Non-invasive monitoring of oxygen delivery in acutely ill patients: new frontiers

Azriel Perel, Azriel Perel

Abstract

Hypovolemia, anemia and hypoxemia may cause critical deterioration in the oxygen delivery (DO2). Their early detection followed by a prompt and appropriate intervention is a cornerstone in the care of critically ill patients. And yet, the remedies for these life-threatening conditions, namely fluids, blood and oxygen, have to be carefully titrated as they are all associated with severe side-effects when administered in excess. New technological developments enable us to monitor the components of DO2 in a continuous non-invasive manner via the sensor of the traditional pulse oximeter. The ability to better assess oxygenation, hemoglobin levels and fluid responsiveness continuously and simultaneously may be of great help in managing the DO2. The non-invasive nature of this technology may also extend the benefits of advanced monitoring to wider patient populations.

Keywords: Blood transfusion; Fluid responsiveness; Monitoring; Oxygenation; Plethysmographic variation index (PVI); Pulse oximetry.

Figures

Fig. 1
Fig. 1
The effects of hypovolemia, anemia and hypoxia on the oxygen delivery. Sequential measurement of oxygen delivery in 30 dogs during controlled hypovolemia, normovolemic anemia and hypoxia. (Reproduced with permission from [2])
Fig. 2
Fig. 2
Example of the oxygen reserve index (ORI) during intubation in pediatric surgery. Note early increase of ORI during pre-oxygenation; decline in ORI triggering alarm before any change in SpO2 occurs; disappearance of ORI when SpO2 <100 %; re-appearance once SpO2 >100 %. (Figure provided by Masimo Corp. Irvine, CA, USA)

References

    1. Ackland GL, Iqbal S, Paredes LG, et al. Individualised oxygen delivery targeted haemodynamic therapy in high-risk surgical patients: a multicentre, randomised, double-blind, controlled, mechanistic trial. Lancet Respir Med. 2015;3:33–41. doi: 10.1016/S2213-2600(14)70205-X.
    1. Schwartz S, Frantz RA, Shoemaker WC. Sequential hemodynamic and oxygen transport responses in hypovolemia, anemia, and hypoxia. Am J Physiol. 1981;241:H864–H871.
    1. Shah A, Shelley KH. Is pulse oximetry an essential tool or just another distraction? The role of the pulse oximeter in modern anesthesia care. J Clin Monit Comput. 2013;27:235–242. doi: 10.1007/s10877-013-9428-7.
    1. Lee LA, Domino KB. The closed claims project. has it influenced anesthetic practice and outcome? Anesthesiol Clin North Am. 2002;20:485–501. doi: 10.1016/S0889-8537(02)00006-8.
    1. Ehrenfeld JM, Funk LM, Van Schalkwyk J, et al. The incidence of hypoxemia during surgery: evidence from two institutions. Can J Anaesth. 2010;57:888–897. doi: 10.1007/s12630-010-9366-5.
    1. Epstein RH, Dexter F, Lopez MG, Ehrenfeld JM. Anesthesiologist staffing considerations consequent to the temporal distribution of hypoxemic episodes in the postanesthesia care unit. Anesth Analg. 2014;119:1322–1333. doi: 10.1213/ANE.0000000000000410.
    1. Khemani RG, Rubin S, Belani S, et al. Pulse oximetry vs. PaO2 metrics in mechanically ventilated children: berlin definition of ARDS and mortality risk. Intensiv Care Med. 2015;41:94–102. doi: 10.1007/s00134-014-3486-2.
    1. Villar J, Blanco J, del Campo R, et al. Assessment of PaO2/FiO2 for stratification of patients with moderate and severe acute respiratory distress syndrome. BMJ Open. 2015;5:e006812. doi: 10.1136/bmjopen-2014-006812.
    1. Jubran A. Pulse oximetry. Crit Care. 2015;19:272. doi: 10.1186/s13054-015-0984-8.
    1. Aust H, Kranke P, Eberhart LH, et al. Impact of medical training and clinical experience on the assessment of oxygenation and hypoxaemia after general anaesthesia: an observational study. J Clin Monit Comput. 2015;29:415–426. doi: 10.1007/s10877-014-9620-4.
    1. Douw G, Schoonhoven L, Holwerda T, et al. Nurses’ worry or concern and early recognition of deteriorating patients on general wards in acute care hospitals: a systematic review. Crit Care. 2015;19:230. doi: 10.1186/s13054-015-0950-5.
    1. Taenzer AH, Pyke JB, McGrath SP, Blike GT. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010;112:282–287. doi: 10.1097/ALN.0b013e3181ca7a9b.
    1. Canet J, Sabate S, Mazo V, et al. Development and validation of a score to predict postoperative respiratory failure in a multicentre European cohort: a prospective, observational study. Eur J Anaesthesiol. 2015 Feb 13. (Epub ahead of print).
    1. Fu ES, Downs JB, Schweiger JW, Miguel RV, Smith RA. Supplemental oxygen impairs detection of hypoventilation by pulse oximetry. Chest. 2004;126:1552–1558. doi: 10.1378/chest.126.5.1552.
    1. Lee LA, Caplan RA, Stephens LS, et al. Postoperative opioid-induced respiratory depression: a closed claims analysis. Anesthesiology. 2015;122:659–665. doi: 10.1097/ALN.0000000000000564.
    1. Kelley SD, Ramsay MA. Respiratory rate monitoring: characterizing performance for emerging technologies. Anesth Analg. 2014;119:1246–1248. doi: 10.1213/ANE.0000000000000454.
    1. Lauscher P, Mirakaj V, Koenig K, Meier J. Why hyperoxia matters during acute anemia. Minerva Anestesiol. 2013;79:643–651.
    1. Bouroche G, Bourgain JL. Pre-oxygenation and general anesthesia: a review. Minerva Anestesiol. 2015;81:910–920.
    1. Day T, Farnell S, Wilson-Barnett J. Suctioning: a review of current research recommendations. Intensiv Crit Care Nurs. 2002;18:79–89. doi: 10.1016/S0964-3397(02)00004-6.
    1. Gebremedhn EG, Mesele D, Aemero D, Alemu E. The incidence of oxygen desaturation during rapid sequence induction and intubation. World J Emerg Med. 2014;5:279–285. doi: 10.5847/wjem.j.issn.1920-8642.2014.04.007.
    1. Murphy C, Wong DT. Airway management and oxygenation in obese patients. Can J Anaesth. 2013;60:929–945. doi: 10.1007/s12630-013-9991-x.
    1. Lapinsky SE. Endotracheal intubation in the ICU. Crit Care. 2015;19:258. doi: 10.1186/s13054-015-0964-z.
    1. Baillard C, Fosse JP, Sebbane M, et al. Noninvasive ventilation improves preoxygenation before intubation of hypoxic patients. Am J Respir Crit Care Med. 2006;174:171–177. doi: 10.1164/rccm.200509-1507OC.
    1. Martin DS. Grocott MPW. III. Oxygen therapy in anaesthesia: the yin and yang of O2. Br J Anaesth. 2013;111:867–871. doi: 10.1093/bja/aet291.
    1. Aggarwal NR, Brower RG. Targeting normoxemia in acute respiratory distress syndrome may cause worse short-term outcomes because of oxygen toxicity. Ann Am Thorac Soc. 2014;11:1449–1453. doi: 10.1513/AnnalsATS.201407-297PS.
    1. Mikkelsen ME, Anderson B, Christie JD, et al. Can we optimize long-term outcomes in acute respiratory distress syndrome by targeting normoxemia? Ann Am Thorac Soc. 2014;11:613–618. doi: 10.1513/AnnalsATS.201401-001PS.
    1. Calzia E, Asfar P, Hauser B, et al. Hyperoxia may be beneficial. Crit Care Med. 2010;38:S559–S568. doi: 10.1097/CCM.0b013e3181f1fe70.
    1. Asfar P, Singer M, Radermacher P. Understanding the benefits and harms of oxygen therapy. Intensiv Care Med. 2015;41:1118–1121. doi: 10.1007/s00134-015-3670-z.
    1. de Graaff AE, Dongelmans DA, Binnekade JM, de Jonge E. Clinicians’ response to hyperoxia in ventilated patients in a Dutch ICU depends on the level of FiO2. Intensiv Care Med. 2011;37:46–51. doi: 10.1007/s00134-010-2025-z.
    1. Berkow L, Rotolo S, Mirski E. Continuous noninvasive hemoglobin monitoring during complex spine surgery. Anesth Analg. 2011;113:1396–1402. doi: 10.1213/ANE.0b013e318230b425.
    1. Frank SM, Savage WJ, Rothschild JA, et al. Variability in blood and blood component utilization as assessed by an anesthesia information management system. Anesthesiology. 2012;117:99–106. doi: 10.1097/ALN.0b013e318255e550.
    1. Bennett-Guerrero E, Zhao Y, O’Brien SM, et al. Variation in use of blood transfusion in coronary artery bypass graft surgery. JAMA. 2010;304:1568–1575. doi: 10.1001/jama.2010.1406.
    1. Hebert PC, Wells G, Martin C, et al. Variation in red cell transfusion practice in the intensive care unit: a multicentre cohort study. Crit Care. 1999;3:57–63. doi: 10.1186/cc310.
    1. Carson JL, Terrin ML, Noveck H, et al. Liberal or restrictive transfusion in high-risk patients after hip surgery. N Engl J Med. 2011;365:2453–2462. doi: 10.1056/NEJMoa1012452.
    1. Hajjar LA, Vincent JL, Galas FR, et al. Transfusion requirements after cardiac surgery: the TRACS randomized controlled trial. JAMA. 2010;304:1559–1567. doi: 10.1001/jama.2010.1446.
    1. McEvoy MT, Shander A. Anemia, bleeding, and blood transfusion in the intensive care unit: causes, risks, costs, and new strategies. Am J Crit Care. 2013;22:eS1–eS13. doi: 10.4037/ajcc2013729.
    1. Shander A, Hofmann A, Ozawa S, et al. Activity-based costs of blood transfusions in surgical patients at four hospitals. Transfusion. 2010;50:753–765. doi: 10.1111/j.1537-2995.2009.02518.x.
    1. Musallam KM, Tamim HM, Richards T, et al. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. Lancet. 2011;378:1396–1407. doi: 10.1016/S0140-6736(11)61381-0.
    1. Gutsche JT, Kohl BA. When to transfuse: is it any surprise that we still don’t know? Crit Care Med. 2014;42:2647–2648. doi: 10.1097/CCM.0000000000000588.
    1. Vincent JL. Indications for blood transfusions: too complex to base on a single number? Ann Int Med. 2012;157:71–72. doi: 10.7326/0003-4819-156-12-201206190-00431.
    1. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensiv Care Med. 2013;39:165–228. doi: 10.1007/s00134-012-2769-8.
    1. Holst LB, Haase N, Wetterslev J, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014;371:1381–1391. doi: 10.1056/NEJMoa1406617.
    1. Ehrenfeld JM, Henneman JP, Bulka CM, Sandberg WS. Continuous non-invasive hemoglobin monitoring during orthopedic surgery: a randomized trial. J Blood Disord Transf. 2014;5:237.
    1. Awada WN, Mohmoued MF, Radwan TM, et al. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015 Feb 4. (Epub ahead of print).
    1. Dutton RP, Lee LA, Stephens LS, Posner KL, Davies JM, Domino KB. Massive hemorrhage: a report from the Anesthesia Closed Claims Project. Anesthesiology. 2014;121:450–468. doi: 10.1097/ALN.0000000000000369.
    1. Barker SJ, Shander A, Ramsay MA. Continuous noninvasive hemoglobin monitoring: a measured response to a critical review. Anesth Analg 2015 Mar 5. (Epub ahead of print).
    1. Frasca D, Mounios H, Giraud B, et al. Continuous monitoring of haemoglobin concentration after in vivo adjustment in patients undergoing surgery with blood loss. Anaesthesia 2015 Feb 13. (Epub ahead of print).
    1. Cannesson M, Delannoy B, Morand A, et al. Does the pleth variability index indicate the respiratory-induced variation in the plethysmogram and arterial pressure waveforms? Anesth Analgesia. 2008;106:1189–1194. doi: 10.1213/ane.0b013e318167ab1f.
    1. Loupec T, Nanadoumgar H, Frasca D, et al. Pleth variability index predicts fluid responsiveness in critically ill patients. Crit Care Med. 2011;39:294–299. doi: 10.1097/CCM.0b013e3181ffde1c.
    1. Perel A, Pizov R, Cotev S. Respiratory variations in the arterial pressure during mechanical ventilation reflect volume status and fluid responsiveness. Intensiv Care Med. 2014;40:798–807. doi: 10.1007/s00134-014-3285-9.
    1. Perel A, Habicher M, Sander M. Bench-to-bedside review: functional hemodynamics during surgery—should it be used for all high-risk cases? Crit Care. 2013;17:203. doi: 10.1186/cc11448.
    1. Velissaris D, Pierrakos C, Scolletta S, et al. High mixed venous oxygen saturation levels do not exclude fluid responsiveness in critically ill septic patients. Crit Care. 2011;15:R177. doi: 10.1186/10326.
    1. Vincent JL, Pelosi P, Pearse R, et al. Perioperative cardiovascular monitoring of high-risk patients: a consensus of 12. Crit Care. 2015;19:224. doi: 10.1186/s13054-015-0932-7.
    1. Pearse RM, Harrison DA, MacDonald N, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311:2181–2190. doi: 10.1001/jama.2014.5305.
    1. Pestana D, Espinosa E, Eden A, et al. Perioperative goal-directed hemodynamic optimization using noninvasive cardiac output monitoring in major abdominal surgery: a prospective, randomized, multicenter, pragmatic trial. Anesth Analg. 2014;119:579–587. doi: 10.1213/ANE.0000000000000295.
    1. Perel A. Goal-directed therapy: some remaining questions. ICU Manag. 2015;14:8–12.
    1. MacDonald N, Ahmad T, Mohr O, et al. Dynamic preload markers to predict fluid responsiveness during and after major gastrointestinal surgery: an observational substudy of the OPTIMISE trial. Brit J Anaesth. 2015;114:598–604. doi: 10.1093/bja/aeu398.
    1. Navarro LH, Bloomstone JA, Auler JO, Jr, et al. Perioperative fluid therapy: a statement from the international fluid optimization group. Perioper Med (Lond). 2015;4:3. doi: 10.1186/s13741-015-0014-z.
    1. Cannesson M, Slieker J, Desebbe O, et al. The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room. Anesth Analg. 2008;106:1195–1200. doi: 10.1213/01.ane.0000297291.01615.5c.
    1. Sandroni C, Cavallaro F, Marano C, et al. Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensiv Care Med. 2012;38:1429–1437. doi: 10.1007/s00134-012-2621-1.
    1. Cannesson M, Desebbe O, Rosamel P, et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Brit J Anaesth. 2008;101:200–206. doi: 10.1093/bja/aen133.
    1. Feissel M, Teboul JL, Merlani P, et al. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensiv Care Med. 2007;33:993–999. doi: 10.1007/s00134-007-0602-6.
    1. Forget P, Lois F, de Kock M. Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg. 2010;111:910–914.
    1. Thiele RH, Rea KM, Turrentine FE, et al. Standardization of care: impact of an enhanced recovery protocol on length of stay, complications, and direct costs after colorectal surgery. J Am Coll Surg. 2015;220:430–443. doi: 10.1016/j.jamcollsurg.2014.12.042.
    1. Yu Y, Dong J, Xu Z, et al. Pleth variability index-directed fluid management in abdominal surgery under combined general and epidural anesthesia. J Clin Monit Comput. 2015;29:47–52. doi: 10.1007/s10877-014-9567-5.
    1. Perel A. Excessive variations in the plethysmographic waveform during spontaneous ventilation: an important sign of upper airway obstruction. Anesth Analg. 2014;119:1288–1292. doi: 10.1213/ANE.0000000000000378.
    1. Monnet X, Guerin L, Jozwiak M, et al. Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Brit J Anaesth. 2013;110:207–213. doi: 10.1093/bja/aes373.
    1. Cannesson M, Manach YL. Noninvasive hemodynamic monitoring: no high heels on the farm; no clogs to the opera. Anesthesiology. 2012;117:937–939. doi: 10.1097/ALN.0b013e3182700ad6.

Source: PubMed

3
Subscribe