Soluble Biomarkers with Prognostic and Predictive Value in Advanced Non-Small Cell Lung Cancer Treated with Immunotherapy

Beatriz Honrubia-Peris, Javier Garde-Noguera, Jose García-Sánchez, Nuria Piera-Molons, Antonio Llombart-Cussac, María Leonor Fernández-Murga, Beatriz Honrubia-Peris, Javier Garde-Noguera, Jose García-Sánchez, Nuria Piera-Molons, Antonio Llombart-Cussac, María Leonor Fernández-Murga

Abstract

Numerous targeted therapies have been evaluated for the treatment of non-small cell lung cancer (NSCLC). To date, however, only a few agents have shown promising results. Recent advances in cancer immunotherapy, most notably immune checkpoint inhibitors (ICI), have transformed the treatment scenario for these patients. Although some patients respond well to ICIs, many patients do not benefit from ICIs, leading to disease progression and/or immune-related adverse events. New biomarkers capable of reliably predicting response to ICIs are urgently needed to improve patient selection. Currently available biomarkers-including programmed death protein 1 (PD-1) and its ligand (PD-L1), and tumor mutational burden (TMB)-have major limitations. At present, no well-validated, reliable biomarkers are available. Ideally, these biomarkers would be obtained through less invasive methods such as plasma determination or liquid biopsy. In the present review, we describe recent advances in the development of novel soluble biomarkers (e.g., circulating immune cells, TMB, circulating tumor cells, circulating tumor DNA, soluble factor PD-L1, tumor necrosis factor, etc.) for patients with NSCLC treated with ICIs. We also describe the potential use of these biomarkers as prognostic indicators of treatment response and toxicity.

Keywords: NSCLC; anti-PD-1/PD-L1; lung cancer; soluble biomarkers.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Soluble biomarkers of immune system response to immune therapy.

References

    1. Disis M.L. Immunologic Biomarkers as Correlates of Clinical Response to Cancer Immunotherapy. Cancer Immunol. Immunother. 2011;60:433–442. doi: 10.1007/s00262-010-0960-8.
    1. Davis A.A., Patel V.G. The Role of PD-L1 Expression as a Predictive Biomarker: An Analysis of All US Food and Drug Administration (FDA) Approvals of Immune Checkpoint Inhibitors. J. Immunother. Cancer. 2019;7:278. doi: 10.1186/s40425-019-0768-9.
    1. Brahmer J., Reckamp K.L., Baas P., Crinò L., Eberhardt W.E.E., Poddubskaya E., Antonia S., Pluzanski A., Vokes E.E., Holgado E., et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015;373:123–135. doi: 10.1056/NEJMoa1504627.
    1. Kim S., Kim M.Y., Koh J., Go H., Lee D.S., Jeon Y.K., Chung D.H. Programmed Death-1 Ligand 1 and 2 Are Highly Expressed in Pleomorphic Carcinomas of the Lung: Comparison of Sarcomatous and Carcinomatous Areas. Eur. J. Cancer. 2015;51:2698–2707. doi: 10.1016/j.ejca.2015.08.013.
    1. Mansfield A.S., Aubry M.C., Moser J.C., Harrington S.M., Dronca R.S., Park S.S., Dong H. Temporal and Spatial Discordance of Programmed Cell Death-Ligand 1 Expression and Lymphocyte Tumor Infiltration between Paired Primary Lesions and Brain Metastases in Lung Cancer. Ann. Oncol. 2016;27:1953–1958. doi: 10.1093/annonc/mdw289.
    1. Mansfield A.S., Dong H. Implications of Programmed Cell Death 1 Ligand 1 Heterogeneity in the Selection of Patients With Non-Small Cell Lung Cancer to Receive Immunotherapy. Clin. Pharmacol. Ther. 2016;100:220–222. doi: 10.1002/cpt.360.
    1. Sheng J., Fang W., Yu J., Chen N., Zhan J., Ma Y., Yang Y., Yan H., Zhao H., Zhang L. Expression of Programmed Death Ligand-1 on Tumor Cells Varies Pre and Post Chemotherapy in Non-Small Cell Lung Cancer. Sci. Rep. 2016;6:20090. doi: 10.1038/srep20090.
    1. Mitsuhashi A., Okuma Y. Perspective on Immune Oncology with Liquid Biopsy, Peripheral Blood Mononuclear Cells, and Microbiome with Non-Invasive Biomarkers in Cancer Patients. Clin. Transl. Oncol. 2018;20:966–974. doi: 10.1007/s12094-017-1827-7.
    1. Li S., Zhang C., Pang G., Wang P. Emerging Blood-Based Biomarkers for Predicting Response to Checkpoint Immunotherapy in Non-Small-Cell Lung Cancer. Front. Immunol. 2020;11:2731. doi: 10.3389/fimmu.2020.603157.
    1. Indini A., Rijavec E., Grossi F. Circulating Biomarkers of Response and Toxicity of Immunotherapy in Advanced Non-Small Cell Lung Cancer (NSCLC): A Comprehensive Review. Cancers. 2021;13:1794. doi: 10.3390/cancers13081794.
    1. Boutsikou E., Domvri K., Hardavella G., Tsiouda D., Zarogoulidis K., Kontakiotis T. Tumour Necrosis Factor, Interferon-Gamma and Interleukins as Predictive Markers of Antiprogrammed Cell-Death Protein-1 Treatment in Advanced Non-Small Cell Lung Cancer: A Pragmatic Approach in Clinical Practice. Ther. Adv. Med. Oncol. 2018;10:1758835918768238. doi: 10.1177/1758835918768238.
    1. Okuma Y., Hosomi Y., Nakahara Y., Watanabe K., Sagawa Y., Homma S. High Plasma Levels of Soluble Programmed Cell Death Ligand 1 Are Prognostic for Reduced Survival in Advanced Lung Cancer. Lung Cancer. 2017;104:1–6. doi: 10.1016/j.lungcan.2016.11.023.
    1. Suh K.J., Kim S.H., Kim Y.J., Kim M., Keam B., Kim T.M., Kim D.W., Heo D.S., Lee J.S. Post-Treatment Neutrophil-to-Lymphocyte Ratio at Week 6 Is Prognostic in Patients with Advanced Non-Small Cell Lung Cancers Treated with Anti-PD-1 Antibody. Cancer Immunol. Immunother. 2018;67:459–470. doi: 10.1007/s00262-017-2092-x.
    1. Liu D., Huang Y., Li L., Song J., Zhang L., Li W. High Neutrophil-to-Lymphocyte Ratios Confer Poor Prognoses in Patients with Small Cell Lung Cancer. BMC Cancer. 2017;17:1–8. doi: 10.1186/s12885-017-3893-1.
    1. Pawlikowska P., Faugeroux V., Oulhen M., Aberlenc A., Tayoun T., Pailler E., Farace F. Circulating Tumor Cells (CTCs) for the Noninvasive Monitoring and Personalization of Non-Small Cell Lung Cancer (NSCLC) Therapies. J. Thorac. Dis. 2019;11:S45–S56. doi: 10.21037/jtd.2018.12.80.
    1. Guibert N., Delaunay M., Lusque A., Boubekeur N., Rouquette I., Clermont E., Mourlanette J., Gouin S., Dormoy I., Favre G., et al. PD-L1 Expression in Circulating Tumor Cells of Advanced Non-Small Cell Lung Cancer Patients Treated with Nivolumab. Lung Cancer. 2018;120:108–112. doi: 10.1016/j.lungcan.2018.04.001.
    1. Wang Z., Duan J., Cai S., Han M., Dong H., Zhao J., Zhu B., Wang S., Zhuo M., Sun J., et al. Assessment of Blood Tumor Mutational Burden as a Potential Biomarker for Immunotherapy in Patients with Non-Small Cell Lung Cancer with Use of a Next-Generation Sequencing Cancer Gene Panel. JAMA Oncol. 2019;5:696–702. doi: 10.1001/jamaoncol.2018.7098.
    1. Larimer B.M., Wehrenberg-Klee E., Dubois F., Mehta A., Kalomeris T., Flaherty K., Boland G., Mahmood U. Granzyme B PET Imaging as a Predictive Biomarker of Immunotherapy Response. Cancer Res. 2017;77:2318–2327. doi: 10.1158/0008-5472.CAN-16-3346.
    1. Li Y., Jiang Q., Xia N., Yang H., Hu C. Decreased Expression of MicroRNA-375 in Nonsmall Cell Lung Cancer and Its Clinical Significance. J. Int. Med. Res. 2012;40:1662–1669. doi: 10.1177/030006051204000505.
    1. Ouaknine Krief J., Helly De Tauriers P., Dumenil C., Neveux N., Dumoulin J., Giraud V., Labrune S., Tisserand J., Julie C., Emile J.F., et al. Role of Antibiotic Use, Plasma Citrulline and Blood Microbiome in Advanced Non-Small Cell Lung Cancer Patients Treated with Nivolumab. J. Immunother. Cancer. 2019;7:176. doi: 10.1186/s40425-019-0658-1.
    1. Chen G., Huang A.C., Zhang W., Zhang G., Wu M., Xu W., Yu Z., Yang J., Wang B., Sun H., et al. Exosomal PD-L1 Contributes to Immunosuppression and Is Associated with Anti-PD-1 Response. Nature. 2018;560:382–386. doi: 10.1038/s41586-018-0392-8.
    1. Jiang T., Qiao M., Zhao C., Li X., Gao G., Su C., Ren S., Zhou C. Pretreatment Neutrophil-to-Lymphocyte Ratio Is Associated with Outcome of Advanced-Stage Cancer Patients Treated with Immunotherapy: A Meta-Analysis. Cancer Immunol. Immunother. 2018;67:713–727. doi: 10.1007/s00262-018-2126-z.
    1. Nakaya A., Kurata T., Yoshioka H., Takeyasu Y., Niki M., Kibata K., Satsutani N., Ogata M., Miyara T., Nomura S. Neutrophil-to-Lymphocyte Ratio as an Early Marker of Outcomes in Patients with Advanced Non-Small-Cell Lung Cancer Treated with Nivolumab. Int. J. Clin. Oncol. 2018;23:634–640. doi: 10.1007/s10147-018-1250-2.
    1. Goodman A.M., Kato S., Bazhenova L., Patel S.P., Frampton G.M., Miller V., Stephens P.J., Daniels G.A., Kurzrock R. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol. Cancer Ther. 2017;16:2598–2608. doi: 10.1158/1535-7163.MCT-17-0386.
    1. Gnjatic S., Bronte V., Brunet L.R., Butler M.O., Disis M.L., Galon J., Hakansson L.G., Hanks B.A., Karanikas V., Khleif S.N., et al. Identifying Baseline Immune-Related Biomarkers to Predict Clinical Outcome of Immunotherapy. J. Immunother. Cancer. 2017;5:1–18. doi: 10.1186/s40425-017-0243-4.
    1. Dronca R.S., Markovic S., Kottschade L.A., McWilliams R.R., Block M.S., Nevala W.K., Thompson M.A., Dong H. Bim as a Predictive T-Cell Biomarker for Response to Anti-PD-1 Therapy in Metastatic Melanoma (MM) J. Clin. Oncol. 2015;33:9013. doi: 10.1200/jco.2015.33.15_suppl.9013.
    1. Akyüz N., Brandt A., Stein A., Schliffke S., Mährle T., Quidde J., Goekkurt E., Loges S., Haalck T., Ford C.T., et al. T-Cell Diversification Reflects Antigen Selection in the Blood of Patients on Immune Checkpoint Inhibition and May Be Exploited as Liquid Biopsy Biomarker. Int. J. Cancer. 2017;140:2535–2544. doi: 10.1002/ijc.30549.
    1. Kamphorst A.O., Pillai R.N., Yang S., Nasti T.H., Akondy R.S., Wieland A., Sica G.L., Yu K., Koenig L., Patel N.T., et al. Proliferation of PD-1+ CD8 T Cells in Peripheral Blood after PD-1-Targeted Therapy in Lung Cancer Patients. Proc. Natl. Acad. Sci. USA. 2017;114:4993–4998. doi: 10.1073/pnas.1705327114.
    1. Valsamo A., Daniel C.B., Noushin N., James R.W., Xiaoshan M.S., John W.S., Julie S., Tsai H.-L., Wang H., Zineb B. Integrative Tumor and Immune Cell Multi-Omic Analyses Predict Response to Immune Checkpoint Blockade in Melanoma. Cell reports. Med. 2020;1:100139. doi: 10.1016/j.xcrm.2020.100139.
    1. Wu T.D., Madireddi S., de Almeida P.E., Banchereau R., Chen Y.-J.J., Chitre A.S., Chiang E.Y., Iftikhar H., O’Gorman W.E., Au-Yeung A., et al. Peripheral T Cell Expansion Predicts Tumour Infiltration and Clinical Response. Nature. 2020;579:274–278. doi: 10.1038/s41586-020-2056-8.
    1. Petitprez F., de Reyniès A., Keung E.Z., Chen T.W.-W., Sun C.-M., Calderaro J., Jeng Y.-M., Hsiao L.-P., Lacroix L., Bougoüin A., et al. B Cells Are Associated with Survival and Immunotherapy Response in Sarcoma. Nature. 2020;577:556–560. doi: 10.1038/s41586-019-1906-8.
    1. Mami-Chouaib F., Blanc C., Corgnac S., Hans S., Malenica I., Granier C., Tihy I., Tartour E. Resident Memory T Cells, Critical Components in Tumor Immunology. J. Immunother. Cancer. 2018;6:87. doi: 10.1186/s40425-018-0399-6.
    1. Dong X., Ding S., Yu M., Niu L., Xue L., Zhao Y., Xie L., Song X., Song X. Small Nuclear RNAs (U1, U2, U5) in Tumor-Educated Platelets Are Downregulated and Act as Promising Biomarkers in Lung Cancer. Front. Oncol. 2020;10:1627. doi: 10.3389/fonc.2020.01627.
    1. Greillier L., Tomasini P., Barlesi F. The Clinical Utility of Tumor Mutational Burden in Non-Small Cell Lung Cancer. Transl. Lung Cancer Res. 2018;7:639–646. doi: 10.21037/tlcr.2018.10.08.
    1. Rizvi H., Sanchez-Vega F., La K., Chatila W., Jonsson P., Halpenny D., Plodkowski A., Long N., Sauter J.L., Rekhtman N., et al. Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients with Non-Small-Cell Lung Cancer Profiled with Targeted next-Generation Sequencing. J. Clin. Oncol. 2018;36:633–641. doi: 10.1200/JCO.2017.75.3384.
    1. Heeke S., Hofman P. Tumor Mutational Burden Assessment as a Predictive Biomarker for Immunotherapy in Lung Cancer Patients: Getting Ready for Prime-Time or Not? Transl. Lung Cancer Res. 2018;7:631–638. doi: 10.21037/tlcr.2018.08.04.
    1. Hellmann M.D., Ciuleanu T.E., Pluzanski A., Lee J.S., Otterson G.A., Audigier-Valette C., Minenza E., Linardou H., Burgers S., Salman P., et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N. Engl. J. Med. 2018;378:2093–2104. doi: 10.1056/NEJMoa1801946.
    1. Galvano A., Gristina V., Malapelle U., Pisapia P., Pepe F., Barraco N., Castiglia M., Perez A., Rolfo C., Troncone G., et al. The Prognostic Impact of Tumor Mutational Burden (TMB) in the First-Line Management of Advanced Non-Oncogene Addicted Non-Small-Cell Lung Cancer (NSCLC): A Systematic Review and Meta-Analysis of Randomized Controlled Trials. ESMO Open. 2021;6:100124. doi: 10.1016/j.esmoop.2021.100124.
    1. Snyder A., Makarov V., Merghoub T., Yuan J., Zaretsky J.M., Desrichard A., Walsh L.A., Postow M.A., Wong P., Ho T.S., et al. Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. N. Engl. J. Med. 2014;371:2189–2199. doi: 10.1056/NEJMoa1406498.
    1. Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., Lee W., Yuan J., Wong P., Ho T.S., et al. Mutational Landscape Determines Sensitivity to PD-1 Blockade in Non-Small Cell Lung Cancer. Science. 2015;348:124–128. doi: 10.1126/science.aaa1348.
    1. Rosenberg J.E., Hoffman-Censits J., Powles T., Van Der Heijden M.S., Balar A.V., Necchi A., Dawson N., O’Donnell P.H., Balmanoukian A., Loriot Y., et al. Atezolizumab in Patients with Locally Advanced and Metastatic Urothelial Carcinoma Who Have Progressed Following Treatment with Platinum-Based Chemotherapy: A Single-Arm, Multicentre, Phase 2 Trial. Lancet. 2016;387:1909–1920. doi: 10.1016/S0140-6736(16)00561-4.
    1. Gandara D.R., Paul S.M., Kowanetz M., Schleifman E., Zou W., Li Y., Rittmeyer A., Fehrenbacher L., Otto G., Malboeuf C., et al. Blood-Based Tumor Mutational Burden as a Predictor of Clinical Benefit in Non-Small-Cell Lung Cancer Patients Treated with Atezolizumab. Nat. Med. 2018;24:1441–1448. doi: 10.1038/s41591-018-0134-3.
    1. Hong Y., Fang F., Zhang Q. Circulating Tumor Cell Clusters: What We Know and What We Expect (Review) Int. J. Oncol. 2016;49:2206–2216. doi: 10.3892/ijo.2016.3747.
    1. Muinelo-Romay L., Vieito M., Abalo A., Nocelo M.A., Barón F., Anido U., Brozos E., Vázquez F., Aguín S., Abal M., et al. Evaluation of Circulating Tumor Cells and Related Events as Prognostic Factors and Surrogate Biomarkers in Advanced NSCLC Patients Receiving First-Line Systemic Treatment. Cancers. 2014;6:153–165. doi: 10.3390/cancers6010153.
    1. Punnoose E.A., Atwal S., Liu W., Raja R., Fine B.M., Hughes B.G.M., Hicks R.J., Hampton G.M., Amler L.C., Pirzkall A., et al. Evaluation of Circulating Tumor Cells and Circulating Tumor DNA in Non-Small Cell Lung Cancer: Association with Clinical Endpoints in a Phase II Clinical Trial of Pertuzumab and Erlotinib. Clin. Cancer Res. 2012;18:2391–2401. doi: 10.1158/1078-0432.CCR-11-3148.
    1. Nicolazzo C., Raimondi C., Mancini M., Caponnetto S., Gradilone A., Gandini O., Mastromartino M., Del Bene G., Prete A., Longo F., et al. Monitoring PD-L1 Positive Circulating Tumor Cells in Non-Small Cell Lung Cancer Patients Treated with the PD-1 Inhibitor Nivolumab. Sci. Rep. 2016;6:31726. doi: 10.1038/srep31726.
    1. Cabel L., Riva F., Servois V., Livartowski A., Daniel C., Rampanou A., Lantz O., Romano E., Milder M., Buecher B., et al. Circulating Tumor DNA Changes for Early Monitoring of Anti-PD1 Immunotherapy: A Proof-of-Concept Study. Ann. Oncol. 2017;28:1996–2001. doi: 10.1093/annonc/mdx212.
    1. Lipson E.J., Velculescu V.E., Pritchard T.S., Sausen M., Pardoll D.M., Topalian S.L., Diaz L.A. Circulating Tumor DNA Analysis as a Real-Time Method for Monitoring Tumor Burden in Melanoma Patients Undergoing Treatment with Immune Checkpoint Blockade. J. Immunother. Cancer. 2014;2:42. doi: 10.1186/s40425-014-0042-0.
    1. Zhu X., Lang J. Soluble PD-1 and PD-L1: Predictive and Prognostic Significance in Cancer. Oncotarget. 2017;8:97671–97682. doi: 10.18632/oncotarget.18311.
    1. Reck M., Rodriguez-Abreu D., Robinson A.G., Hui R., Csöszi T., Fülöp A., Gottfried M., Peled N., Tafreshi A., Cuffe S., et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016;375:1823–1833. doi: 10.1056/NEJMoa1606774.
    1. Carbone D.P., Reck M., Paz-Ares L., Creelan B., Horn L., Steins M., Felip E., van den Heuvel M.M., Ciuleanu T.-E., Badin F., et al. First-Line Nivolumab in Stage IV or Recurrent Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017;376:2415–2426. doi: 10.1056/NEJMoa1613493.
    1. Tran H.T., Liu Y., Zurita A.J., Lin Y., Baker-Neblett K.L., Martin A.M., Figlin R.A., Hutson T.E., Sternberg C.N., Amado R.G., et al. Prognostic or Predictive Plasma Cytokines and Angiogenic Factors for Patients Treated with Pazopanib for Metastatic Renal-Cell Cancer: A Retrospective Analysis of Phase 2 and Phase 3 Trials. Lancet Oncol. 2012;13:827–837. doi: 10.1016/S1470-2045(12)70241-3.
    1. Schalper K.A., Carleton M., Zhou M., Chen T., Feng Y., Huang S.-P., Walsh A.M., Baxi V., Pandya D., Baradet T., et al. Elevated Serum Interleukin-8 Is Associated with Enhanced Intratumor Neutrophils and Reduced Clinical Benefit of Immune-Checkpoint Inhibitors. Nat. Med. 2020;26:688–692. doi: 10.1038/s41591-020-0856-x.
    1. Tak P.P., Spaeny-Dekking L., Kraan M.C., Breedveld F.C., Froelich C.J., Hack C.E. The Levels of Soluble Granzyme A and B Are Elevated in Plasma and Synovial Fluid of Patients with Rheumatoid Arthritis (RA) Clin. Exp. Immunol. 1999;116:366–370. doi: 10.1046/j.1365-2249.1999.00881.x.
    1. Kondo H., Hojo Y., Tsuru R., Nishimura Y., Shimizu H., Takahashi N., Hirose M., Ikemoto T., Ohya K.I., Katsuki T., et al. Elevation of Plasma Granzyme B Levels after Acute Myocardial Infarction: Correlation with Left Ventricular Remodeling. Circ. J. 2009;73:503–507. doi: 10.1253/circj.CJ-08-0668.
    1. Skjelland M., Michelsen A.E., Krohg-Sørensen K., Tennøe B., Dahl A., Bakke S., Brosstad F., Damås J.K., Russell D., Halvorsen B., et al. Plasma Levels of Granzyme B Are Increased in Patients with Lipid-Rich Carotid Plaques as Determined by Echogenicity. Atherosclerosis. 2007;195:e142–e146. doi: 10.1016/j.atherosclerosis.2007.05.001.
    1. Wu X., Wang X., Zhao Y., Li K., Yu B., Zhang J. Granzyme Family Acts as a Predict Biomarker in Cutaneous Melanoma and Indicates More Benefit from Anti-PD-1 Immunotherapy. Int. J. Med. Sci. 2021;18:1657–1669. doi: 10.7150/ijms.54747.
    1. Hurkmans D.P., Basak E.A., Schepers N., Oomen-De Hoop E., Van Der Leest C.H., El Bouazzaoui S., Bins S., Koolen S.L.W., Sleijfer S., Van Der Veldt A.A.M., et al. Granzyme B Is Correlated with Clinical Outcome after PD-1 Blockade in Patients with Stage IV Non-Small-Cell Lung Cancer. J. Immunother. Cancer. 2020;8:e000586. doi: 10.1136/jitc-2020-000586.
    1. Costantini A., Julie C., Dumenil C., Hélias-Rodzewicz Z., Tisserand J., Dumoulin J., Giraud V., Labrune S., Chinet T., Emile J.F., et al. Predictive Role of Plasmatic Biomarkers in Advanced Non-Small Cell Lung Cancer Treated by Nivolumab. Oncoimmunology. 2018;7:e1452581. doi: 10.1080/2162402X.2018.1452581.
    1. Naidu S., Garofalo M. MicroRNAs: An Emerging Paradigm in Lung Cancer Chemoresistance. Front. Med. 2015;2:77. doi: 10.3389/fmed.2015.00077.
    1. Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E., Chow L.Q., Vokes E.E., Felip E., Holgado E., et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015;373:1627–1639. doi: 10.1056/NEJMoa1507643.
    1. Chen L.J., Li X.Y., Zhao Y.Q., Liu W.J., Wu H.J., Liu J., Mu X.Q., Wu H.B. Down-Regulated MicroRNA-375 Expression as a Predictive Biomarker in Non-Small Cell Lung Cancer Brain Metastasis and Its Prognostic Significance. Pathol. Res. Pract. 2017;213:882–888. doi: 10.1016/j.prp.2017.06.012.
    1. Xu L., Wen T., Liu Z., Xu F., Yang L., Liu J., Feng G., An G. MicroRNA-375 Suppresses Human Colorectal Cancer Metastasis by Targeting Frizzled 8. Oncotarget. 2016;7:40644–40656. doi: 10.18632/oncotarget.9811.
    1. Shao Y., Geng Y., Gu W., Huang J., Ning Z., Pei H. Prognostic Significance of MicroRNA-375 Downregulation in Solid Tumors: A Meta-Analysis. Dis. Markers. 2014;2014:626185. doi: 10.1155/2014/626185.
    1. Hu Y., Wang L., Gu J., Qu K., Wang Y. Identification of MicroRNA Differentially Expressed in Three Subtypes of Non-Small Cell Lung Cancer and in Silico Functional Analysis. Oncotarget. 2017;8:74554–74566. doi: 10.18632/oncotarget.20218.
    1. Fujita Y., Yagishita S., Hagiwara K., Yoshioka Y., Kosaka N., Takeshita F., Fujiwara T., Tsuta K., Nokihara H., Tamura T., et al. The Clinical Relevance of the MiR-197/CKS1B/STAT3-Mediated PD-L1 Network in Chemoresistant Non-Small-Cell Lung Cancer. Mol. Ther. 2015;23:717–727. doi: 10.1038/mt.2015.10.
    1. Gibbons D.L., Chen L., Goswami S., Cortez M.A., Ahn Y.-H., Byers L.A., Lin W., Diao L., Wang J., Roybal J., et al. Regulation of Tumor Cell PD-L1 Expression by MicroRNA-200 and Control of Lung Cancer Metastasis. J. Clin. Oncol. 2014;32:8063. doi: 10.1200/jco.2014.32.15_suppl.8063.
    1. Halvorsen A.R., Sandhu V., Sprauten M., Flote V.G., Kure E.H., Brustugun O.T., Helland Å. Circulating MicroRNAs Associated with Prolonged Overall Survival in Lung Cancer Patients Treated with Nivolumab. Acta Oncol. 2018;57:1225–1231. doi: 10.1080/0284186X.2018.1465585.
    1. Alexander J.L., Wilson I.D., Teare J., Marchesi J.R., Nicholson J.K., Kinross J.M. Gut Microbiota Modulation of Chemotherapy Efficacy and Toxicity. Nat. Rev. Gastroenterol. Hepatol. 2017;14:356–365. doi: 10.1038/nrgastro.2017.20.
    1. Huang J., Liu D., Wang Y., Liu L., Li J., Yuan J., Jiang Z., Jiang Z., Hsiao W.L.W., Liu H., et al. Ginseng Polysaccharides Alter the Gut Microbiota and Kynurenine/Tryptophan Ratio, Potentiating the Antitumour Effect of Antiprogrammed Cell Death 1/Programmed Cell Death Ligand 1 (Anti-PD-1/PD-L1) Immunotherapy. Gut. 2021;32:1031. doi: 10.1136/gutjnl-2020-321031.
    1. Poggio M., Hu T., Pai C.C., Chu B., Belair C.D., Chang A., Montabana E., Lang U.E., Fu Q., Fong L., et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-Tumor Immunity and Memory. Cell. 2019;177:414–427.e13. doi: 10.1016/j.cell.2019.02.016.
    1. Del Re M., Marconcini R., Pasquini G., Rofi E., Vivaldi C., Bloise F., Restante G., Arrigoni E., Caparello C., Grazia Bianco M., et al. PD-L1 MRNA Expression in Plasma-Derived Exosomes Is Associated with Response to Anti-PD-1 Antibodies in Melanoma and NSCLC. Br. J. Cancer. 2018;118:820–824. doi: 10.1038/bjc.2018.9.
    1. Takada K., Shimokawa M., Takamori S., Shimamatsu S., Hirai F., Tagawa T., Okamoto T., Hamatake M., Tsuchiya-Kawano Y., Otsubo K., et al. Clinical Impact of Probiotics on the Efficacy of Anti-PD-1 Monotherapy in Patients with Nonsmall Cell Lung Cancer: A Multicenter Retrospective Survival Analysis Study with Inverse Probability of Treatment Weighting. Int. J. Cancer. 2021;149:473–482. doi: 10.1002/ijc.33557.
    1. Whiteside T.L. Exosomes and Tumor-Mediated Immune Suppression. J. Clin. Investig. 2016;126:1216–1223. doi: 10.1172/JCI81136.
    1. Peng X.X., Yu R.Y., Wu X., Wu S.Y., Pi C., Chen Z.H., Zhang X.C., Gao C.Y., Shao Y.W., Liu L., et al. Correlation of Plasma Exosomal MicroRNAs with the Efficacy of Immunotherapy in EGFR/ALK Wild-Type Advanced Non-Small Cell Lung Cancer. J. Immunother. Cancer. 2020;8:e000376. doi: 10.1136/jitc-2019-000376.
    1. Guyon N., Garnier D., Briand J., Nadaradjane A., Bougras-Cartron G., Raimbourg J., Campone M., Heymann D., Vallette F.M., Frenel J.S., et al. Anti-PD1 Therapy Induces Lymphocyte-Derived Exosomal MiRNA-4315 Release Inhibiting Bim-Mediated Apoptosis of Tumor Cells. Cell Death Dis. 2020;11:1048. doi: 10.1038/s41419-020-03224-z.
    1. Shu S.L., Matsuzaki J., Want M.Y., Conway A., Benjamin-Davalos S., Allen C.L., Koroleva M., Battaglia S., Odunsi A., Minderman H., et al. An Immunosuppressive Effect of Melanoma-Derived Exosomes on NY-ESO-1 Antigen-Specific Human CD8+ T Cells Is Dependent on IL-10 and Independent of BRAFV600E Mutation in Melanoma Cell Lines. Immunol. Investig. 2020;49:744–757. doi: 10.1080/08820139.2020.1803353.

Source: PubMed

3
Subscribe