnetorheological fluids. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) pp. 67–72.
    1. Saito Y., Kikuchi K., Negoto H., Oshima T., Haneyoshi T. IEEE; Chicago, IL, USA: 2005. Development of externally powered lower limb orthosis with bilateral-servo actuator. IEEE International Conference on Rehabilitation Robotics; pp. 394–399.
    1. Lebedev M.A., Nicolelis M.A.L. Brain–machine interfaces: past, present and future. Trends Neurosci. 2006;29:536–546.
    1. Wiggin M.B., Sawicki G.S., Collins S.H. IEEE; Zurich, Switzerland: 2011. An exoskeleton using controlled energy storage and release to aid ankle propulsion. IEEE International Conference on Rehabilitation Robotics (ICORR) pp. 1–5.
    1. Kim W., Lee S., Kang M., Han J., Han C. IEEE; Taipei, Taiwan: 2010. Energy-efficient gait pattern generation of the powered robotic exoskeleton using DME. IEEE/RSJ International Conference on Intelligent Robots and Systems; pp. 2475–2480.
    1. Mertz L. The next generation of exoskeletons: lighter, cheaper devices are in the works. IEEE Pulse. 2012;3:56–61.

Source: PubMed

3
Subscribe