Dengue Fever: Therapeutic Potential of Carica papaya L. Leaves

Md Moklesur Rahman Sarker, Farzana Khan, Isa Naina Mohamed, Md Moklesur Rahman Sarker, Farzana Khan, Isa Naina Mohamed

Abstract

Dengue, a very widespread mosquito-borne infectious disease caused by Aedes aegypti virus, has been occurring during the monsoons every year. The prevalence and incidence of dengue fever and death due to its complications have been increased drastically in these recent years in Bangladesh, Philippines, Thailand, Brazil, and India. Recently, dengue had spread in an epidemic form in Bangladesh, Thailand, and Philippines. Although the infection affected a large number of people around the world, there is no established specific and effective treatment by synthetic medicines. In this subcontinent, Malaysia could effectively control its incidences and death of patients using alternative medication treatment mainly prepared from Carica papaya L. leaves along with proper care and hospitalization. Papaya leaves, their juice or extract, as well as their different forms of preparation have long been used traditionally for treating dengue fever and its complications to save patients' lives. Although it is recommended by traditional healers, and the general public use Papaya leaves juice or their other preparations in dengue fever, this treatment option is strictly denied by the physicians offering treatment in hospitals in Bangladesh as they do not believe in the effectiveness of papaya leaves, thus suggesting to patients that they should not use them. In Bangladesh, 1,01,354 dengue patients have been hospitalized, with 179 deaths in the year 2019 according to information from the Institute of Epidemiology, Disease Control, and Research as well as the Directorate General of Health Services of Bangladesh. Most of the patients died because of the falling down of platelets to dangerous levels and hemorrhage or serious bleeding. Therefore, this paper aims to critically review the scientific basis and effectiveness of Carica papaya L. leaves in treating dengue fever based on preclinical and clinical reports. Thrombocytopenia is one of the major conditions that is typical in cases of dengue infection. Besides, the infection and impairment of immunity are concerned with dengue patients. This review summarizes all the scientific reports on Carica papaya L. for its ability on three aspects of dengue: antiviral activities, prevention of thrombocytopenia and improvement of immunity during dengue fever.

Keywords: Aedes aegypti virus; Carica papaya; dengue; dengue treatment; immunity; thrombocytopenia; tropical disease; viral infection.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Sarker, Khan and Mohamed.

Figures

FIGURE 1
FIGURE 1
Outline of the Study: Therapeutic Potential of Carica papaya L. Leaves against dengue fever.
FIGURE 2
FIGURE 2
Mechanism of inhibition of the formation of platelets in bone marrow by dengue virus. The panel illustrates the steps in the formation of platelets from the liver that is stimulated by low platelet count in the blood. After the infection of the host with dengue virus, it prevents the formation of platelets from stromal cells and maturation in different stages.
FIGURE 3
FIGURE 3
Mechanism of platelet destruction by antibody cross-reaction induced by dengue virus. Invading viral proteins mimics the platelets of the body and are destroyed by IgM antibodies produced upon recognition of viral proteins by the host defense system.
FIGURE 4
FIGURE 4
Mechanism of platelets and other cells’ aggregation in thrombocytopenia induced by dengue virus. After dengue infection, platelets are aggregated with endothelial cells that in turn activate the platelets. P-selection proteins on platelet cells are recognized by neutrophils and monocytes and form further aggregation. Leukocytes also interact with the platelet endothelial cell aggregates. These aggregations reduce the available platelet count and induce an inflammatory response that destroys the platelets.
FIGURE 5
FIGURE 5
Summary of processes behind thrombocytopenia in dengue. The panel summarizes how platelets are destroyed after dengue infection. After viral replication in platelets, it activates platelets using receptors and monocytes as well as aggregates the platelets, reducing its availability. It also suppresses bone marrow and prevents platelet formation by destroying premature cells.
FIGURE 6
FIGURE 6
Phytocompounds isolated from Carica papaya L. leaves.
FIGURE 7
FIGURE 7
Possible mechanisms behind the role of papaya leaves in improving platelet count. This figure summarizes the mechanism of papaya leaves in reducing thrombocytopenia by the dengue virus. It stabilizes the membrane of platelets and reduces platelet destruction. It also prevents viral assembly in cells and hemolysis. Furthermore, it increases the expression of genes that elevate the production of platelets.
FIGURE 8
FIGURE 8
Mechanisms behind the role of papaya leaves in improving platelet count by membrane stabilization and production of ALOX 12 gene. Carica papaya L. leaf extract promotes the formation of megakaryocytes and megakaryocyte progenitors that induce the formation of proplatelets. Lysis and destruction of these proplatelets are also inhibited by Carica papaya L. leave extract.

References

    1. Abd Kadir S. L., Yaakob H., Mohamed Zulkifli R. (2013). Potential anti-dengue medicinal plants: a review. J. Nat. Med. 67 (4), 677–689. 10.1007/s11418-013-0767-y
    1. Abdulazeez M. A., Sani I. (2011). “Use of fermented papaya (Carica papaya) seeds as a food condiment, and effects on pre-and post-implantation embryo development,” in Nuts and seeds in health and disease prevention. Editors Watson R., Preedy V. (Cambridge, MA: Academic Press; ), 855–863.
    1. Adarsh V. B., Doddamane K., Kumar V. D. (2017). Role of Carica papaya L. Leaf product in improving the platelet count in patients with dengue fever. Int. J. Res. Med. 6 (2), 63–68.
    1. Adeneye A. A. (2014). Subchronic and chronic toxicities of African medicinal plants,” in Toxicological survey of african medicinal plants. 1st Edn, Editor Kuete V. (Tamil Nadu, India: Elsevier; ), 99–133.
    1. Afzan A., Abdullah N. R., Halim S. Z., Rashid B. A., Semail R. H. R., Abdullah N., et al. (2012). Repeated dose 28-days oral toxicity study of Carica papaya L. leaf extract in sprague dawley rats. Molecules 17 (4), 4326–4342. 10.3390/molecules17044326
    1. Ahmad N., Fazal H., Ayaz M., Abbasi B. H., Mohammad I., Fazal L. (2011). Dengue fever treatment with Carica papaya leaves extracts. Asian Pac. J. Trop. Biomed. 1 (4), 330–333. 10.1016/S2221-1691(11)60055-5
    1. Akhila S., Vijayalakshmi N. G. (2015). Phytochemical studies on Carica papaya L. leaf juice. Int. J. Pharm. Sci. 6 (2), 880.
    1. Alam H. (2019). Dengue takes alarming turn, Daily Star. Available at: (Accessed Feb 27, 2020). 10.13031/aim.201901707
    1. Alzohairy M. A. (2016). Therapeutics role of Azadirachta indica (neem) and their active constituents in diseases prevention and treatment. Evid. Based Complement. Alternat Med. 2016, 7382506. 10.1155/2016/7382506
    1. Andrews R., Arthur J., Gardiner E. (2014). Neutrophil extracellular traps (NETs) and the role of platelets in infection. Thromb. Haemost. 112 (10), 659–665. 10.1160/TH14-05-0455
    1. Antiplatelet Trialists' Collaboration. (1994). Collaborative overview of randomised trials of antiplatelet therapy--I: prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. Antiplatelet Trialists' Collaboration. Bmj 308 (6921), 81–106.
    1. Assir M. Z., Nasir N. U., Mansoor H., Waseem T., Ahmed H. I., Riaz F. (2011). Effect of Carica papaya L. leaf extract on platelet count in dengue fever: a randomized controlled tirals (PLEAD TRIAL). J. Allama Iqbal Med. Coll. 9, 6–9. 10.1016/j.ijid.2012.05.686
    1. Assoian R. K., Komoriya A., Meyers C. A., Miller D. M., Sporn M. B. (1983). Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J. Biol. Chem. 258 (11), 7155–7160. 10.1016/s0021-9258(18)32345-7
    1. Atanasov A. G., Zotchev S. B., Dirsch V. M., Supuran C. T. (2021). Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 28, 1–7. 10.1038/s41573-020-00114-z
    1. Azeredo E. L. D., Monteiro R. Q., de-Oliveira Pinto L. M. (2015). Thrombocytopenia in dengue: interrelationship between virus and the imbalance between coagulation and fibrinolysis and inflammatory mediators. Mediators Inflamm. 2015, 1. 10.1155/2015/313842
    1. Azeredo E., Zagne S. M., Santiago M. A., Gouvea A. S., Santana A. A., Neves-Souza P. C. (2001). Characterisation of lymphocyte response and cytokine patterns in patients with dengue fever. Immunobiology 204 (4), 494–507. 10.1078/0171-2985-00058
    1. Badalucco S., Di Buduo C. A., Campanelli R., Pallotta I., Catarsi P., Rosti V., et al. (2013). Involvement of TGF 1 in autocrine regulation of proplatelet formation in healthy subjects and patients with primary myelofibrosis. Haematologica . 98 (4), 514–517. 10.3324/haematol.2012.076752
    1. Basu A., Jain P., Gangodkar S. V., Shetty S., Ghosh K. (2008). Dengue 2 virus inhibitsin vitromegakaryocytic colony formation and induces apoptosis in thrombopoietin-inducible megakaryocytic differentiation from cord blood CD34+ cells. FEMS Immunol. Med. Microbiol. 53 (1), 46–51. 10.1111/j.1574-695X.2008.00399.x
    1. Bok Z. K., Balakrishnan M., Jong Y. X., Kong Y. R., Khaw K. Y., Ong Y. S. (2020). The plausible mechanisms of action of Carica papaya on Dengue infection: a comprehensive review. Prog. Drug Discov. Biomed. Sci. 3 (1). 10.36877/pddbs.a0000097
    1. Boo Y. L., Lim S. Y., P'ng H. S., Liam C., Huan N. C. (2019). Persistent thrombocytopenia following dengue fever: what should we do? Malays. Fam. Physician 14 (3), 71–73.
    1. Butthep P., Bunyaratvej A., Bhamarapravati N. (1993). Dengue virus and endothelial cell: a related phenomenon to thrombocytopenia and granulocytopenia in dengue hemorrhagic fever. Southeast. Asian J. Trop. Med. Public Health 24 (Suppl. 1), 246–249.
    1. Cahya G. H., Amnifu D., Makur M. (2019). Dengue kills more than 100 people in Indonesia, The jakarta Post. Available from: (Accessed 27 Feb, 2020).
    1. Cahyati W. H., Asmara W., Umniyati S. R., Mulyaningsih B. (2019). Biolarvicidal effects of papaya leaves juice against Aedes aegypti linn larvae. J. Int. Dent. 12 (2), 780–785.
    1. Chandrasekaran R., Seetharaman P., Krishnan M., Gnanasekar S., Sivaperumal S. (2018). Carica papaya (Papaya) latex: a new paradigm to combat against dengue and filariasis vectors Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). 3 Biotech. 8 (2), 83. 10.1007/s13205-018-1105-6
    1. Chao C.-H., Wu W.-C., Lai Y.-C., Tsai P.-J., Perng G.-C., Lin Y.-S., et al. (2019). Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. Plos Pathog. 15 (4), e1007625. 10.1371/journal.ppat.1007625
    1. Chao W.-W., Lin B.-F. (2010). Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin. Med. 5, 17. 10.1186/1749-8546-5-17
    1. Charan J., Saxena D., Goyal J., Yasobant S. (2016). Efficacy and safety of Carica papaya leaf extract in the dengue: a systematic review and meta-analysis. Int. J. App. Basic Med. Res. 6 (4), 249. 10.4103/2229-516X.192596
    1. Chen M.-C., Lin C.-F., Lei H.-Y., Lin S.-C., Liu H.-S., Yeh T.-M., et al. 2009). Deletion of the C-terminal region of dengue virus nonstructural protein 1 (NS1) abolishes anti-NS1-mediated platelet dysfunction and bleeding tendency. J. Immunol. 183 (3), 1797–1803. 10.4049/jimmunol.0800672
    1. Chen Y., Liu Y., Sarker M. M. R., Yan X., Yang C., Zhao L., et al. (2018). Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways. Carbohydr. Polym. 198, 452–461. 10.1016/j.carbpol.2018.06.077
    1. Yang H.-J., Lei H.-Y., Lin C.-F., Luo Y.-H., Wan S.-W., Liu H.-S., et al. 2009). Anti-dengue virus nonstructural protein 1 antibodies recognize protein disulfide isomerase on platelets and inhibit platelet aggregation. Mol. Immunol. 47 (2-3), 398–406. 10.1016/j.molimm.2009.08.033
    1. Chinnappan S., Shettikothanuru Ramachandrappa V., Tamilarasu K., Krishnan U. M., Balakrishna Pillai A. K., Rajendiran S. (2016). Inhibition of platelet aggregation by the leaf extract of Carica papaya during dengue infection: an in vitro study. Viral Immunol. 29 (3), 164–168. 10.1089/vim.2015.0083
    1. Choi J.-H., Park S.-E., Kim S.-J., Kim S. (2015). Kaempferol inhibits thrombosis and platelet activation. Biochimie 115, 177–186. 10.1016/j.biochi.2015.06.001
    1. Cousins S. (2019). Dengue rises in Bangladesh. Lancet Infect. Dis. 19 (2), 138. 10.1016/S1473-3099(19)30008-8
    1. Crill W. D., Chang G.-J. J. (2004). Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. Jvi 78 (24), 13975–13986. 10.1128/JVI.78.24.13975-13986.2004
    1. da Costa Barros T. A., de-Oliveira-Pinto L. M. (2018). A view of platelets in dengue. Thrombocytopenia, Pankaj Abrol, IntechOpen . 10.5772/intechopen.73084
    1. da Silva J. A. T., Rashid Z., Nhut D. T., Sivakumar D., Gera A., Souza M. T., et al. (2007). Papaya (Carica papaya L.) biology and biotechnology. Tree forest. Sci. Biotechnol. 1, 47–73.
    1. Dalrymple N., Mackow E. R. (2011). Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J. Virol. 85 (18), 9478–9485. 10.1128/JVI.05008-11
    1. Dar R. A., Naikoo G. A., Hassan I. U., Shaikh A. M. H. (2016). Electrochemical behavior of kaempferol and its determination in presence of quercetin employing multi-walled carbon nanotube modified carbon paste electrode. Anal. Chem. Res. 7, 1–8. 10.1016/j.ancr.2015.08.001
    1. Das S., Mustapha M., Sengupta P., Sarker M. M. R. (2016). An experimental evaluation of adaptogenic potential of standardized epipremnum aureum leaf extract. J. Pharm. Bioall Sci. 9 (2), 88. 10.4103/0975-7406.183227
    1. de Araújo J. M. G., Schatzmayr H. G., de Filippis A. M. B., dos Santos F. B., Cardoso M. A., Britto C., et al. (2009). A retrospective survey of dengue virus infection in fatal cases from an epidemic in Brazil. J. Virol. Methods 155 (1), 34–38. 10.1016/j.jviromet.2008.09.023
    1. Dengue and severe dengue (2019). World health organization. Available at: (Accessed 27 Feb, 2020).
    1. Dengue fever: More than 67,000 cases. (2019). Health issue India. Available at: (Accessed 27 Feb, 2020).
    1. Dengue update (2019). Epidemiology unit, Ministry of health. Available at: (Accessed 27 Feb, 2020).
    1. Dengue Update Number 532. (2017). World health organization (Western Pacific egion). Available at: (Accessed 27 Feb, 2020).
    1. Dengue Update Number 559. (2019). World health organization (western pacific region). Available at: (Accessed 27 Feb, 2020).
    1. Dengue Update Number 576. (2019). World health organization (western pacific region). Available at: (Accessed 27 Feb, 2020).
    1. Dengue Update Number 601 (2020). World health organization (western pacific region). Available from: (Accessed 13 Aug, 2020).
    1. Djamiatun K., Faradz S. M. H., Setiati T. E., Netea M. G., van der Ven A. J. A. M., Dolmans W. M. V. (2011). Increase of plasminogen activator inhibitor-1 and decrease of transforming growth factor-B1 in children with dengue haemorrhagic fever in Indonesia. J. Trop. Pediatr. 57 (6), 424–432. 10.1093/tropej/fmq122
    1. Epidemiological Update Dengue (2019). Pan American health organization. Available at: (Accessed 27 Feb, 2020).
    1. Epidemiological Update Dengue (2020). Pan American health organization. Available from: (Accessed 12 Jun, 2020).
    1. Fitch M. M. (2005). “Carica papaya,” in Biotechnology of Fruit and nut crops. Editors Litz R. E. (Wallingford, United Kingdom: CABI Publishing; ), 174–207. 10.1079/9780851996622.0174
    1. Fukamachi N., Watanabe Y., Kobayashi B. (1988). Inhibition of thrombin-induced platelet aggregation by myristic acid. Thromb. Res. 52 (3), 227–235. 10.1016/0049-3848(88)90082-5
    1. Funahara Y., Sumarmo A., Shirahata A., Setiabudy-Dharma R. (1987). DHF characterized by acute type DIC with increased vascular permeability. Southeast. Asian J. Trop. Med. Public Health 18 (3), 346–350.
    1. Gadhwal A. K., Ankit B. S., Chahar C., Tantia P., Sirohi P., Agrawal R. P. (2016). Effect of Carica papaya leaf extract capsule on platelet count in patients of dengue fever with thrombocytopenia. J. Assoc. Physicians India 64 (6), 22–26.
    1. Geographical distribution of dengue cases reported worldwide. (2020), Dengue worldwide overview. European centre for disease prevention and control. Available from: (Accessed 28 Feb, 2020).
    1. Ghosh K., Gangodkar S., Jain P., Shetty S., Ramjee S., Poddar P., et al. (2008). Imaging the interaction between dengue 2 virus and human blood platelets using atomic force and electron microscopy. J. Electron Microsc. 57 (3), 113–118. 10.1093/jmicro/dfn007
    1. Goto T., Sarker M. M. R., Zhong M., Tanaka S., Gohda E. (2010). Enhancement of immunoglobulin M production in B cells by the extract of red bell pepper. J. Health Sci. 56 (3), 304–309. 10.1248/jhs.56.304
    1. Gowda A. C., Kumar N. V., Kasture P. N., Nagabhushan K. H. (2015). A pilot study to evaluate the effectiveness of Carica papaya L. leaf extract in increasing the platelet count in cases of dengue with thrombocytopenia. Indian Med. Gaz. 149, 109–116.
    1. Gudbrandsdottir S., Hasselbalch H. C., Nielsen C. H. (2013). Activated platelets enhance IL-10 secretion and reduce TNF-α secretion by monocytes. J.I. 191 (8), 4059–4067. 10.4049/jimmunol.1201103
    1. Gulf news (2019). More than 200,000 infected with dengue in Sri Lanka. Available at: (Accessed 27 Feb, 2020).
    1. Gupta A., Patil S. S., Pendharkar N. (2017). Antimicrobial and anti-inflammatory activity of aqueous extract of Carica papaya . J. Herbmed. Pharmacol. 6 (4), 148–152.
    1. Habtemariam S. (2019). The chemical and pharmacological basis of papaya (Carica papaya L.) as potential therapy for type-2 diabetes and associated diseases. J. Agric. Food Chem. 60 333–363. 10.1016/b978-0-08-102922-0.00011-0
    1. Halim S. Z., Abdullah N. R., Afzan A., Rashid B. A., Jantan I., Ismail Z. (2011). Acute toxicity study of Carica papaya L. leaf extract in Sprague Dawley rats. J. Med. Plants Res. 5 (10), 1867–1872. 10.5897/JMPR.9000043
    1. Harapan H., Michie A., Mudatsir M., Sasmono R. T., Imrie A. (2019). Epidemiology of dengue hemorrhagic fever in Indonesia: analysis of five decades data from the National Disease Surveillance. BMC Res. Notes 12 (1), 350. 10.1186/s13104-019-4379-9
    1. Hayatie L., Biworo A., Suhartono E. (2015). Aqueous extracts of seed and peel of Carica papaya against Aedes aegypti. Jomb 4 (5), 417–421. 10.12720/jomb.4.5.417-421
    1. Head W. F., Lauter W. M. (1956). Phytochemical examination of the leaves of Carica papaya L. Econ. Bot. 10 (3), 258–260. 10.1007/BF02899003
    1. Hossain M. A., Hitam S., Ahmed S. H. I. (2019). Pharmacological and toxicological activities of the extracts of papaya leaves used traditionally for the treatment of diarrhea. J. King Saud Univ. Sci. 32 (1), 962–969. 10.1016/j.jksus.2019.07.006
    1. Hottz E. D., Bozza F. A., Bozza P. T. (2018). Platelets in immune response to virus and immunopathology of viral infections. Front. Med. 5, 121. 10.3389/fmed.2018.00121
    1. Hottz E. D., Oliveira M. F., Nunes P. C. G., Nogueira R. M. R., Valls-de-Souza R., Da Poian A. T., et al. (2013). Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J. Thromb. Haemost. 11 (5), 951–962. 10.1111/jth.12178
    1. Hottz E., Tolley N. D., Zimmerman G. A., Weyrich A. S., Bozza F. A. (2011). Platelets in dengue infection. Drug Discov. Today Dis. Mech. 8 (1-2), e33–e38. 10.1016/j.ddmec.2011.09.001
    1. Ibrahim N. I., Muhammad Ismail Tadj N. B., Rahman Sarker M. M., Naina Mohamed I. (2020). The potential mechanisms of the neuroprotective actions of oil palm phenolics: implications for neurodegenerative diseases. Molecules 25 (21), 5159. 10.3390/molecules25215159
    1. Ikeyi A. P., Ogbonna A. O., Eze F. U. (2013). Phytochemical analysis of paw-paw (Carica papaya L.) leaves. Int. J. Life Sci. Biotechnol. Pharma. Res. 2 (3), 347–351.
    1. Imam H., Mahbub N. U., Khan M. F., Hana H. K., Sarker M. M. R. (2013). Alpha amylase enzyme inhibitory and anti-inflammatory effect of Lawsonia inermis. Pakistan J. Biol. Sci. 16 (23), 1796–1800. 10.3923/pjbs.2013.1796.1800
    1. Inam A., Shahzad M., Shabbir A., Shahid H., Shahid K., Javeed A. (2017). Carica papaya ameliorates allergic asthma via down regulation of IL-4, IL-5, eotaxin, TNF-α, NF-ĸB, and iNOS levels. Phytomedicine 32, 1–7. 10.1016/j.phymed.2017.04.009
    1. Ishaku A. H., Jauro A. I., Gadaka Y. M., Yagana A., Mohammed R. A., Usman S., et al. (2019). Toxicity effects of Brown dried pawpaw (Carica papaya L.) leaf extract to fingerlings of african catfish Clarias gariepinus . Asian J. Fish. Aqua. Res. 4 1–8. 10.9734/ajfar/2019/v4i330055
    1. Ismail Z., Halim S. Z., Abdullah N. R., Afzan A., Abdul Rashid B. A., Jantan I., et al. (2014). Safety evaluation of oral toxicity ofCarica papayaLinn. Leaves: a subchronic toxicity study in Sprague Dawley rats. Evidence-Based Complement. Altern. Med., 2014 1. 10.1155/2014/741470
    1. Julianti T., Oufir M., Hamburger M. (2014). Quantification of the antiplasmodial alkaloid carpaine in papaya (Carica papaya) leaves. Planta Med. 80 (13), 1138–1142. 10.1055/s-0034-1382948
    1. Kala C. P. (2012). Leaf juice of Carica papaya L. A remedy of dengue fever. Med. Aromat. Plants 1 (6), 109. 10.4172/2167-0412.1000109
    1. Kar M., Singla M., Chandele A., Kabra S. K., Lodha R., Medigeshi G. R. (2017). Dengue virus entry and replication does not lead to productive infection in platelets. Open Forum Infect. Dis., 4 (2), ofx051. 10.1093/ofid/ofx051
    1. Karakaya S., Yilmaz-Oral D., Kilic C. S., Gur S. (2019). Umbelliferone isolated from Zosima absinthifoLia roots partially restored erectile dysfunction in streptozotocin-induced diabetic rats. Med. Chem. Res. 28, 1161. 10.1007/s00044-019-02359-9
    1. Kasture P. N., Nagabhushan K. H., Kumar A. (2016). A multi-centric, double-blind, placebo-controlled, randomized, prospective study to evaluate the efficacy and safety of Carica papaya leaf extract, as empirical therapy for thrombocytopenia associated with dengue fever. J. Assoc. Physicians India . 64 (6), 15–20.
    1. Kaur B. (2019). South India under the grip of dengue again. DownToEarth. Available at: (Accessed 27 Feb, 2020).
    1. Kazemipoor M., Cordell G. A., Sarker M. M. R., Radzi C. W. J. B. W. M., Hajifaraji M., En Kiat P. (2015). Alternative treatments for weight loss: safety/risks and effectiveness of anti-obesity medicinal plants. Int. J. Food Properties 18 (9), 1942–1963. 10.1080/10942912.2014.933350
    1. Kho L. K., Wulur H., Himawan T. (1972). Blood and bone marrow changes in dengue haemorrhagic fever. Paediatr. Indones. 12 (1), 31–39.
    1. Klawikkan N., Nukoolkarn V., Jirakanjanakit N., Yoksan S., Wiwat C. (2010). Effect of Thai medicinal plant extracts against Dengue virus in vitro . MU J. Pharm. 38 (1–2), 13–18.
    1. Klinger M. H. F., Jelkmann W. (2002). Review: role of blood platelets in infection and inflammation. J. Interferon Cytokine Res. 22 (9), 913–922. 10.1089/10799900260286623
    1. Krishna K. L., Paridhavi M., Patel J. A. (2008). Review on nutritional, medicinal and pharmacological properties of Papaya (Carica papaya L. Nat. Prod. Radiance. 7, 364–373.
    1. Krishnamurti C., Cutting M. A., Peat R. A., Rothwell S. W. (2002). Platelet adhesion to dengue-2 virus-infected endothelial cells. Am. J. Trop. Med. Hyg. 66 (4), 435–441. 10.4269/ajtmh.2002.66.435
    1. Kurane I., Okamoto Y., Dai L. C., Zeng L. L., Brinton M. A., Ennis F. A. (1995). Flavivirus-cross-reactive, HLA-DR15-restricted epitope on NS3 recognized by human CD4+ CD8- cytotoxic T lymphocyte clones. J. Gen. Virol. 76 (9), 2243–2249. 10.1099/0022-1317-76-9-2243
    1. Kuter D. J. (2013). The biology of thrombopoietin and thrombopoietin receptor agonists. Int. J. Hematol. 98 (1), 10–23. 10.1007/s12185-013-1382-0
    1. Lale A., Lale S., Bick R., Fareed J. (2006). Dengue fever and thrombocytopenia: a deadly duo. Blood 108 (11), 3978. 10.1182/blood.V108.11.3978.3978
    1. Lavanya B., Maheswaran A., Vimal N., Vignesh K., Yuvarani K., Varsha R. (2018). Extraction and effects of papain obtained from leaves of Carica papaya: a remedy to dengue fever. Extraction 3 (1), 44–46.
    1. Lin C.-F., Lei H.-Y., Liu C.-C., Liu H.-S., Yeh T.-M., Wang S.-T., et al. (2001). Generation of IgM anti-platelet autoantibody in dengue patients. J. Med. Virol. 63 (2), 143–149. 10.1002/1096-9071(20000201)63:2<143::aid-jmv1009>;2-l
    1. Lin G.-L., Chang H.-H., Lien T.-S., Chen P.-K., Chan H., Su M.-T., et al. (2017). Suppressive effect of dengue virus envelope protein domain III on megakaryopoiesis. Virulence 8 (8), 1719–1731. 10.1080/21505594.2017.1343769
    1. Lin Y.-S., Yeh T.-M., Lin C.-F., Wan S.-W., Chuang Y.-C., Hsu T.-K., et al. (2011). Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp. Biol. Med. (Maywood) 236 (5), 515–523. 10.1258/ebm.2011.010339
    1. Lopes A. C. A., Eda S. H., Andrade R. P., Amorim J. C., Duarte W. F. (2019). “New alcoholic fermented beverages—potentials and challenges,” in Fermented beverages Editors Grumezescu A. M., Maria A. (Cambrigde, United Kingdom: Woodhead Publishing; ), 577–603.
    1. Lv Y., Liu D., Wang D., Lai S., Zhong R., Liu Y., et al. (2019). Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice. Food Chem. Toxicol. 126, 295–302. 10.1016/j.fct.2019.02.034
    1. Machado N. T. (1998). Fractionation of PFAD-compounds in countercurrent columns using supercritical carbon dioxide as solvent. Doctoral dissertation. Verlag nicht ermittelbar.
    1. Madjos G. G., Luceño A. M. (2019). Comparative cytotoxic properties of two varieties of Carica papaya L. Leaf extracts from mindanao, Philippines using brine shrimp lethality assay. Bull. Env. Pharmacol. Life Sci. 8, 113–118.
    1. Malathi P., Vasugi S. R. (2015). Evaluation of mosquito larvicidal effect of Carica papaya L. against Aedes aegypti . Int. J. Mosq. Res. 2 (3), 21–24.
    1. Matondang A. V., Widodo D., Zulkarnain I., Rengganis I., Trihandini I., Inada K., et al. (2004). The correlation between thrombopoietin and platelet count in adult dengue viral infection patients. Acta Med. Indones. 36 (2), 62–69.
    1. McKay T. B., Lyon D., Sarker-Nag A., Priyadarsini S., Asara J. M., Karamichos D. (2015). Quercetin attenuates lactate production and extracellular matrix secretion in keratoconus. Sci. Rep. 5, 9003. 10.1038/srep09003
    1. McRedmond J. P., Park S. D., Reilly D. F., Coppinger J. A., Maguire P. B., Shields D. C., et al. (2004). Integration of proteomics and genomics in platelets. Mol. Cell Proteomics 3 (2), 133–144. 10.1074/mcp.M300063-MCP200
    1. Mendes-Ribeiro A. C., Moss M. B., Siqueira M. A., Moraes T. L., Ellory J. C., Mann G. E., et al. (2008). Dengue fever activates the L-arginine-nitric oxide pathway: an explanation for reduced aggregation of human platelets. Clin. Exp. Pharmacol. Physiol. 35 (10), 1143–1146. 10.1111/j.1440-1681.2008.04970.x
    1. Moreno-Sanchez R., Hayden M., Janes C., Anderson G. (2006). A web-based multimedia spatial information system to document Aedes aegypti breeding sites and dengue fever risk along the US-Mexico border. Health and Place . 12 (4), 715–727. 10.1016/j.healthplace.2005.10.001
    1. Morens F., Brody J. E. (2008). Mosquito thrives; so does dengue fever. Geneva, Switzerland: WHO.
    1. Munira S., Nesa L., Islam M. S., Begum Y., Rashid M. A., Sarker M. R., et al. (2020). Antidiabetic activity of Neolamarckia cadamba (Roxb.) Bosser flower extract in alloxan-induced diabetic rats. Clin. Phytosci. 6, 1–6. 10.1186/s40816-020-00183-y
    1. Murgue B., Cassar O., Guigon M., Chungue E. (1997). Dengue virus inhibits human hematopoietic progenitor growth in vitro . J. Infect. Dis. 175 (6), 1497–1501. 10.1086/516486
    1. Murphy B. R., Whitehead S. S. (2011). Immune response to dengue virus and prospects for a vaccine. Annu. Rev. Immunol. 29, 587–619. 10.1146/annurev-immunol-031210-101315
    1. Nakasone H. Y., Paull R. E. (1998). TropicaL fruits . Oxon, United Kingdom: CAB International.
    1. Naresh C. V. M., Taranath V., Venkatamuni A., Vishnu R., Siva Y., Ravi U., et al. (2015). Therapeutic potential of Carica papaya L.leaf extract in treatment of dengue patients. Int. J. Appli. Bio. Pharma. Techno. 3 (6), 93–98.
    1. Nath R., Dutta M. (2016). Phytochemical and proximate analysis of papaya (Carica papaya) leaves. Sch. J. Agric. Vet. Sci. 3 (2), 85–87.
    1. Nesa M. L., Karim S. M. S., Api K., Sarker M. M. R., Islam M. M., Kabir A., et al. 2018). Screening of Baccaurea ramiflora (Lour.) extracts for cytotoxic, analgesic, anti-inflammatory, neuropharmacological and antidiarrheal activities. BMC Complement. Altern. Med. 18 (1), 1–9. 10.1186/s12906-018-2100-5
    1. Nghonjuyi N. W., Tiambo C. K., Taïwe G. S., Toukala J. P., Lisita F., Juliano R. S., et al. (2016). Acute and sub-chronic toxicity studies of three plants used in Cameroonian ethnoveterinary medicine: aloe vera (L.) Burm. f. (Xanthorrhoeaceae) leaves, Carica papaya L. (Caricaceae) seeds or leaves, and Mimosa pudica L. (Fabaceae) leaves in Kabir chicks. J. Ethnopharmacol. 178, 40–49. 10.1016/j.jep.2015.11.049
    1. Nisar A., Hina F., Muhammad A., Bilal A. H., Ijaz M., Lubna F. (2011). Dengue fever treatment with Carica papaya L.leaves extracts. Asian Pac. J. Trop. Biomed. 1 (4), 330–333. 10.1016/S2221-1691(11)60055-5
    1. Nkeiruka U. E., Chinaka N. O. (2012). Anti-fertility effects of Carica papaya linn: methanol leaf extracts in male wistar rats. J. Pharmacol. Toxicol. 8, 35–41. 10.3923/jpt.2013.35.41
    1. Noisakran S., Gibbons R. V., Songprakhon P., Jairungsri A., Ajariyakhajorn C., Nisalak A., et al. (2009a). Detection of dengue virus in platelets isolated from dengue patients. Southeast. Asian J. Trop. Med. Public Health 40 (2), 253.
    1. Noisakran S., Chokephaibulkit K., Songprakhon P., Onlamoon N., Hsiao H.-M., Villinger F., et al. (2009b). A Re-evaluation of the mechanisms leading to dengue hemorrhagic fever. Ann. N. Y. Acad. Sci. 1171, E24–E35. 10.1111/j.1749-6632.2009.05050.x
    1. Noisakran S., Onlamoon N., Hsiao H.-M., Clark K. B., Villinger F., Ansari A. A., et al. (2012). Infection of bone marrow cells by dengue virus in vivo . Exp. Hematol. 40 (3), 250–259. 10.1016/j.exphem.2011.11.011
    1. Norahmad N. A., Mohd Abd Razak M. R., Mohmad Misnan N., Md Jelas N. H., Sastu U. R., Muhammad A., et al. (2019). Effect of freeze-dried Carica papaya leaf juice on inflammatory cytokines production during dengue virus infection in AG129 mice. BMC Complement. Altern. Med. 19 (1), 44. 10.1186/s12906-019-2438-3
    1. Nuri T., Ming L. (2016). Papaya leaves juice as an alternative treatment for dengue fever. J. App Pharm. Sci. 6 (03), 172–173. 10.7324/JAPS.2016.60327
    1. Oche O., Rosemary A., John O., Chidi E., Rebecca S., Vincent U. (2017). Chemical constituents and nutrient composition of Carica papaya and vernonia amygdalina leaf extracts. Jocamr 2, 1. 10.9734/JOCAMR/2017/29402
    1. Official dengue death toll makes record. (2020). Official dengue death toll makes record. NewAge. Available at: (Accessed 14 Aug, 2020).
    1. Ojiako C. M., Okoye E. I., Oli A. N., Ike C. J., Esimone C. O., Attama A. A. (2019). Preliminary studies on the formulation of immune stimulating complexes using saponin from Carica papaya leaves. Heliyon 5 (6), e01962. 10.1016/j.heliyon.2019.e01962
    1. Onlamoon N., Noisakran S., Hsiao H.-M., Duncan A., Villinger F., Ansari A. A., et al. (2010). Dengue virus-induced hemorrhage in a nonhuman primate model. Blood 115 (9), 1823–1834. 10.1182/blood-2009-09-242990
    1. Otsuki N., Dang N. H., Kumagai E., Kondo A., Iwata S., Morimoto C. (2010). Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J. Ethnopharmacology 127 (3), 760–767. 10.1016/j.jep.2009.11.024
    1. Pandey S., Walpole C., Shaw P. N., Cabot P. J., Hewavitharana A. K., Batra J. (2018). Bio-guided fractionation of papaya leaf juice for delineating the components responsible for the selective anti-proliferative effects on prostate cancer cells. Front. Pharmacol. 9, 1319. 10.3389/fphar.2018.01319
    1. Pandita A., Mishra N., Gupta G., Singh R. (2019). Use of papaya leaf extract in neonatal thrombocytopenia. Clin. Case Rep. 7 (3), 497–499. 10.1002/ccr3.2025
    1. Parida M. M., Upadhyay C., Pandya G., Jana A. M. (2002). Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. J. Ethnopharmacology 79 (2), 273–278. 10.1016/s0378-8741(01)00395-6
    1. Pentewar R., Sharma S., Kore P., Kawdewar D., Somwanshi S. (2017). Papaya leaf extract to Treat dengue: a review. Sch. Acad. J. Pharm. 6 (4), 113–119. 10.21276/sajp
    1. Peristiowati Y., Puspitasari Y., Indasah fnm. 2019). Effects of papaya leaf extract (Carica papaya L.) on cellular proliferation and apoptosis in cervical cancer mice model. Phytothérapie 17 (5), 265–275. 10.3166/phyto-2018-0096
    1. Preventing Dengue in Sri Lanka (2019). World health organization (Sri Lanka). Available at: (Accessed 27 Feb, 2020).
    1. Rahman M. (2019). Dengue patients nearly doubled in five months. Dhaka tribune. Available at: (Accessed 27 Feb, 2020).
    1. Rahman M., Rahman K., Siddque A. K., Shoma S., Kamal A. H. M., Ali K. S., et al. (2002). First outbreak of dengue hemorrhagic fever, Bangladesh. Emerg. Infect. Dis. 8 (7), 738. 10.3201/eid0807.010398
    1. Rai D. (2019). Study says dengue-transmitting mosquitoes won’t survive global warming in India. India Today. Available at: (Accessed 27 Feb, 2020).
    1. Rajapakse S., de Silva N. L., Weeratunga P., Rodrigo C., Sigera C., Fernando S. D. (2019). Carica papaya extract in dengue: a systematic review and meta-analysis. BMC Complement. Altern. Med. 19 (1), 265. 10.1186/s12906-019-2678-2
    1. Ranasinghe P., Ranasinghe P., Sirimal Premakumara G., Perera Y., Kaushalya M. Abeysekera W., Gurugama P., et al. (2012). In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts. Phcog Res. 4 (4), 196. 10.4103/0974-8490.102261
    1. Rathnayake S., Madushanka A., Wijegunawardana A., Mylvaganam H., Ranaweera A., Jayasooriya P., et al. (2020). “In silico study of 5, 7-dimethoxycoumarin and p-coumaric acid in Carica papaya leaves as dengue virus type 2 protease inhibitors,” in Conference: 1st International Electronic Conference on Biomolecules: Natural and Bio-Inspired Therapeutics for Human Diseases, Switzerland, December 1–13, 2020.
    1. Razak M. R. M. A., Misnan N. M., Jelas N. H. M., Norahmad N. A., Muhammad A., Ho T. C. D., et al. (2018). The effect of freeze-dried Carica papaya L.leaf juice treatment on NS1 and viremia levels in dengue fever mice model. BMC Complem. Altern. Med. 18 (1), 320. 10.1186/s12906-018-2390-7
    1. Reddy D. V., Sudarshana M. R., Fuchs M., Rao N. C., Thottappilly G. (2009). Genetically engineered virus-resistant plants in developing countries: current status and future prospects Adv. Virus. Res. 75, 185–220. 10.1016/S0065-3527(09)07506-X
    1. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C. (1995). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375 (6529), 291–298. 10.1038/375291a0
    1. Rondina M. T., Weyrich A. S. (2015). Dengue virus pirates human platelets. Blood 126 (3), 286. 10.1182/blood-2015-05-647362
    1. Rothwell S. W., Putnak R., La Russa V. F. (1996). Dengue-2 virus infection of human bone marrow: characterization of dengue-2 antigen-positive stromal cells. Am. J. Trop. Med. Hyg. 54 (5), 503–510. 10.4269/ajtmh.1996.54.503
    1. Roy S. (2019). Uttarakhand grapples with rising cases of dengue. Hindustan times. Available at: (Accessed 27 Feb, 2020). 10.1287/fd17df3c-176e-4383-a210-ee19babccd13
    1. Sagnia B., Fedeli D., Casetti R., Montesano C., Falcioni G., Colizzi V. (2014). Antioxidant and anti-inflammatory activities of extracts from Cassia alata, eleusine indica, eremomastax speciosa, Carica papaya and Polyscias fulva medicinal plants collected in Cameroon. PloS one 9 (8), e103999. 10.1371/journal.pone.0103999
    1. Salim E., Kumolosasi E., Jantan I. (2014). Inhibitory effect of selected medicinal plants on the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated human peripheral blood mononuclear cells. J. Nat. Med. 68 (3), 647–653. 10.1007/s11418-014-0841-0
    1. Salim F., Abu N. A.(2018). Interaction of Carica papaya L.leaves optimum extract on virus dengue infected cells. .(Lahore) 30 (3), 437–441.
    1. Sarker M. M., Nimmi I., Kawsar M. H. (2012). Preliminary screening of six popular fruits of Bangladesh for in vitro IgM production and proliferation of splenocytes. Bangladesh Pharm. J. 15 (1), 31–37.
    1. Sarker M. M. R. (2015). Antihyperglycemic, insulin-sensitivity and anti-hyperlipidemic potential of Ganoderma lucidum, a dietary mushroom, on alloxan- and glucocorticoid-induced diabetic Long-Evans rats. Ffhd 5 (12), 450–466. 10.31989/ffhd.v5i12.220
    1. Sarker M. M. R. (2021). Evaluation of red and green colored bell peppers for the production of polyclonal IgM and IgG antibodies in murine spleen cells. Bangla Pharma J. 24 (1), 45–53. 10.3329/bpj.v24i1.51635
    1. Sarker M. M. R., Gohda E. (2013). Promotion of anti-keyhole limpet hemocyanin IgM and IgG antibody productions in vitro by red bell pepper extract. J. Funct. Foods, 5 (4), 1918–1926. 10.1016/j.jff.2013.09.013
    1. Sarker M. M. R. (2012). Induction of humoral immunity through the enhancement of IgM production in murine splenic cells by ethanolic extract of seed of piper nigrum L. J. Sci. Res. 4 (3), 751–756. 10.3329/jsr.v4i3.10485
    1. Sarker M. M. R., Mazumder M. E. H., Rashid M. H. (2011). In vitro enhancement of polyclonal IgM production by ethanolic extract of Nigella sativa L. Seeds in whole spleen cells of female BALB/c mice. Bangladesh Pharm. J. 14 (1), 73–77.
    1. Sarker M. M. R., Ming L. C., Sarker M. Z. I., Choudhuri M. S. K. (2016). Immunopotentiality of Ayurvedic polyherbal formulations “Saribadi” and “Anantamul Salsa” with augmentation of IgM production and lymphocytes proliferation: a preliminary study. Asian Pac. J. Trop. Biomed. 6 (7), 568–573. 10.1016/j.apjtb.2016.05.004
    1. Sarker M. M. R., Nahar S., Shahriar M., Seraj S., Choudhuri M. S. K. (2012a). Preliminary study of the immunostimulating activity of an ayurvedic preparation, Kanakasava, on the splenic cells of BALB/c micein vitro. Pharm. Biol. 50 (11), 1467–1472. 10.3109/13880209.2012.681329
    1. Sarker M. M. R., Choudhuri M. S. K., Zhong M. (2012b). Effect of Chandanasav, an Ayurvedic formulation, on mice whole splenocytes for the production of polyclonal IgM and proliferation of cells: a preliminary study. Int. J. Pharm. Sci. Res. 3, 1294–1299. 10.13040/IJPSR.0975-8232.3
    1. Sarker M. M. R., Soma M. A. (2020). “Updates on clinical study reports of phytotherapy in the management of type 2 diabetes mellitus,” in Phytotherapy in the management of diabetes and hypertension, Editor Eddouks M. (Sharjah, UAE: Bentham Science Publishers; ), 4, 1–60. 10.2174/9789811480515120040003
    1. Sarker M. R., Imam H. A. S. A. N., Bhuiyan M. S., Choudhuri K. M. S. (2014). In vitro assessment of prasarani sandhan, a traditional polyherbal ayurvedic medicine, for immunostimulating activity in splenic cells of balb/c mice. Int. J. Pharm. Pharm. Sci., 6 (9), 531–534.
    1. Sekeli R., Hamid M. H., Razak R. A., Wee C.-Y., Ong-Abdullah J. (2018) Malaysian Carica papaya L. Var. Eksotika: current research strategies fronting challenges. Front. Plant Sci. 9, 1380. 10.3389/fpls.2018.01380
    1. Senthilvel P., Lavanya P., Lavanya P., Kumar K. M., Swetha R., Anitha P., et al. (2013). Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly. Bioinformation . 9 (18), 889. 10.6026/97320630009889
    1. Shajib M., Rashid R. B., Ming L. C., Islam S., Sarker M. M. R., Rashid M. A. (2018). Polymethoxyflavones from Nicotiana plumbaginifolia (Solanaceae) exert antinociceptive and neuropharmacological effects in mice. Front. Pharmacol. 9, 85. 10.3389/fphar.2018.00085
    1. Sharma H. K., Vikki V., Sharma V. 2017). A comparative pilot study of Carica papaya leaf extract against dengue fever. Int. Jour. Contemp. Med. 5 (2), 32–35. 10.5958/2321-1032.2017.00032.8
    1. Sharma N., Mishra K. P., Chanda S., Bhardwaj V., Tanwar H., Ganju L., et al. (2019). Evaluation of anti-dengue activity of Carica papaya aqueous leaf extract and its role in platelet augmentation. Arch. Virol. 164 (4), 1095–1110. 10.1007/s00705-019-04179-z
    1. Sheikh B. Y., Sarker M. M. R., Kamarudin M. N. A., Mohan G. (2017a). Antiproliferative and apoptosis inducing effects of citral via p53 and ROS-induced mitochondrial-mediated apoptosis in human colorectal HCT116 and HT29 cell lines. Biomed. Pharmacother. 96, 834–846. 10.1016/j.biopha.2017.10.038
    1. Sheikh B. Y., Sarker M. M. R., Kamarudin M. N. A., Ismail A. (2017b). Prophetic medicine as potential functional food elements in the intervention of cancer: a review. Biomed. Pharmacother. 95, 614–648. 10.1016/j.biopha.2017.08.043
    1. Shetty D., Manoj A., Jain D., Narayane M., Rudrakar A. (2019). The effectiveness of Carica papaya L. leaf extract in children with dengue fever. Eur. J. Biomed. Pharm. Sci. 6 (5), 380–383. 10.2017/Dr.D.R.S
    1. Siddique O., Sundus A., Ibrahim M. F. (2014). Effects of papaya leaves on thrombocyte counts in dengue--a case report. J. Pak. Med. Assoc. 64 (3), 364–366.
    1. Simon A. Y., Sutherland M. R., Pryzdial E. L. G. (2015). Dengue virus binding and replication by platelets. Blood 126 (3), 378–385. 10.1182/blood-2014-09-598029
    1. Singh P., Tanwar N., Saha T., Gupta A., Verma S. (2018). Phytochemical screening and analysis of Carica papaya, Agave americana and Piper nigrum . Int. J. Curr. Microbiol. App. Sci. 7 (2), 1786–1794. 10.20546/ijcmas.2018.702.216
    1. Sithisarn P., Rojsanga P., Sithisarn P., Kongkiatpaiboon S. (2015). Antioxidant activity and antibacterial effects on clinical isolated Streptococcus suis and Staphylococcus intermedius of extracts from several parts of Cladogynos orientalis and their phytochemical screenings. Evid. Based Complement. Alternat Med., 2015, 908242. 10.1155/2015/908242
    1. Song S. (2019). Dengue fever is massively spreading across Thailand. The organization for world peace. Available at: (Accessed 27 Feb, 2020).
    1. Sosothikul D., Seksarn P., Pongsewalak S., Thisyakorn U., Lusher J. (2007). Activation of endothelial cells, coagulation and fibrinolysis in children with Dengue virus infection. Thromb. Haemost. 97 (04), 627–634. 10.1160/th06-02-0094
    1. Srichaikul T., Nimmannitya S., Sripaisarn T., Kamolsilpa M., Pulgate C. (1989). Platelet function during the acute phase of dengue hemorrhagic fever. Southeast. Asian J. Trop. Med. Public Health 20 (1), 19–25.
    1. Srichaikul T., Nimmannitya S. (2000). Haematology in dengue and dengue haemorrhagic fever. Best Pract. Res. Clin. Haematol. 13 (2), 261–276. 10.1053/beha.2000.0073
    1. Srikanth B., Reddy L., Biradar S., Shamanna M., Mariguddi D. D., Krishnakumar M. (2019). An open-label, randomized prospective study to evaluate the efficacy and safety of Carica papaya leaf extract for thrombocytopenia associated with dengue fever in pediatric subjects. Phmt 10, 5. 10.2147/PHMT.S176712
    1. Subenthiran S., Choon T. C., Cheong K. C., Thayan R., Teck M. B., Muniandy P. K., et al. (2013). Carica papaya leaves juice significantly accelerates the rate of increase in platelet count among patients with dengue fever and dengue haemorrhagic fever. Evid. Based Complement. Alternat Med., 2013, 616737. 10.1155/2013/616737
    1. Sun D.-S., King C.-C., Huang H.-S., Shih Y.-L., Lee C.-C., Tsai W.-J., et al. (2007). Antiplatelet autoantibodies elicited by dengue virus non-structural protein 1 cause thrombocytopenia and mortality in mice. J. Thromb. Haemost. 5 (11), 2291–2299. 10.1111/j.1538-7836.2007.02754.x
    1. Sundarmurthy D., R J., C L. (2017). Effect of Carica papaya leaf extract on platelet count in chemotherapy-induced thrombocytopenic patients: a preliminary study. Natl. J. Physiol. Pharm. Pharmacol. 7 (7), 1. 10.5455/njppp.2017.7.0202628022017
    1. Taheri Rouhi S. Z., Sarker M. M., Rahmat A., Alkahtani S. A., Othman F. (2017). Erratum to: the effect of pomegranate fresh juice versus pomegranate seed powder on metabolic indices, lipid profile, inflammatory biomarkers, and the histopathology of pancreatic islets of Langerhans in streptozotocin-nicotinamide induced type 2 diabetic Sprague-Dawley rats. BMC Complement. Altern. Med. 17 (1), 214–313. 10.1186/s12906-017-1724-1
    1. Teng W.-C., Chan W., Suwanarusk R., Ong A., Ho H.-K., Russell B., et al. (2019). In vitro antimalarial evaluations and cytotoxicity investigations of Carica papaya leaves and carpaine. Nat. Product. Commun. 14 (1). 10.1177/1934578X1901400110
    1. The Star (2019). Number of dengue cases set to hit all-time high. Available at: (Accessed February 27, 2020
    1. Tzeng S.-H., Ko W.-C., Ko F.-N., Teng C.-M. (1991). Inhibition of platelet aggregation by some flavonoids. Thromb. Res. 64 (1), 91–100. 10.1016/0049-3848(91)90208-e
    1. Venugopal K. (2018). Role of Carica papaya L. leaf extract tablets/capsules on platelet counts in cases of dengue thrombocytopenia. Int. J. Adv. Med. 5 (4), 845. 10.18203/2349-3933.ijam20182500
    1. Wahed A., Dasgupta A. (2015). Chapter 2-bone marrow examination and interpretation. Hematology and coagulation. San Diego, CA: Elsevier.
    1. Wan S.-W., Lin C.-F., Yeh T.-M., Liu C.-C., Liu H.-S., Wang S., et al. (2013). Autoimmunity in dengue pathogenesis. J. Formos. Med. Assoc. 112 (1), 3–11. 10.1016/j.jfma.2012.11.006
    1. Weaver S. C., Vasilakis N. (2009). Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect. Genet. Evol. 9 (4), 523–540. 10.1016/j.meegid.2009.02.003
    1. Welde Y., Worku A. (2018). Identification and extraction of papain enzyme from papaya leaf in adigrat towen, northern Ethiopia. J. Med. Plant 6 (3), 127–130.
    1. Whitehorn J., Farrar J. (2010). Dengue. Br. Med. Bull. 95 (1), 161–173. 10.1093/bmb/ldq019
    1. Wipatayotin A. (2019). dengue fever epidemic declared. The Bangkok Post. Available at: (Accessed 27 Feb, 2020).
    1. Yunita F., Hanani E., Kristianto J. (2012). The effect of Carica papaya L.leaves extract capsules on platelets count and hematocrit level in dengue fever patient. Int. J. Med. Aromat. Plants. 2 (4), 573–578.
    1. Zunjar V., Dash R. P., Jivrajani M., Trivedi B., Nivsarkar M. (2016). Antithrombocytopenic activity of carpaine and alkaloidal extract of Carica papaya Linn. leaves in busulfan induced thrombocytopenic Wistar rats. J. Ethnopharmacol. 181, 20–25. 10.1016/j.jep.2016.01.035

Source: PubMed

3
Subscribe