Heart-lung interactions during mechanical ventilation: the basics

Syed S Mahmood, Michael R Pinsky, Syed S Mahmood, Michael R Pinsky

Abstract

The hemodynamic effects of mechanical ventilation can be grouped into three clinically relevant concepts. First, since spontaneous ventilation is exercise. In patients increased work of breathing, initiation of mechanical ventilatory support may improve O2 delivery because the work of breathing is reduced. Second, changes in lung volume alter autonomic tone, pulmonary vascular resistance, and at high lung volumes compress the heart in the cardiac fossa similarly to cardiac tamponade. As lung volume increases so does the pressure difference between airway and pleural pressure. When this pressure difference exceeds pulmonary artery pressure, pulmonary vessels collapse as they pass form the pulmonary arteries into the alveolar space increasing pulmonary vascular resistance. Hyperinflation increases pulmonary vascular resistance impeding right ventricular ejection. Anything that over distends lung units will increase their vascular resistance, and if occurring globally throughout the lung, increase pulmonary vascular resistance. Decreases in end-expiratory lung volume cause alveolar collapse increases pulmonary vasomotor tone by the process of hypoxic pulmonary vasoconstriction. Recruitment maneuvers that restore alveolar oxygenation without over distention will reduce pulmonary artery pressure. Third, positive-pressure ventilation increases intrathoracic pressure. Since diaphragmatic descent increases intra-abdominal pressure, the decrease in the pressure gradient for venous return is less than would otherwise occur if the only change were an increase in right atrial pressure. However, in hypovolemic states, it can induce profound decreases in venous return. Increases in intrathoracic pressure decreases left ventricular afterload and will augment left ventricular ejection. In patients with hypervolemic heart failure, this afterload reducing effect can result in improved left ventricular ejection, increased cardiac output and reduced myocardial O2 demand. This brief review will focus primarily on mechanical ventilation and intrathoracic pressure as they affect right and left ventricular function and cardiac output.

Keywords: Afterload; heart-lung interactions; preload; ventricular interdependence.

Conflict of interest statement

Conflicts of Interest: The authors have no conflicts of interest to declare.

Figures

Figure 1
Figure 1
Schematic representation of the relation between the systemic venous return curve, which remains constant, the left ventricular (LV) function curve which moves with changing intrathoracic pressure (ITP) during breathing. Apneic baseline is shown at “A”. With spontaneous inspiration, ITP decreases so does right atrial pressure but cardiac output increases (“B”), whereas, the opposite occurs with positive-pressure inspiration (“C”). ITP, intrathoracic pressure.

References

    1. Sette P, Dorizzi RM, Azzini AM. Vascular access: an historical perspective from Sir William Harvey to the 1956 Nobel prize to Andre F. Cournand, Werner Forssmann, and Dickinson W. Richards. J Vasc Access 2012;13:137-44.
    1. Pinsky MR. Breathing as exercise: the cardiovascular response to weaning from mechanical ventilation. Intensive Care Med 2000;26:1164-6. 10.1007/s001340000619
    1. Magder S. Volume and its relationship to cardiac output and venous return. Crit Care 2016;20:271. 10.1186/s13054-016-1438-7
    1. Berger D, Moller PW, Weber A, et al. Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return. Am J Physiol Heart Circ Physiol 2016;311:H794-806. 10.1152/ajpheart.00931.2015
    1. Magder S, De Varennes B. Clinical death and the measurement of stressed vascular volume. Crit Care Med 1998;26:1061-4. 10.1097/00003246-199806000-00028
    1. Bloch A, Berger D, Takala J. Understanding circulatory failure in sepsis. Intensive Care Med 2016;42:2077-9. 10.1007/s00134-016-4514-1
    1. Magder S. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol (1985) 2006;101:1533. 10.1152/japplphysiol.00903.2006
    1. Pinsky MR. Instantaneous venous return curves in an intact canine preparation. J Appl Physiol Respir Environ Exerc Physiol 1984;56:765-71.
    1. Moller PW, Winkler B, Hurni S, et al. Right atrial pressure and venous return during cardiopulmonary bypass. Am J Physiol Heart Circ Physiol 2017;313:H408-20. 10.1152/ajpheart.00081.2017
    1. Tyberg JV, Taichman GC, Smith ER, et al. The relationship between pericardial pressure and right atrial pressure: an intraoperative study. Circulation 1986;73:428-32. 10.1161/01.CIR.73.3.428
    1. Grubler MR, Wigger O, Berger D, et al. Basic concepts of heart-lung interactions during mechanical ventilation. Swiss Med Wkly 2017;147:w14491.
    1. Wise RA, Robotham JL, Summer WR. Effects of spontaneous ventilation on the circulation. Lung 1981;159:175-86. 10.1007/BF02713914
    1. Morgan BC, Abel FL, Mullins GL, et al. Flow patterns in cavae, pulmonary artery, pulmonary vein, and aorta in intact dogs. Am J Physiol 1966;210:903-9. 10.1152/ajplegacy.1966.210.4.903
    1. Lansdorp B, Hofhuizen C, van Lavieren M, et al. Mechanical ventilation-induced intrathoracic pressure distribution and heart-lung interactions*. Crit Care Med 2014;42:1983-90. 10.1097/CCM.0000000000000345
    1. Kilburn KH. Cardiorespiratory effects of large pneumothorax in conscious and anesthetized dogs. J J Appl Physiol 1963;18:279-83. 10.1152/jappl.1963.18.2.279
    1. Nanas S, Magder S. Adaptations of the peripheral circulation to PEEP. Am Rev Respir Dis 1992;146:688-93. 10.1164/ajrccm/146.3.688
    1. Magder SA, Lichtenstein S, Adelman AG. Effect of negative pleural pressure on left ventricular hemodynamics. Am J Cardiol 1983;52:588-93. 10.1016/0002-9149(83)90032-2
    1. Katira BH, Giesinger RE, Engelberts D, et al. Adverse Heart-Lung Interactions in Ventilator-induced Lung Injury. Am J Respir Crit Care Med 2017;196:1411-21. 10.1164/rccm.201611-2268OC
    1. Fessler HE, Brower RG, Wise RA, et al. Effects of positive end-expiratory pressure on the canine venous return curve. Am Rev Respir Dis 1992;146:4-10. 10.1164/ajrccm/146.1.4
    1. Takata M, Robotham JL. Effects of inspiratory diaphragmatic descent on inferior vena caval venous return. J Appl Physiol (1985) 1992;72:597-607. 10.1152/jappl.1992.72.2.597
    1. Guyton AC, Lindsey AW, Abernathy B, et al. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol 1957;189:609-15. 10.1152/ajplegacy.1957.189.3.609
    1. Matuschak GM, Pinsky MR, Rogers RM. Effects of positive end-expiratory pressure on hepatic blood flow and performance. J Appl Physiol (1985) 1987;62:1377-83. 10.1152/jappl.1987.62.4.1377
    1. Chihara E, Hashimoto S, Kinoshita T, et al. Elevated mean systemic filling pressure due to intermittent positive-pressure ventilation. Am J Physiol 1992;262:H1116-21.
    1. Takata M, Wise RA, Robotham JL. Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl Physiol (1985) 1990;69:1961-72. 10.1152/jappl.1990.69.6.1961
    1. van den Berg PC, Jansen JR, Pinsky MR. Effect of positive pressure on venous return in volume-loaded cardiac surgical patients. J Appl Physiol (1985) 2002;92:1223-31. 10.1152/japplphysiol.00487.2001
    1. Reichek N, Wilson J, St John Sutton M, et al. Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application. Circulation 1982;65:99-108. 10.1161/01.CIR.65.1.99
    1. Walley KR. Left ventricular function: time-varying elastance and left ventricular aortic coupling. Crit Care 2016;20:270. 10.1186/s13054-016-1439-6
    1. Buda AJ, Pinsky MR, Ingels NB, Jr, et al. Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 1979;301:453-9. 10.1056/NEJM197908303010901
    1. Cozanitis DA, Leijala M, Pesonen E, et al. Acute pulmonary oedema due to laryngeal spasm. Anaesthesia 1982;37:1198-9. 10.1111/j.1365-2044.1982.tb01787.x
    1. Vieillard-Baron A, Matthay M, Teboul JL, et al. Experts' opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med 2016;42:739-49. 10.1007/s00134-016-4326-3
    1. Pinsky MR. Cardiovascular issues in respiratory care. Chest 2005;128:592S-7S. 10.1378/chest.128.5_suppl_2.592S
    1. Beyar R, Goldstein Y. Model studies of the effects of the thoracic pressure on the circulation. Ann Biomed Eng 1987;15:373-83. 10.1007/BF02584291
    1. Shuey CB, Jr, Pierce AK, Johnson RL., Jr An evaluation of exercise tests in chronic obstructive lung disease. J Appl Physiol 1969;27:256-61. 10.1152/jappl.1969.27.2.256
    1. Pinsky MR, Desmet JM, Vincent JL. Effect of positive end-expiratory pressure on right ventricular function in humans. Am Rev Respir Dis 1992;146:681-7. 10.1164/ajrccm/146.3.681
    1. Morimont P, Lambermont B, Ghuysen A, et al. Effective arterial elastance as an index of pulmonary vascular load. Am J Physiol Heart Circ Physiol 2008;294:H2736-42. 10.1152/ajpheart.00796.2007
    1. Matthews JC, McLaughlin V. Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management. Curr Cardiol Rev 2008;4:49-59. 10.2174/157340308783565384
    1. Vieillard-Baron A, Loubieres Y, Schmitt JM, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol (1985) 1999;87:1644-50. 10.1152/jappl.1999.87.5.1644
    1. West JB. Understanding pulmonary gas exchange: ventilation-perfusion relationships. J Appl Physiol (1985) 2004;97:1603-4. 10.1152/classicessays.00024a.2004
    1. Jardin F, Genevray B, Brun-Ney D, et al. Influence of lung and chest wall compliances on transmission of airway pressure to the pleural space in critically ill patients. Chest 1985;88:653-8. 10.1378/chest.88.5.653
    1. Magder S. The left heart can only be as good as the right heart: determinants of function and dysfunction of the right ventricle. Crit Care Resusc 2007;9:344-51.
    1. Voorhees AP, Han HC. Biomechanics of Cardiac Function. Compr Physiol 2015;5:1623-44. 10.1002/cphy.c140070
    1. Buckberg G, Hoffman JI. Right ventricular architecture responsible for mechanical performance: unifying role of ventricular septum. J Thorac Cardiovasc Surg 2014;148:3166-71.e1-4.
    1. Yamaguchi S, Harasawa H, Li KS, et al. Comparative significance in systolic ventricular interaction. Cardiovasc Res 1991;25:774-83. 10.1093/cvr/25.9.774
    1. Taylor RR, Covell JW, Sonnenblick EH, et al. Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Physiol 1967;213:711-8. 10.1152/ajplegacy.1967.213.3.711
    1. Magder S, Guerard B. Heart-lung interactions and pulmonary buffering: lessons from a computational modeling study. Respir Physiol Neurobiol 2012;182:60-70. 10.1016/j.resp.2012.05.011
    1. Pinsky MR, Matuschak GM, Bernardi L, et al. Hemodynamic effects of cardiac cycle-specific increases in intrathoracic pressure. J Appl Physiol (1985) 1986;60:604-12. 10.1152/jappl.1986.60.2.604
    1. Lessard MR, Guerot E, Lorino H, et al. Effects of pressure-controlled with different I:E ratios versus volume-controlled ventilation on respiratory mechanics, gas exchange, and hemodynamics in patients with adult respiratory distress syndrome. Anesthesiology 1994;80:983-91. 10.1097/00000542-199405000-00006
    1. Chan K, Abraham E. Effects of inverse ratio ventilation on cardiorespiratory parameters in severe respiratory failure. Chest 1992;102:1556-61. 10.1378/chest.102.5.1556
    1. Dries DJ, Kumar P, Mathru M, et al. Hemodynamic effects of pressure support ventilation in cardiac surgery patients. Am Surg 1991;57:122-5.
    1. Abraham E, Yoshihara G. Cardiorespiratory effects of pressure controlled ventilation in severe respiratory failure. Chest 1990;98:1445-9. 10.1378/chest.98.6.1445
    1. Poelaert JI, Visser CA, Everaert JA, et al. Acute hemodynamic changes of pressure-controlled inverse ratio ventilation in the adult respiratory distress syndrome. A transesophageal echocardiographic and Doppler study. Chest 1993;104:214-9. 10.1378/chest.104.1.214
    1. Davis K, Jr, Branson RD, Campbell RS, et al. Comparison of volume control and pressure control ventilation: is flow waveform the difference? J Trauma 1996;41:808-14. 10.1097/00005373-199611000-00007
    1. Singer M, Vermaat J, Hall G, et al. Hemodynamic effects of manual hyperinflation in critically ill mechanically ventilated patients. Chest 1994;106:1182-7. 10.1378/chest.106.4.1182

Source: PubMed

3
Subscribe