Ketogenic diet for mood disorders from animal models to clinical application

Ilya V Smolensky, Kilian Zajac-Bakri, Peter Gass, Dragos Inta, Ilya V Smolensky, Kilian Zajac-Bakri, Peter Gass, Dragos Inta

Abstract

Mood disorders such as major depressive disorder (MDD) and bipolar disorder (BD) are often resistant to current pharmacological treatment. Therefore, various alternative therapeutic approaches including diets are, therefore, under investigation. Ketogenic diet (KD) is effective for treatment-resistant epilepsy and metabolic diseases, however, only a few clinical studies suggest its beneficial effect also for mental disorders. Animal models are a useful tool to uncover the underlying mechanisms of therapeutic effects. Women have a twice-higher prevalence of mood disorders but very little is known about sex differences in nutritional psychiatry. In this review, we aim to summarize current knowledge of the sex-specific effects of KD in mood disorders. Ketone bodies improve mitochondrial functions and suppress oxidative stress, inducing neuroprotective and anti-inflammatory effects which are both beneficial for mental health. Limited data also suggest KD-induced improvement of monoaminergic circuits and hypothalamus-pituitary-adrenal axis-the key pathophysiological pathways of mood disorders. Gut microbiome is an important mediator of the beneficial and detrimental effects of diet on brain functioning and mental health. Gut microbiota composition is affected in mood disorders but its role in the therapeutic effects of different diets, including KD, remains poorly understood. Still little is known about sex differences in the effects of KD on mental health as well as on metabolism and body weight. Some animal studies used both sexes but did not find differences in behavior, body weight loss or gut microbiota composition. More studies, both on a preclinical and clinical level, are needed to better understand sex-specific effects of KD on mental health.

Keywords: Bipolar disorder; Depression; Ketogenic diet; Neurogenesis; Neuroinflammation; Sex differences.

Conflict of interest statement

Authors declare no conflict of interests.

© 2023. The Author(s).

References

    1. Ahn Y, Sabouny R, Villa BR, et al. Aberrant mitochondrial morphology and function in the BTBR mouse model of autism is improved by 2 weeks of Ketogenic Diet. Intern J Mole Sci. 2020 doi: 10.3390/ijms21093266.
    1. Ang QY, Alexander M, Newman JC, et al. Ketogenic Diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell. 2020;181:1263–1275.e16. doi: 10.1016/j.cell.2020.04.027.
    1. Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol. 1999;160:1–12. doi: 10.1677/joe.0.1600001.
    1. Ari C, Kovács Z, Juhasz G, et al. Exogenous ketone supplements reduce anxiety-related behavior in sprague-dawley and wistar albino glaxo/rijswijk rats. Front Mol Neurosci. 2017;9:137. doi: 10.3389/fnmol.2016.00137.
    1. Ari C, Murdun C, Goldhagen C, et al. Exogenous ketone supplements improved motor performance in preclinical rodent models. Nutrients. 2020 doi: 10.3390/nu12082459.
    1. Attaye I, van Oppenraaij S, Warmbrunn MV, Nieuwdorp M. The role of the gut microbiota on the beneficial effects of ketogenic diets. Nutrients. 2022 doi: 10.3390/nu14010191.
    1. Audet MC. Stress-induced disturbances along the gut microbiota-immune-brain axis and implications for mental health: Does sex matter? Front Neuroendocrinol. 2019;54:100772. doi: 10.1016/j.yfrne.2019.100772.
    1. Augustin K, Khabbush A, Williams S, et al. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 2018;17:84–93. doi: 10.1016/S1474-4422(17)30408-8.
    1. Baldessarini RJ, Tondo L, Vázquez GH. Pharmacological treatment of adult bipolar disorder. Mol Psychiatry. 2019;24:198–217. doi: 10.1038/s41380-018-0044-2.
    1. Benjamin JS, Pilarowski GO, Carosso GA, et al. A ketogenic diet rescues hippocampal memory defects in a mouse model of Kabuki syndrome. Proceed Nat Acad Sci. 2017;114:125–130. doi: 10.1073/pnas.1611431114.
    1. Beyer DKE, Freund N. Animal models for bipolar disorder: from bedside to the cage. Intern J Bipol Dis. 2017 doi: 10.1186/s40345-017-0104-6.
    1. Bortolato M, Chen K, Shih JC. Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev. 2008;60:1527–1533. doi: 10.1016/j.addr.2008.06.002.
    1. Bough KJ, Wetherington J, Hassel B, et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006;60:223–235. doi: 10.1002/ana.20899.
    1. Bridgewater LC, Zhang C, Wu Y, et al. Gender-based differences in host behavior and gut microbiota composition in response to high fat diet and stress in a mouse model. Sci Rep. 2017;7:10776. doi: 10.1038/s41598-017-11069-4.
    1. Brietzke E, Mansur RB, Subramaniapillai M, et al. Ketogenic diet as a metabolic therapy for mood disorders: evidence and developments. Neurosci Biobehav Rev. 2018;94:11–16. doi: 10.1016/j.neubiorev.2018.07.020.
    1. Brownlow ML, Jung SH, Moore RJ, et al. Nutritional ketosis affects metabolism and behavior in sprague-dawley rats in both control and chronic stress environments. Front Mole Neurosci. 2017 doi: 10.3389/fnmol.2017.00129.
    1. Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients. 2010;2:355–374. doi: 10.3390/nu2030355.
    1. Cavaleri F, Bashar E. Potential synergies of β-hydroxybutyrate and butyrate on the modulation of metabolism, inflammation, cognition, and general health. J Nut Meta. 2018;2018:7195760. doi: 10.1155/2018/7195760.
    1. Chen J, Zheng P, Liu Y, et al. Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatr Dis Treat. 2018;14:647–655. doi: 10.2147/NDT.S159322.
    1. Cheng B, Yang X, Hou Z, et al. d-β-hydroxybutyrate inhibits the apoptosis of PC12 cells induced by 6-OHDA in relation to up-regulating the ratio of Bcl-2/Bax mRNA. Auton Neurosci. 2007;134:38–44. doi: 10.1016/j.autneu.2007.02.002.
    1. Church WH, Adams RE, Wyss LS. Ketogenic diet alters dopaminergic activity in the mouse cortex. Neurosci Lett. 2014;571:1–4. doi: 10.1016/j.neulet.2014.04.016.
    1. Cochran J, Taufalele PV, Lin KD, et al. Sex differences in the response of C57BL/6 mice to ketogenic diets. Diabetes. 2018;67:1884. doi: 10.2337/db18-1884-P.
    1. D’Abbondanza M, Ministrini S, Pucci G, et al. Very low-carbohydrate ketogenic diet for the treatment of severe obesity and associated non-alcoholic fatty liver disease: the role of sex differences. Nutrients. 2020 doi: 10.3390/nu12092748.
    1. Dahlin M, Månsson J-E, Åmark P. CSF levels of dopamine and serotonin, but not norepinephrine, metabolites are influenced by the ketogenic diet in children with epilepsy. Epilepsy Res. 2012;99:132–138. doi: 10.1016/j.eplepsyres.2011.11.003.
    1. Dai Y, Zhao Y, Tomi M, et al. Sex-specific life course changes in the neuro-metabolic phenotype of glut3 null heterozygous mice: ketogenic diet ameliorates electroencephalographic seizures and improves sociability. Endocrinology. 2017;158:936–949. doi: 10.1210/en.2016-1816.
    1. Danan A, Westman EC, Saslow LR, Ede G. The ketogenic diet for refractory mental illness: a retrospective analysis of 31 inpatients. Front Psychiatry. 2022 doi: 10.3389/fpsyt.2022.951376.
    1. Daniels TE, Olsen EM, Tyrka AR. Stress and psychiatric disorders: the role of mitochondria. Annu Rev Clin Psychol. 2020;16:165–186. doi: 10.1146/annurev-clinpsy-082719-104030.
    1. Ding Y, Bu F, Chen T, et al. A next-generation probiotic: akkermansia muciniphila ameliorates chronic stress–induced depressive-like behavior in mice by regulating gut microbiota and metabolites. Appl Microbiol Biotechnol. 2021;105:8411–8426. doi: 10.1007/s00253-021-11622-2.
    1. Eid RS, Gobinath AR, Galea LAM. Sex differences in depression: insights from clinical and preclinical studies. Prog Neurobiol. 2019;176:86–102. doi: 10.1016/j.pneurobio.2019.01.006.
    1. Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids. 2004;70:243–251. doi: 10.1016/j.plefa.2003.11.001.
    1. Fumagalli M, Lombardi M, Gressens P, Verderio C. How to reprogram microglia toward beneficial functions. Glia. 2018;66:2531–2549. doi: 10.1002/glia.23484.
    1. Gasior M, Rogawski MA, Hartman AL. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol. 2006 doi: 10.1097/00008877-200609000-00009.
    1. Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nat Med. 2019;25:1657–1666. doi: 10.1038/s41591-019-0643-8.
    1. Guan YF, Huang GB, Xu MD, et al. Anti-depression effects of ketogenic diet are mediated via the restoration of microglial activation and neuronal excitability in the lateral habenula. Brain Behav Immun. 2020;88:748–762. doi: 10.1016/j.bbi.2020.05.032.
    1. Gutiérrez-Repiso C, Hernández-García C, García-Almeida JM, et al. Effect of synbiotic supplementation in a very-low-calorie ketogenic diet on weight loss achievement and gut microbiota: a randomized controlled pilot study. Mol Nutr Food Res. 2019;63:1900167. doi: 10.1002/mnfr.201900167.
    1. Gzielo K, Soltys Z, Rajfur Z, Setkowicz ZK. The impact of the ketogenic diet on glial cells morphology. Quant Morphol Analy Neurosci. 2019;413:239–251. doi: 10.1016/j.neuroscience.2019.06.009.
    1. Hahn MK, Blakely RD. Monoamine transporter gene structure and polymorphisms in relation to psychiatric and other complex disorders. Pharmacogenomics J. 2002;2:217–235. doi: 10.1038/sj.tpj.6500106.
    1. Halyburton AK, Brinkworth GD, Wilson CJ, et al. Low- and high-carbohydrate weight-loss diets have similar effects on mood but not cognitive performance. Am J Clin Nutr. 2007;86:580–587. doi: 10.1093/ajcn/86.3.580.
    1. Hamilton JA. Transport of fatty acids across membranes by the diffusion mechanism. Prostaglandins Leukot Essent Fatty Acids. 1999;60:291–297. doi: 10.1016/S0952-3278(99)80002-7.
    1. Haritov E, Tivcheva J. Additive antidepressant effects of combined administration of ecitalopram and caloric restriction in LPS-induced neonatal model of depression in rats. Acta Medica Bulgarica. 2020;47:31–37. doi: 10.2478/amb-2020-0042.
    1. Hartman AL, Gasior M, Vining EPG, Rogawski MA. The neuropharmacology of the Ketogenic Diet. Pediatr Neurol. 2007;36:281–292. doi: 10.1016/j.pediatrneurol.2007.02.008.
    1. Hartman AL, Vining EPG. Clinical aspects of the ketogenic diet. Epilepsia. 2007;48:31–42. doi: 10.1111/j.1528-1167.2007.00914.x.
    1. Hee Seo J, Mock Lee Y, Soo Lee J, et al. Efficacy and tolerability of the ketogenic diet according to lipid: nonlipid ratios—comparison of 3: 1 with 4:1 diet. Epilepsia. 2007;48:801–805. doi: 10.1111/j.1528-1167.2007.01025.x.
    1. Hollis F, Mitchell ES, Canto C, et al. Medium chain triglyceride diet reduces anxiety-like behaviors and enhances social competitiveness in rats. Neuropharmacology. 2018;138:245–256. doi: 10.1016/j.neuropharm.2018.06.017.
    1. Holtzheimer PE, Mayberg HS. Stuck in a rut: rethinking depression and its treatment. Trends Neurosci. 2011;34:1–9. doi: 10.1016/j.tins.2010.10.004.
    1. Hongchang G, Shu Q, Jiuxia C, et al. Antibiotic exposure has sex-dependent effects on the gut microbiota and metabolism of short-chain fatty acids and amino acids in mice. mSystems. 2019;4:e00048–e119. doi: 10.1128/mSystems.00048-19.
    1. Hu Z-G, Wang H-D, Qiao L, et al. The protective effect of the ketogenic diet on traumatic brain injury-induced cell death in juvenile rats. Brain Inj. 2009;23:459–465. doi: 10.1080/02699050902788469.
    1. Huang C, Wang P, Xu X, et al. The ketone body metabolite β-hydroxybutyrate induces an antidepression-associated ramification of microglia via HDACs inhibition-triggered Akt-small RhoGTPase activation. Glia. 2018;66:256–278. doi: 10.1002/glia.23241.
    1. Iacovides S, Goble D, Paterson B, Meiring RM. Three consecutive weeks of nutritional ketosis has no effect on cognitive function, sleep, and mood compared with a high-carbohydrate, low-fat diet in healthy individuals: a randomized, crossover, controlled trial. Am J Clin Nutr. 2019;110:349–357. doi: 10.1093/ajcn/nqz073.
    1. IJff DM, Postulart D, Lambrechts DAJE, et al. Cognitive and behavioral impact of the ketogenic diet in children and adolescents with refractory epilepsy: a randomized controlled trial. Epi Behav. 2016;60:153–157. doi: 10.1016/j.yebeh.2016.04.033.
    1. Jaggar M, Rea K, Spichak S, et al. You’ve got male: Sex and the microbiota-gut-brain axis across the lifespan. Front Neuroendocrinol. 2020;56:100815. doi: 10.1016/j.yfrne.2019.100815.
    1. Jarrett SG, Milder JB, Liang L, Patel M. The ketogenic diet increases mitochondrial glutathione levels. J Neurochem. 2008;106:1044–1051. doi: 10.1111/j.1471-4159.2008.05460.x.
    1. Kang HC, Chung DE, Kim DW, Kim HD. Early- and late-onset complications of the ketogenic diet for intractable epilepsy. Epilepsia. 2004;45:1116–1123. doi: 10.1111/j.0013-9580.2004.10004.x.
    1. Kashiwaya Y, Takeshima T, Mori N, et al. d-β-Hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci. 2000;97:5440–5444. doi: 10.1073/pnas.97.10.5440.
    1. Kasprowska-Liśkiewicz D, Liśkiewicz AD, Nowacka-Chmielewska MM, et al. The ketogenic diet affects the social behavior of young male rats. Physiol Behav. 2017;179:168–177. doi: 10.1016/j.physbeh.2017.06.007.
    1. Koh S, Dupuis N, Auvin S. Ketogenic diet and Neuroinflammation. Epilepsy Res. 2020;167:1–8. doi: 10.1016/j.eplepsyres.2020.106454.
    1. Koppel SJ, Pei D, Wilkins HM, et al. A ketogenic diet differentially affects neuron and astrocyte transcription. J Neurochem n/a. 2021 doi: 10.1111/jnc.15313.
    1. Kovács Z, Brunner B, D’Agostino DP, Ari C. Age- and sex-dependent modulation of exogenous ketone supplement-evoked effects on blood glucose and ketone body levels in wistar albino glaxo rijswijk rats. Front Neurosci. 2021 doi: 10.3389/fnins.2020.618422.
    1. Lamers F, Vogelzangs N, Merikangas KR, et al. Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry. 2013;18:692–699. doi: 10.1038/mp.2012.144.
    1. Lei E, Vacy K, Boon WC. Fatty acids and their therapeutic potential in neurological disorders. Neurochem Int. 2016;95:75–84. doi: 10.1016/j.neuint.2016.02.014.
    1. Levy RG, Cooper PN, Giri P, Weston J. Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database Syst Rev. 2012 doi: 10.1002/14651858.CD001903.pub2.
    1. Li Q, Liang J, Fu N, et al. A ketogenic diet and the treatment of autism spectrum disorder. Front Pediat. 2021 doi: 10.3389/fped.2021.650624.
    1. Ling Y, Wang DD, Sun YX, et al. Neuro-behavioral status and the hippocampal expression of metabolic associated genes in wild-type rat following a ketogenic diet. Front Neurol. 2019;10:1–9. doi: 10.3389/fneur.2019.00065.
    1. Liu Q, He H, Yang J, et al. Changes in the global burden of depression from 1990 to 2017: findings from the global burden of disease study. J Psychiatr Res. 2020;126:134–140. doi: 10.1016/j.jpsychires.2019.08.002.
    1. Lyngstad A, Nymo S, Coutinho SR, et al. Investigating the effect of sex and ketosis on weight-loss-induced changes in appetite. Am J Clin Nutr. 2019;109:1511–1518. doi: 10.1093/ajcn/nqz002.
    1. Ma D, Wang AC, Parikh I, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep. 2018;8:6670. doi: 10.1038/s41598-018-25190-5.
    1. Maciejak P, Szyndler J, Turzyńska D, et al. Is the interaction between fatty acids and tryptophan responsible for the efficacy of a ketogenic diet in epilepsy? The new hypothesis of action. Neuroscience. 2016;313:130–148. doi: 10.1016/j.neuroscience.2015.11.029.
    1. Manosso LM, Lin J, Carlessi AS, et al. Sex-related patterns of the gut-microbiota-brain axis in the neuropsychiatric conditions. Brain Res Bull. 2021;171:196–208. doi: 10.1016/j.brainresbull.2021.04.001.
    1. Marx W, Lane M, Hockey M, et al. Diet and depression: exploring the biological mechanisms of action. Mol Psychiatry. 2020 doi: 10.1038/s41380-020-00925-x.
    1. McClernon JF, Yancy WS, Eberstein JA, et al. The effects of a low-carbohydrate ketogenic diet and a low-fat diet on mood, hunger, and other self-reported symptoms. Obesity. 2007;15:182. doi: 10.1038/oby.2007.516.
    1. Milder J, Patel M. Modulation of oxidative stress and mitochondrial function by the ketogenic diet. Epilepsy Res. 2012;100:295–303. doi: 10.1016/j.eplepsyres.2011.09.021.
    1. Monda V, Polito R, Lovino A, et al. Short-term physiological effects of a very low-calorie ketogenic diet: effects on adiponectin levels and inflammatory states. Intern J Mole Sci. 2020 doi: 10.3390/ijms21093228.
    1. Morris G, Puri BK, Maes M, et al. The role of microglia in neuroprogressive disorders: mechanisms and possible neurotherapeutic effects of induced ketosis. Prog Neuro-Psychopharm Biol Psych. 2020 doi: 10.1016/j.pnpbp.2020.109858.
    1. Most J, Penders J, Lucchesi M, et al. Gut microbiota composition in relation to the metabolic response to 12 week combined polyphenol supplementation in overweight men and women. Eur J Clin Nutr. 2017;71:1040–1045. doi: 10.1038/ejcn.2017.89.
    1. Murphy P, Likhodii SS, Hatamian M, Burnham WM. Effect of the ketogenic diet on the activity level of Wistar rats. Pediatr Res. 2005;57:353–357. doi: 10.1203/01.PDR.0000150804.18038.79.
    1. Murtaza N, Burke LM, Vlahovich N, et al. The effects of dietary pattern during intensified training on stool microbiota of elite race walkers. Nutrients. 2019 doi: 10.3390/nu11020261.
    1. Mychasiuk R, Rho JM. Genetic modifications associated with ketogenic diet treatment in the BTBRT+Tf/J mouse model of autism spectrum disorder. Autism Res. 2017;10:456–471. doi: 10.1002/aur.1682.
    1. Najjar S, Pearlman DM, Alper K, et al. Neuroinflammation and psychiatric illness. J Neuroinflam. 2013 doi: 10.1186/1742-2094-10-43.
    1. Newell C, Bomhof MR, Reimer RA, et al. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mole Autism. 2016;7:37. doi: 10.1186/s13229-016-0099-3.
    1. Newman JC, Covarrubias AJ, Zhao M, et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 2017;26:547–557.e8. doi: 10.1016/j.cmet.2017.08.004.
    1. Nikolova VL, Smith MRB, Hall LJ, et al. Perturbations in gut microbiota composition in psychiatric disorders: a review and meta-analysis. JAMA Psychiat. 2021 doi: 10.1001/jamapsychiatry.2021.2573.
    1. Noh HS, Kim YS, Lee HP, et al. The protective effect of a ketogenic diet on kainic acid-induced hippocampal cell death in the male ICR mice. Epilepsy Res. 2003;53:119–128. doi: 10.1016/S0920-1211(02)00262-0.
    1. Nosaka N, Tsujino S, Honda K, et al. Effect of ingestion of medium-chain triglycerides on substrate oxidation during aerobic exercise could depend on sex difference in middle-aged sedentary persons. Nutrients. 2021;13:1–14. doi: 10.3390/nu13010036.
    1. Olson CA, Vuong HE, Yano JM, et al. The gut microbiota mediates the anti-seizure effects of the Ketogenic Diet. Cell. 2018;173:1728–1741. doi: 10.1016/j.cell.2018.04.027.
    1. Paoli A, Mancin L, Bianco A, et al. Ketogenic diet and microbiota: friends or enemies? Genes. 2019 doi: 10.3390/genes10070534.
    1. Park S, Zhang T, Wu X, Yi Qiu J. Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer’s disease rat model. J Clin Biochem Nut. 2020;67:188–198. doi: 10.3164/jcbn.19-87.
    1. Paula Farias Waltrick A, Bernardo H, de Lima SA, Cristina de Carvalho M, et al. Preventive treatment with fish oil facilitates the antidepressant-like effect of antidepressant drugs in type-1 diabetes mellitus rats: Implication of serotonergic system. Neurosci Lett. 2022;772:136477. doi: 10.1016/j.neulet.2022.136477.
    1. Peterman MG. The ketogenic diet in epilepsy. J Am Med Assoc. 1925;84:1979–1983. doi: 10.1001/jama.1925.02660520007003.
    1. Phelps JR, Siemers SV, El-Mallakh RS. The ketogenic diet for type II bipolar disorder. Neurocase. 2013;19:423–426. doi: 10.1080/13554794.2012.690421.
    1. Rincel M, Aubert P, Chevalier J, et al. Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. Brain Behav Immun. 2019;80:179–192. doi: 10.1016/j.bbi.2019.03.006.
    1. Roy M, Fortier M, Rheault F, et al. A ketogenic supplement improves white matter energy supply and processing speed in mild cognitive impairment. Alzheimer’s Dementia: Trans Res Clin Interv. 2021;7:e12217. doi: 10.1002/trc2.12217.
    1. Ruskin FJA, Bisnauth SN, Masino SA. Ketogenic diets improve behaviors associated with autism spectrum disorder in a sex-specific manner in the EL mouse. Physiol Behav. 2017;168:138–145. doi: 10.1016/j.physbeh.2016.10.023.
    1. Ruskin MMI, Slade SL, Masino SA. Ketogenic diet improves behaviors in a maternal immune activation model of autism spectrum disorder. PLoS ONE. 2017;12:e0171643. doi: 10.1371/journal.pone.0171643.
    1. Ryan KK, Packard AEB, Larson KR, et al. Dietary manipulations that induce ketosis activate the HPA axis in male rats and mice: A potential role for fibroblast growth factor-21. Endocrinology. 2018;159:400–413. doi: 10.1210/en.2017-00486.
    1. Sahagun E, Bachman BB, Kinzig KP. Sex-specific effects of ketogenic diet after pre-exposure to a high-fat, high-sugar diet in rats. Nutr Metab Cardiovasc Dis. 2021;31:967–971. doi: 10.1016/j.numecd.2020.09.034.
    1. Sahagun E, Ward LM, Kinzig KP. Attenuation of stress-induced weight loss with a ketogenic diet. Physiol Behav. 2019;212:112654. doi: 10.1016/j.physbeh.2019.112654.
    1. Salberg S, Weerwardhena H, Collins R, et al. The behavioural and pathophysiological effects of the ketogenic diet on mild traumatic brain injury in adolescent rats. Behav Brain Res. 2019;376:112225. doi: 10.1016/j.bbr.2019.112225.
    1. Santos-Marcos JA, Haro C, Vega-Rojas A, et al. Sex differences in the gut microbiota as potential determinants of gender predisposition to disease. Mol Nutr Food Res. 2019;63:1800870. doi: 10.1002/mnfr.201800870.
    1. Sarnyai Z, Kraeuter AK, Palmer CM. Ketogenic diet for schizophrenia: clinical implication. Curr Opin Psychiatry. 2019;32:394–401. doi: 10.1097/YCO.0000000000000535.
    1. Sarris J, Logan AC, Akbaraly TN, et al. Nutritional medicine as mainstream in psychiatry. Lancet Psychiatry. 2015;2:271–274. doi: 10.1016/S2215-0366(14)00051-0.
    1. Seaton TB, Welle SL, Warenko MK, Campbell RG. Thermic effect of medium-chain and long-chain triglycerides in man. Am J Clin Nutr. 1986;44:630–634. doi: 10.1093/ajcn/44.5.630.
    1. Shastri P, McCarville J, Kalmokoff M, et al. Sex differences in gut fermentation and immune parameters in rats fed an oligofructose-supplemented diet. Biol Sex Differ. 2015;6:13. doi: 10.1186/s13293-015-0031-0.
    1. Shcherbakova K, Schwarz A, Ivleva I, et al. Short- and long-term cognitive and metabolic effects of medium-chain triglyceride supplementation in rats. Heliyon. 2023;9:e13446. doi: 10.1016/j.heliyon.2023.e13446.
    1. Sial OK, Gnecco T, Cardona-Acosta AM, et al. Exposure to vicarious social defeat stress and western-style diets during adolescence leads to physiological dysregulation, decreases in reward sensitivity, and reduced antidepressant efficacy in adulthood. Front Neurosci. 2021;15:701919. doi: 10.3389/fnins.2021.701919.
    1. Simopoulos AP. Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol Neurobiol. 2011;44:203–215. doi: 10.1007/s12035-010-8162-0.
    1. Spichak S, Bastiaanssen TFS, Berding K, et al. Mining microbes for mental health: determining the role of microbial metabolic pathways in human brain health and disease. Neurosci Biobehav Rev. 2021;125:698–761. doi: 10.1016/j.neubiorev.2021.02.044.
    1. Stilling RM, van de Wouw M, Clarke G, et al. The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis? Neurochem Int. 2016;99:110–132. doi: 10.1016/j.neuint.2016.06.011.
    1. St-Pierre V, Vandenberghe C, Lowry C-M, et al. Plasma ketone and medium chain fatty acid response in humans consuming different medium chain triglycerides during a metabolic study day. Front Nutr. 2019;6:46. doi: 10.3389/fnut.2019.00046.
    1. Strandberg J, Kondziella D, Thorlin T, Asztely F. Ketogenic diet does not disturb neurogenesis in the dentate gyrus in rats. NeuroReport. 2008;19:1235–1237. doi: 10.1097/WNR.0b013e32830a7109.
    1. Szot P, Weinshenker D, Rho JM, et al. Norepinephrine is required for the anticonvulsant effect of the ketogenic diet. Dev Brain Res. 2001;129:211–214. doi: 10.1016/S0165-3806(01)00213-9.
    1. Volek JS, Sharman MJ. Cardiovascular and hormonal aspects of very-low-carbohydrate ketogenic diets. Obes Res. 2004;12(Suppl 2):115–123. doi: 10.1038/oby.2004.276.
    1. Volek JS, Sharman MJ, Gómez AL, et al. Comparison of energy-restricted very low-carbohydrate and low-fat diets on weight loss and body composition in overweight men and women. Nutr Metab. 2004;1:13. doi: 10.1186/1743-7075-1-13.
    1. Volek JS, Sharman MJ, Love DM, et al. Body composition and hormonal responses to a carbohydrate-restricted diet. Meta Clin Exp. 2002;51:864–870. doi: 10.1053/meta.2002.32037.
    1. Walsh JJ, Caldwell HG, Neudorf H, et al. Short-term ketone monoester supplementation improves cerebral blood flow and cognition in obesity: a randomized cross-over trial. J Physiol n/a. 2021 doi: 10.1113/JP281988.
    1. Yamanashi T, Iwata M, Kamiya N, et al. Beta-hydroxybutyrate, an endogenic NLRP3 inflammasome inhibitor, attenuates stress-induced behavioral and inflammatory responses. Sci Rep. 2017;7:7677. doi: 10.1038/s41598-017-08055-1.
    1. Yancy WS, Almirall D, Maciejewski ML, et al. Effects of two weight-loss diets on health-related quality of life. Qual Life Res. 2009;18:281–289. doi: 10.1007/s11136-009-9444-8.
    1. Yue L, Xin Y, Jing Z, et al. Ketogenic diets induced glucose intolerance and lipid accumulation in mice with alterations in gut microbiota and metabolites. Mbio. 2021;12:e03601–e3620. doi: 10.1128/mBio.03601-20.
    1. Zhang Y, Zhou S, Zhou Y, et al. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 2018;145:163–168. doi: 10.1016/j.eplepsyres.2018.06.015.
    1. Zhao M, Huang X, Cheng X, et al. Ketogenic diet improves the spatial memory impairment caused by exposure to hypobaric hypoxia through increased acetylation of histones in rats. PLoS ONE. 2017;12:e0174477. doi: 10.1371/journal.pone.0174477.
    1. Zhao Z, Lange DJ, Voustianiouk A, et al. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci. 2006;7:1–10. doi: 10.1186/1471-2202-7-29.
    1. Zhu H, Bi D, Zhang Y, et al. Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations. Signal Transduct Target Ther. 2022;7:11. doi: 10.1038/s41392-021-00831-w.
    1. Ziegler DR, Ribeiro LC, Hagenn M, et al. Ketogenic diet increases glutathione peroxidase activity in rat hippocampus. Neurochem Res. 2003;28:1793–1797. doi: 10.1023/A:1026107405399.

Source: PubMed

3
Subscribe