Pneumothorax as a complication of lung volume recruitment

Erik J A Westermann, Maurice Jans, Michael A Gaytant, John R Bach, Mike J Kampelmacher, Erik J A Westermann, Maurice Jans, Michael A Gaytant, John R Bach, Mike J Kampelmacher

Abstract

Lung volume recruitment involves deep inflation techniques to achieve maximum insufflation capacity in patients with respiratory muscle weakness, in order to increase peak cough flow, thus helping to maintain airway patency and improve ventilation. One of these techniques is air stacking, in which a manual resuscitator is used in order to inflate the lungs. Although intrathoracic pressures can rise considerably, there have been no reports of respiratory complications due to air stacking. However, reaching maximum insufflation capacity is not recommended in patients with known structural abnormalities of the lungs or chronic obstructive airway disease. We report the case of a 72-year-old woman who had poliomyelitis as a child, developed torsion scoliosis and post-polio syndrome, and had periodic but infrequent asthma attacks. After performing air stacking for 3 years, the patient suddenly developed a pneumothorax, indicating that this technique should be used with caution or not at all in patients with a known pulmonary pathology.

Figures

Chart 1. Recommendations and complications for air…
Chart 1. Recommendations and complications for air stacking/deep passive lung insufflation. PCF: peak cough flow; AS: air stacking; LI: lung insufflation; NMD: neuromuscular disease. aExclusion criteria in the studies. bVC and MEP of at least 0.56 L and 11 cmH2O, respectively, are mandatory to elevate PCF > 3 L/s using AS. cAS cumbersome or impossible; passive lung insufflation remains feasible, according to Bach et al.(8) dDefined as chronic abnormalities in chest X-ray and SpO2
Figure 1. In A, a chest X-ray,…
Figure 1. In A, a chest X-ray, taken at admission, shows right-sided pneumothorax. Notice the total collapse of the lung (upper white arrowhead), diaphragmatic bullae (lower white arrowhead), and widened intercostal spaces. The black arrow shows the depressed right hemidiaphragm. In B, a detail of the right lower lobe reveals inflated bullae in the collapsed lung. In C, a chest X-ray, taken an hour after the first one (A) and immediately after chest tube drainage (white arrow) shows the normal position of the hemidiaphragm (black arrow).

References

    1. Kang SW, Bach JR. Maximum insufflation capacity. Chest. 2000;118(1):61–65.
    1. Bach JR, Kang SW. Disorders of ventilation: weakness, stiffness, and mobilization. Chest. 2000;117(2):301–303.
    1. Bach JR, Bianchi C, Vidigal-Lopes M, Turi S, Felisari G. Lung inflation by glossopharyngeal breathing and "air stacking" in Duchenne muscular dystrophy. Am J Phys Med Rehabil. 2007;86(4):295–300.
    1. Dwight P, Poenaru D. Duodenal perforation associated with breath stacking and annular pancreas. J Pediatr Surg. 2004;39(10):1593–1594.
    1. Suri P, Burns SP, Bach JR. Pneumothorax associated with mechanical insufflation-exsufflation and related factors. Am J Phys Med Rehabil. 2008;87(11):951–955.
    1. Celli BR, MacNee W, ATS/ERS Task Force Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23(6):932–946.
    1. Toussaint M, Boitano LJ, Gathot V, Steens M, Soudon P. Limits of effective cough-augmentation techniques in patients with neuromuscular disease. Respir Care. 2009;54(3):359–66.
    1. Bach JR, Mahajan K, Lipa B, Saporito L, Goncalves M, Komaroff E. Lung insufflation capacity in neuromuscular disease. Am J Phys Med Rehabil. 2008;87(9):720–725.
    1. Sancho J, Servera E, Díaz J, Marín J. Predictors of ineffective cough during a chest infection in patients with stable amyotrophic lateral sclerosis. Am J Respir Crit Care Med. 2007;175(12):1266–1271.
    1. Tzeng AC, Bach JR. Prevention of pulmonary morbidity for patients with neuromuscular disease. Chest. 2000;118(5):1390–1396.

Source: PubMed

3
Subscribe