Retinal capillary rarefaction is associated with arterial and kidney damage in hypertension

Shaun Frost, Janis Marc Nolde, Justine Chan, Anu Joyson, Cynthia Gregory, Revathy Carnagarin, Lakshini Y Herat, Vance B Matthews, Liam Robinson, Janardhan Vignarajan, David Prentice, Yogesan Kanagasingam, Markus P Schlaich, Shaun Frost, Janis Marc Nolde, Justine Chan, Anu Joyson, Cynthia Gregory, Revathy Carnagarin, Lakshini Y Herat, Vance B Matthews, Liam Robinson, Janardhan Vignarajan, David Prentice, Yogesan Kanagasingam, Markus P Schlaich

Abstract

Microvascular disease and rarefaction are key pathological hallmarks of hypertension. The retina uniquely allows direct, non-invasive investigation of the microvasculature. Recently developed optical coherence tomography angiography now allows investigation of the fine retinal capillaries, which may provide a superior marker of overall vascular damage. This was a prospective cross-sectional study to collect retinal capillary density data on 300 normal eyes from 150 hypertensive adults, and to investigate possible associations with other organ damage markers. The average age of participants was 54 years and there was a greater proportion of males (85; 57%) than females. Multivariate, confounder adjusted linear regression showed that retinal capillary rarefaction in the parafovea was associated with increased pulse wave velocity (β = - 0.4, P = 0.04), log-albumin/creatinine ratio (β = - 0.71, P = 0.003), and with reduced estimated glomerular filtration rate (β = 0.04, P = 0.02). Comparable significant associations were also found for whole-image vascular-density, for foveal vascular-density significant associations were found with pulse wave velocity and estimated glomerular filtration rate only. Our results indicate that retinal capillary rarefaction is associated with arterial stiffness and impaired kidney function. Retinal capillary rarefaction may represent a useful and simple test to assess the integrated burden of hypertension on the microvasculature irrespective of current blood pressure levels.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
OCT angiogram from a single eye, showing the four retinal depths (top): the superficial retinal plexus, the deep retinal plexus, the outer retina and the choriocapillaris. Bottom left shows the scan region (darker) overlaid on the broader retina. Bottom right shows the cross-section of the superior vascular plexus (SVP).
Figure 2
Figure 2
OCT angiogram of the left macula illustrating the regions of interest for retinal capillary density analysis. The central circular fovea region has a diameter of 1.5 mm, the parafovea ring reaches from 1.5 to 2.5 mm from the foveal center and the whole image is a 6 mm square centered on the fovea.
Figure 3
Figure 3
Scatterplots of foveal density against measures of hypertension mediated organ damage, including the unadjusted linear regression model fits (blue line) with the mean (grey area) and observed (red dashed lines) 95% confidence intervals. (a) Pulse wave velocity; (b) log (albumin–creatinine ratio); (c) estimated glomerular filtration rate (eGFR > 90 excluded), (d) boxplot comparing whole image density between groups classified by estimated glomerular filtration rate <  > 60).
Figure 4
Figure 4
Superficial macular OCT-A image samples demonstrating differences in capillary density. (a) High capillary density (foveal density 51.5) in a participant with normal vascular stiffness (PWV 8.8 m/s) and healthy kidney function (eGFR = 90 mL/min/1.73 m2). (b) Low capillary density (foveal density 21.7) in a participant with high vascular stiffness (PWV 12.2 m/s). (c) Low capillary density (foveal density 29.7) in a participant with impaired kidney function (eGFR = 29 mL/min/1.73 m2).

References

    1. WHO. World Health Organisation. Cardiovascular diseases (CVDs) 2016 (2016).
    1. Struijker-Boudier HAJ. Retinal microcirculation and early mechanisms of hypertension. Hypertension. 2008;51:821–822. doi: 10.1161/Hypertensionaha.107.103234.
    1. Conroy RM, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur. Heart J. 2003;24:987–1003. doi: 10.1016/s0195-668x(03)00114-3.
    1. Wong TY, Mitchell P. Hypertensive retinopathy. N. Engl. J. Med. 2004;351:2310–2317. doi: 10.1056/NEJMra032865.
    1. Mancia G, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) J. Hypertens. 2013;31:1281–1357. doi: 10.1097/.
    1. Collins R, et al. Blood pressure, stroke, and coronary heart disease. Part 2, short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet. 1990;335:827–838. doi: 10.1016/0140-6736(90)90944-z.
    1. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665. doi: 10.1136/bmj.b1665.
    1. Taylor J. 2013 ESH/ESC guidelines for the management of arterial hypertension. Eur. Heart J. 2013;34:2108–2109. doi: 10.1093/eurheartj/eht308.P1869.
    1. Wong TY. Retinal arterial signs and coronary heart disease. Am. J. Cardiol. 2006;97:1549. doi: 10.1016/j.amjcard.2005.12.003.
    1. Wong TY, et al. Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study. Lancet. 2001;358:1134–1140. doi: 10.1016/S0140-6736(01)06253-5.
    1. Wong TY, et al. Retinal arteriolar diameter and risk for hypertension. Ann. Intern. Med. 2004;140:248–255. doi: 10.7326/0003-4819-140-4-200402170-00006.
    1. Wong TY, et al. Retinal microvascular abnormalities and cognitive impairment in middle-aged persons: the atherosclerosis risk in communities study. Stroke. 2002;33:1487–1492. doi: 10.1161/01.str.0000016789.56668.43.
    1. McGeechan K, et al. Prediction of incident stroke events based on retinal vessel caliber: a systematic review and individual-participant meta-analysis. Am. J. Epidemiol. 2009;170:1323–1332. doi: 10.1093/aje/kwp306.
    1. McGeechan K, et al. Meta-analysis: retinal vessel caliber and risk for coronary heart disease. Ann. Intern. Med. 2009;151:404–413. doi: 10.7326/0003-4819-151-6-200909150-00005.
    1. Cheung N, et al. Retinal fractals and acute lacunar stroke. Ann. Neurol. 2010;68:107–111. doi: 10.1002/ana.22011.
    1. Doubal FN, et al. Fractal analysis of retinal vessels suggests that a distinct vasculopathy causes lacunar stroke. Neurology. 2010;74:1102–1107. doi: 10.1212/WNL.0b013e3181d7d8b4.
    1. Wong TY, et al. Quantitative retinal venular caliber and risk of cardiovascular disease in older persons: the cardiovascular health study. Arch. Intern. Med. 2006;166:2388–2394. doi: 10.1001/archinte.166.21.2388.
    1. Yatsuya H, et al. Retinal microvascular abnormalities and risk of lacunar stroke: atherosclerosis risk in communities study. Stroke. 2010;41:1349–1355. doi: 10.1161/STROKEAHA.110.580837.
    1. Yau JW, et al. Retinal arteriolar narrowing and subsequent development of CKD Stage 3: the Multi-Ethnic Study of Atherosclerosis (MESA) Am. J. Kidney Dis. 2011;58:39–46. doi: 10.1053/j.ajkd.2011.02.382.
    1. Yip W, et al. Retinal vascular imaging markers and incident chronic kidney disease: a prospective cohort study. Sci. Rep. 2017;7:9374. doi: 10.1038/s41598-017-09204-2.
    1. Wong TY. Retinal microvascular abnormalities and 10-year cardiovascular mortality: a population-based case-control study. Ophthalmology. 2003;110:933. doi: 10.1016/S0161-6420(03)00084-8.
    1. Liew G, Wong T, Mitchell P, Cheung N, Wang JJ. Retinopathy predicts coronary heart disease mortality. Heart. 2008 doi: 10.1136/hrt.2008.146670.
    1. Jung S, et al. Evidence of neurodegeneration in individuals with only mildly elevated blood pressure. J. Hypertens. 2019;37:2389–2397. doi: 10.1097/HJH.0000000000002164.
    1. Ting DSW, et al. Optical coherence tomographic angiography in type 2 diabetes and diabetic retinopathy. JAMA Ophthalmol. 2017;135:306–312. doi: 10.1001/jamaophthalmol.2016.5877.
    1. Chua J, et al. Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J. Hypertens. 2019;37:572–580. doi: 10.1097/HJH.0000000000001916.
    1. Lee CW, Cheng HC, Chang FC, Wang AG. Optical coherence tomography angiography evaluation of retinal microvasculature before and after carotid angioplasty and stenting. Sci. Rep. 2019;9:14755. doi: 10.1038/s41598-019-51382-8.
    1. d'Emden MC, Shaw JE, Jones GR, Cheung NW. Guidance concerning the use of glycated haemoglobin (HbA1c) for the diagnosis of diabetes mellitus. Med. J. Aust. 2015;203:89–90. doi: 10.5694/mja15.00041.
    1. Jumar A, et al. Retinal capillary rarefaction in patients with type 2 diabetes mellitus. PLoS ONE. 2016;11:e0162608. doi: 10.1371/journal.pone.0162608.
    1. Nguyen TT, Wang JJ, Wong TY. Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications. Diabetes Care. 2007;30:2708–2715. doi: 10.2337/dc07-0732.
    1. Meyer ML, et al. Central arterial stiffness and retinal vessel calibers: the Atherosclerosis Risk in Communities Study-Neurocognitive Study. J. Hypertens. 2019 doi: 10.1097/HJH.0000000000002252.
    1. Schwartz MM, Lewis EJ, Leonard-Martin T, Lewis JB, Batlle D. Renal pathology patterns in type II diabetes mellitus: relationship with retinopathy. The Collaborative Study Group. Nephrol. Dial. Transpl. 1998;13:2547–2552. doi: 10.1093/ndt/13.10.2547.
    1. Edwards MS, et al. Associations between retinal microvascular abnormalities and declining renal function in the elderly population: the Cardiovascular Health Study. Am. J. Kidney Dis. 2005;46:214–224. doi: 10.1053/j.ajkd.2005.05.005.
    1. Wong TY, et al. Retinal microvascular abnormalities and renal dysfunction: the atherosclerosis risk in communities study. J. Am. Soc. Nephrol. 2004;15:2469–2476. doi: 10.1097/01.ASN.0000136133.28194.E4.
    1. Bosch A, et al. Retinal capillary and arteriolar changes in patients with chronic kidney disease. Microvasc. Res. 2018;118:121–127. doi: 10.1016/j.mvr.2018.03.008.
    1. Patel A, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet. 2007;370:829–840. doi: 10.1016/S0140-6736(07)61303-8.
    1. de Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical coherence tomography angiography (OCTA) Int. J. Retina Vitreous. 2015;1:5. doi: 10.1186/s40942-015-0005-8.
    1. Bosch AJ, et al. Retinal capillary rarefaction in patients with untreated mild-moderate hypertension. BMC Cardiovasc. Disord. 2017;17:300. doi: 10.1186/s12872-017-0732-x.
    1. Kannenkeril D, et al. Retinal vascular resistance in arterial hypertension. Blood Press. 2018;27:82–87. doi: 10.1080/08037051.2017.1393311.
    1. Cheung CY, Ikram MK, Sabanayagam C, Wong TY. Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension. 2012;60:1094–1103. doi: 10.1161/HYPERTENSIONAHA.111.189142.
    1. Parati G, et al. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J. Hypertens. 2014;32:1359–1366. doi: 10.1097/HJH.0000000000000221.
    1. Williams B, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018;39:3021–3104. doi: 10.1093/eurheartj/ehy339.
    1. Townsend RR, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66:698–722. doi: 10.1161/HYP.0000000000000033.
    1. NICE. Chronic kidney disease in adults: assessment and management. National Institute for Health and Care Excellence Guideline CG182. (London, 2015).
    1. Koustenis A, Jr, et al. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br. J. Ophthalmol. 2017;101:16–20. doi: 10.1136/bjophthalmol-2016-309389.
    1. Coscas F, et al. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:OCT211–OCT223. doi: 10.1167/iovs.15-18793.
    1. Ying GS, Maguire MG, Glynn R, Rosner B. Tutorial on biostatistics: linear regression analysis of continuous correlated eye data. Ophthalm. Epidemiol. 2017;24:130–140. doi: 10.1080/09286586.2016.1259636.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Metthodol. 1995;57:289–300.
    1. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2013).

Source: PubMed

3
Subscribe