Effect of Upper Limb Motor Rehabilitation on Cognition in Parkinson's Disease: An Observational Study

Valentina Varalta, Elisa Evangelista, Anna Righetti, Giovanni Morone, Stefano Tamburin, Alessandro Picelli, Cristina Fonte, Michele Tinazzi, Ilaria Antonella Di Vico, Andreas Waldner, Mirko Filippetti, Nicola Smania, Valentina Varalta, Elisa Evangelista, Anna Righetti, Giovanni Morone, Stefano Tamburin, Alessandro Picelli, Cristina Fonte, Michele Tinazzi, Ilaria Antonella Di Vico, Andreas Waldner, Mirko Filippetti, Nicola Smania

Abstract

Parkinson's disease is characterized by motor and cognitive deficits that usually have an impact on quality of life and independence. To reduce impairment, various rehabilitation programs have been proposed, but their effects on both cognitive and motor aspects have not been systematically investigated. Furthermore, most intervention is focused on lower limb treatment rather than upper limbs. In the present study, we investigated the effect of 3-week upper limb vibratory stimulation training on cognitive functioning in 20 individuals with Parkinson's disease. We analyzed cognitive (Montreal Cognitive Assessment, Trial Making Test, Digit Symbol, Digit Span Forward and Backward and Alertness) and motor performance (Unified Parkinson's Disease Rating Scale-part III; Disability of the Arm, Shoulder and Hand Questionnaire) before treatment, at the end of treatment and one month post treatment. After rehabilitation, a statistically significant improvement was observed in terms of global cognitive status, attention, global motor functioning and disability. The results suggest an impact of upper limb motor rehabilitation on cognition in Parkinson's disease. Future studies on neuromotor interventions should investigate their effects on cognitive functioning to improve understanding of cognitive motor interaction in Parkinson's disease.

Keywords: cognitive motor interference; motor treatment; movement disorders; neuropsychological deficits; vibratory stimulation.

Conflict of interest statement

The authors have no conflict of interest to declare.

Figures

Figure 1
Figure 1
Study flow.

References

    1. Picelli A., Camin M., Tinazzi M., Vangelista A., Cosentino A., Fiaschi A., Smania N. Three-dimensional motion analysis of the effects of auditory cueing on gait pattern in patients with Parkinson’s disease: A preliminary investigation. Neurol. Sci. 2010;31:423–430. doi: 10.1007/s10072-010-0228-2.
    1. Pothakos K., Kurz M.J., Lau Y.S. Restorative effect of endurance exercise on behavioral deficits in the chronic mouse model of Parkinson’s disease with severe neurodegeneration. BMC Neurosci. 2009;10:6. doi: 10.1186/1471-2202-10-6.
    1. Aarsland D., Bronnick K., Williams-Gray C., Weintraub D., Marder K., Kulisevsky J., Burn D., Barone P., Pagonabarraga J., Allcock L., et al. Mild cognitive impairment in Parkinson disease: A multicenter pooled analysis. Neurology. 2010;75:1062–1069. doi: 10.1212/WNL.0b013e3181f39d0e.
    1. Watson G.S., Leverenz J.B. Profile of cognitive impairment in Parkinson’s disease. Brain Pathol. 2010;20:640–645. doi: 10.1111/j.1750-3639.2010.00373.x.
    1. Muslimovic D., Post B., Speelman J.D., Schmand B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology. 2005;65:1239–1245. doi: 10.1212/01.wnl.0000180516.69442.95.
    1. Litvan I., Aarsland D., Adler C.H., Goldman J.G., Kulisevsky J., Mollenhauer B., Rodriguez-Oroz M.C., Tröster A.I., Weintraub D. MDS task force on mild cognitive impairment in Parkinson’s disease: Critical review of PD-MCI. Mov. Disord. 2011;26:1814–1824. doi: 10.1002/mds.23823.
    1. Goldman J.G., Weintraub D. Advances in the treatment of cognitive impairment in Parkinson’s disease. Mov. Disord. 2015;30:1471–1489. doi: 10.1002/mds.26352.
    1. Bucur M., Papagno C. Deep Brain Stimulation in Parkinson Disease: A Meta-analysis of the Long-term Neuropsychological Outcomes. Neuropsychol. Rev. 2022 doi: 10.1007/s11065-022-09540-9.
    1. Stuckenschneider T., Askew C.D., Meneses A.L., Baake R., Weber J., Schneider S. The effect of different exercise modes on domain-specific cognitive function in patients suffering from Parkinson’s disease: A systematic review of randomized controlled trials. J. Parkinsons Dis. 2019;9:73–95. doi: 10.3233/JPD-181484.
    1. Salgado S., Williams N., Kotian R., Salgado M. An evidence-based exercise regimen for patients with mild to moderate Parkinson’s disease. Brain Sci. 2013;3:87–100. doi: 10.3390/brainsci3010087.
    1. Reynolds G.O., Otto M.W., Ellis T.D., Cronin-Golomb A. The therapeutic potential of exercise to improve mood, cognition, and sleep in Parkinson’s disease. Mov. Disord. 2016;31:23–38. doi: 10.1002/mds.26484.
    1. Murray D.K., Sacheli M.A., Eng J.J., Stoessl A.J. The effects of exercise on cognition in Parkinson’s disease: A systematic review. Transl. Neurodegener. 2014;3:5. doi: 10.1186/2047-9158-3-5.
    1. da Silva F.C., Iop R.D., de Oliveira L.C., Boll A.M., de Alvarenga J.G., Gutierres Filho P.J., de Melo L.M., Xavier A.J., da Silva R. Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: A systematic review of randomized controlled trials of the last 10 years. PLoS ONE. 2018;13:e0193113. doi: 10.1371/journal.pone.0193113.
    1. Picelli A., Varalta V., Melotti C., Zatezalo V., Fonte C., Amato S., Saltuari L., Santamato A., Fiore P., Smania N. Effects of treadmill training on cognitive and motor features of patients with mild to moderate Parkinson’s disease: A pilot, single-blind, randomized controlled trial. Funct. Neurol. 2016;31:25–31.
    1. Tuon T., Valvassori S.S., Dal Pont G.C., Paganini C.S., Pozzi B.G., Luciano T.F., Souza P.S., Quevedo J., Souza C.T., Pinho R.A. Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson’s disease. Brain Res. Bull. 2014;108:106–112. doi: 10.1016/j.brainresbull.2014.09.006.
    1. Pietrelli A., Lopez-Costa J., Goñi R., Brusco A., Basso N. Aerobic exercise prevents age-dependent cognitive decline and reduces anxiety-related behaviors in middle-aged and old rats. Neuroscience. 2012;202:252–266. doi: 10.1016/j.neuroscience.2011.11.054.
    1. Ferrazzoli D., Ortelli P., Cucca A., Bakdounes L., Canesi M., Volpe D. Motor-cognitive approach and aerobic training: A synergism for rehabilitative intervention in Parkinson’s disease. Neurodegener. Dis. Manag. 2020;10:41–55. doi: 10.2217/nmt-2019-0025.
    1. Banks S.J., Bayram E., Shan G., LaBelle D.R., Bluett B. Non-motor predictors of freezing of gait in Parkinson’s disease. Gait Posture. 2019;68:311–316. doi: 10.1016/j.gaitpost.2018.12.009.
    1. McKee K.E., Hackney M.E. The effects of adapted tango on spatial cognition and disease severity in Parkinson’s disease. J. Mot. Behav. 2013;45:519–529. doi: 10.1080/00222895.2013.834288.
    1. Nadeau A., Pourcher E., Corbeil P. Effects of 24 wk of treadmill training on gait performance in Parkinson’s disease. Med. Sci. Sports Exerc. 2014;46:645–655. doi: 10.1249/MSS.0000000000000144.
    1. Pompeu J.E., dos Santos Mendes F.A., da Silva K.G., Lobo A.M., de Paula Oliveira T., Zomignani A.P., Piemonte M.E. Effect of Nintendo Wii™-based motor and cognitive training on activities of daily living in patients with Parkinson’s disease: A randomised clinical trial. Physiotherapy. 2012;98:196–204. doi: 10.1016/j.physio.2012.06.004.
    1. Avenali M., Picascia M., Tassorelli C., Sinforiani E., Bernini S. Evaluation of the efficacy of physical therapy on cognitive decline at 6-month follow-up in Parkinson disease patients with mild cognitive impairment: A randomized controlled trial. Aging Clin. Exp. Res. 2021;33:3275–3284. doi: 10.1007/s40520-021-01865-4.
    1. Taravati S., Capaci K., Uzumcugil H., Tanigor G. Evaluation of an upper limb robotic rehabilitation program on motor functions, quality of life, cognition, and emotional status in patients with stroke: A randomized controlled study. Neurol. Sci. 2022;43:1177–1188. doi: 10.1007/s10072-021-05431-8.
    1. Munari D., Fonte C., Varalta V., Battistuzzi E., Cassini S., Montagnoli A.P., Gandolfi M., Modenese A., Filippetti M., Smania N., et al. Effects of robot-assisted gait training combined with virtual reality on motor and cognitive functions in patients with multiple sclerosis: A pilot, single-blind, randomized controlled trial. Restor. Neurol. Neurosci. 2020;38:151–164. doi: 10.3233/RNN-190974.
    1. Varalta V., Picelli A., Fonte C., Montemezzi G., La Marchina E., Smania N. Effects of contralesional robot-assisted hand training in patients with unilateral spatial neglect following stroke: A case series study. J. Neuroeng. Rehabil. 2014;11:160. doi: 10.1186/1743-0003-11-160.
    1. Barnish M.S., Barran S.M. A systematic review of active group-based dance, singing, music therapy and theatrical interventions for quality of life, functional communication, speech, motor function and cognitive status in people with Parkinson’s disease. BMC Neurol. 2021;20:371. doi: 10.1186/s12883-020-01938-3.
    1. Thrue C., Hvid L.G., Gamborg M., Dawes H., Dalgas U., Langeskov-Christensen M. Aerobic capacity in persons with Parkinson’s disease: A systematic review. Disabil. Rehabil. 2022 doi: 10.1080/09638288.2022.2094480.
    1. Pohl P., Dizdar N., Hallert E. The Ronnie Gardiner Rhythm and Music Method—A feasibility study in Parkinson’s disease. Disabil. Rehabil. 2013;35:2197–2204. doi: 10.3109/09638288.2013.774060.
    1. An H.S., Kim D.J. Effects of activities of daily living-based dual-task training on upper extremity function, cognitive function, and quality of life in stroke patients. Osong. Public Health Res. Perspect. 2021;12:304–313. doi: 10.24171/j.phrp.2021.0177.
    1. Bryant M.S., Rintala D.H., Lai E.C., Protas E.J. An investigation of two interventions for micrographia in individuals with Parkinson’s disease. Clin. Rehabil. 2010;24:1021–1026. doi: 10.1177/0269215510371420.
    1. Kadkhodaie M., Sharifnezhad A., Ebadi S., Marzban S., Habibi S.A., Ghaffari A., Forogh B. Effect of eccentric-based rehabilitation on hand tremor intensity in Parkinson disease. Neurol. Sci. 2020;41:637–643. doi: 10.1007/s10072-019-04106-9.
    1. Fan W., Li J., Wei W., Xiao S.H., Liao Z.J., Wang S.M., Fong K. Effects of rhythmic auditory stimulation on upper-limb movements in patients with Parkinson’s disease. Parkinsonism. Relat. Disord. 2022;101:27–30. doi: 10.1016/j.parkreldis.2022.06.020.
    1. Marazzi S., Kiper P., Palmer K., Agostini M., Turolla A. Effects of vibratory stimulation on balance and gait in Parkinson’s disease: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2021;57:254–264. doi: 10.23736/S1973-9087.20.06099-2.
    1. Sharififar S., Coronado R.A., Romero S., Azari H., Thigpen M. The effects of whole body vibration on mobility and balance in Parkinson disease: A systematic review. Iran. J. Med. Sci. 2014;39:318–326.
    1. Hughes A.J., Daniel S.E., Kilford L., Lees A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry. 1992;55:181–184. doi: 10.1136/jnnp.55.3.181.
    1. Goetz C.G., Tilley B.C., Shaftman S.R., Stebbins G.T., Fahn S., Martinez-Martin P., Poewe W., Sampaio C., Stern M.B., Dodel R., et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008;23:2129–2170. doi: 10.1002/mds.22340.
    1. Santangelo G., Siciliano M., Pedone R., Vitale C., Falco F., Bisogno R., Siano P., Barone P., Grossi D., Santangelo F., et al. Normative data for the Montreal Cognitive Assessment in an Italian population sample. Neurol. Sci. 2015;36:585–591. doi: 10.1007/s10072-014-1995-y.
    1. Germantech. [(accessed on 1 July 2020)]. Available online: .
    1. Giovagnoli A.R., Del Pesce M., Mascheroni S., Simoncelli M., Laiacona M., Capitani E. Trail Making Test: Normative values from 287 normal adult controls. Ital. J. Neurol. Sci. 1996;17:305–309. doi: 10.1007/BF01997792.
    1. Gill D.J., Freshman A., Blender J.A., Ravina B. The Montreal cognitive assessment as a screening tool for cognitive impairment in Parkinson’s disease. Mov. Disord. 2008;23:1043–1046. doi: 10.1002/mds.22017.
    1. Chertkow H., Nasreddine Z., Johns E., Phillips N., McHenry C. The Montreal cognitive assessment (MoCA): Validation of alternate forms and new recommendations for education corrections. Alzheimers. Dement. 2011;7:S157. doi: 10.1016/j.jalz.2011.05.423.
    1. Pezzuti L., Barbaranelli C., Orsini A. Structure of the Wechsler Adult Intelligence Scale Revised in the Italian Normal Standardisation Sample. J. Cogn. Psychol. 2012;24:229–241. doi: 10.1080/20445911.2011.629781.
    1. Monaco M., Costa A., Caltagirone C., Carlesimo G.A. Forward and backward span for verbal and visuo-spatial data: Standardization and normative data from an Italian adult population. Neurol. Sci. 2013;34:749–754. doi: 10.1007/s10072-012-1130-x.
    1. Barletta-Rodolfi C., Gasparini F., Ghidoni E. Kit del Neuropsicologo Italiano. Società Italiana di NeuroPsicologia; Bologna, Italy: 2011.
    1. Alberta F.G., ElAttrache N.S., Bissell S., Mohr K., Browdy J., Yocum L., Jobe F. The development and validation of a functional assessment tool for the upper extremity in the overhead athlete. Am. J. Sports Med. 2010;38:903–911. doi: 10.1177/0363546509355642.
    1. Padua R., Padua L., Ceccarelli E., Romanini E., Zanoli G., Amadio P.C., Campi A. Italian Version of the Disability of the Arm, Shoulder and Hand (dash) Questionnaire. Cross-Cultural Adaptation and Validation. J. Hand Surg. Am. 2003;28:179–186. doi: 10.1016/S0266-7681(02)00303-0.
    1. Varalta V., Poiese P., Recchia S., Montagnana B., Fonte C., Filippetti M., Tinazzi M., Smania N., Picelli A. Physiotherapy versus Consecutive Physiotherapy and Cognitive Treatment in People with Parkinson’s Disease: A Pilot Randomized Cross-Over Study. J. Pers. Med. 2021;11:687. doi: 10.3390/jpm11080687.
    1. Duchesne C., Lungu O., Nadeau A., Robillard M.E., Boré A., Bobeuf F., Lafontaine A.L., Gheysen F., Bherer L., Doyon J. Enhancing both motor and cognitive functioning in Parkinson’s disease: Aerobic exercise as a rehabilitative intervention. Brain Cogn. 2015;99:68–77. doi: 10.1016/j.bandc.2015.07.005.
    1. Nocera J.R., Amano S., Vallabhajosula S., Hass C.J. Tai Chi Exercise to Improve Non-Motor Symptoms of Parkinson’s Disease. J. Yoga Phys. Ther. 2013;3 doi: 10.4172/2157-7595.1000137.
    1. Lipat A.L., Clark D.J., Hass C.J., Cruz-Almeida Y. Gait subgroups among older adults with chronic pain differ in cerebellum and basal ganglia gray matter volumes. Exp. Gerontol. 2022;163:111773. doi: 10.1016/j.exger.2022.111773.
    1. Su C., Yang X., Wei S., Zhao R. Periventricular white matter hyperintensities are associated with gait and balance in patients with minor stroke. Front. Neurol. 2022;13:941668. doi: 10.3389/fneur.2022.941668.
    1. Yang S., Li X., Hu W., Qin W., Yang L. Enlarged Perivascular Spaces in the Basal Ganglia Independently Related to Gait Disturbances in Older People with Cerebral Small Vessel Diseases. Front. Aging Neurosci. 2022;14:833702. doi: 10.3389/fnagi.2022.833702.
    1. Xia W., Wai R., Xu X., Huai B., Bai Z., Zhang J., Jin M., Niu W. Cortical mapping of active and passive upper limb training in stroke patients and healthy people: A functional near-infrared spectroscopy study. Brain Res. 2022;1788:147935. doi: 10.1016/j.brainres.2022.147935.
    1. Ma Z.Z., Wu J.J., Hua X.Y., Zheng M.X., Xing X.X., Ma J., Li S.S., Shan C.L., Xu J.G. Brain Function and Upper Limb Deficit in Stroke With Motor Execution and Imagery: A Cross-Sectional Functional Magnetic Resonance Imaging Study. Front. Neurosci. 2022;16:806406. doi: 10.3389/fnins.2022.806406.
    1. Fontanesi C., Kvint S., Frazzitta G., Bera R., Ferrazzoli D., Di Rocco A., Rebholz H., Friedman E., Pezzoli G., Quartarone A., et al. Intensive rehabilitation enhances lymphocyte BDNF-TrkB signaling in patients with Parkinson’s disease. Neurorehabilit. Neural Repair. 2016;30:411–418. doi: 10.1177/1545968315600272.
    1. Leckie R.L., Oberlin L.E., Voss M.W., Prakash R.S., Szabo-Reed A., Chaddock-Heyman L., Phillips S.M., Gothe N.P., Mailey E., Vieira-Potter V.J., et al. BDNF mediates improvements in executive function following a 1-year exercise intervention. Front. Hum. Neurosci. 2014;8:985. doi: 10.3389/fnhum.2014.00985.
    1. Ahlskog J.E. Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology. 2011;77:288–294. doi: 10.1212/WNL.0b013e318225ab66.
    1. Rischer K.M., Anton F., González-Roldán A.M., Montoya P., van der Meulen M. Better Executive Functions Are Associated With More Efficient Cognitive Pain Modulation in Older Adults: An fMRI Study. Front. Aging Neurosci. 2022;14:828742. doi: 10.3389/fnagi.2022.828742.
    1. Saylik R., Williams A.L., Murphy R.A., Szameitat A.J. Characterising the unity and diversity of executive functions in a within-subject fMRI study. Sci. Rep. 2022;12:8182. doi: 10.1038/s41598-022-11433-z.
    1. Martínez-Molina N., Siponkoski S.T., Särkämö T. Cognitive efficacy and neural mechanisms of music-based neurological rehabilitation for traumatic brain injury. Ann. N. Y. Acad. Sci. 2022;1515:20–32. doi: 10.1111/nyas.14800.
    1. David F.J., Robichaud J.A., Leurgans S.E., Poon C., Kohrt W.M., Goldman J.G., Comella C.L., Vaillancourt D.E., Corcos D.M. Exercise improves cognition in Parkinson’s disease: The PRET-PD randomized, clinical trial. Mov. Disord. 2015;30:1657–1663. doi: 10.1002/mds.26291.
    1. Cikajlo I., Peterlin Potisk K. Advantages of using 3D virtual reality-based training in persons with Parkinson’s disease: A parallel study. J. Neuroeng. Rehabilitation. 2019;16:119. doi: 10.1186/s12984-019-0601-1.
    1. Hao Z., Zhang X., Chen P. Effects of Ten Different Exercise Interventions on Motor Function in Parkinson’s Disease Patients-A Network Meta-Analysis of Randomized Controlled Trials. Brain Sci. 2022;12:698. doi: 10.3390/brainsci12060698.
    1. Quinn L., Busse M., Dal Bello-Haas V. Management of upper extremity dysfunction in people with Parkinson disease and Huntington disease: Facilitating outcomes across the disease lifespan. J. Hand Ther. 2013;26:148–155. doi: 10.1016/j.jht.2012.11.001.
    1. Goetz C.G., Leurgans S., Raman R., Stebbins G.T. Objective changes in motor function during placebo treatment in PD. Neurology. 2000;54:710–714. doi: 10.1212/WNL.54.3.710.
    1. Diamond S.G., Markham C.H., Treciokas L.J. Double-blind trial of pergolide for Parkinson’s disease. Neurology. 1985;35:291–295. doi: 10.1212/WNL.35.3.291.
    1. Nagano-Saito A., Martinu K., Monchi O. Function of basal ganglia in bridging cognitive and motor modules to perform an action. Front. Neurosci. 2014;8:187. doi: 10.3389/fnins.2014.00187.
    1. Leisman G., Melillo R. The basal ganglia: Motor and cognitive relationships in a clinical neurobehavioral context. Rev. Neurosci. 2013;24:9–25. doi: 10.1515/revneuro-2012-0067.
    1. Winter Y., von Campenhausen S., Arend M., Longo K., Boetzel K., Eggert K., Oertel W.H., Dodel R., Barone P. Health-related quality of life and its determinants in Parkinson’s disease: Results of an Italian cohort study. Parkinsonism Relat. Disord. 2011;17:265–269. doi: 10.1016/j.parkreldis.2011.01.003.
    1. Varalta V., Picelli A., Fonte C., Amato S., Melotti C., Zatezalo V., Saltuari L., Smania N. Relationship between Cognitive Performance and Motor Dysfunction in Patients with Parkinson’s Disease: A Pilot Cross-Sectional Study. Biomed. Res. Int. 2015;2015:365959. doi: 10.1155/2015/365959.
    1. Wu C., Xu Y., Guo H., Tang C., Chen D., Zhu M. Effects of Aerobic Exercise and Mind-Body Exercise in Parkinson’s Disease: A Mixed-Treatment Comparison Analysis. Front. Aging Neurosci. 2021;13:739115. doi: 10.3389/fnagi.2021.739115.
    1. Intzandt B., Beck E.N., Silveira C.R.A. The effects of exercise on cognition and gait in Parkinson’s disease: A scoping review. Neurosci. Biobehav. Rev. 2018;95:136–169. doi: 10.1016/j.neubiorev.2018.09.018.

Source: PubMed

3
Subscribe