CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine

Miquéias Lopes-Pacheco, Miquéias Lopes-Pacheco

Abstract

Cystic fibrosis (CF) is a lethal inherited disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which result in impairment of CFTR mRNA and protein expression, function, stability or a combination of these. Although CF leads to multifaceted clinical manifestations, the respiratory disorder represents the major cause of morbidity and mortality of these patients. The life expectancy of CF patients has substantially lengthened due to early diagnosis and improvements in symptomatic therapeutic regimens. Quality of life remains nevertheless limited, as these individuals are subjected to considerable clinical, psychosocial and economic burdens. Since the discovery of the CFTR gene in 1989, tremendous efforts have been made to develop therapies acting more upstream on the pathogenesis cascade, thereby overcoming the underlying dysfunctions caused by CFTR mutations. In this line, the advances in cell-based high-throughput screenings have been facilitating the fast-tracking of CFTR modulators. These modulator drugs have the ability to enhance or even restore the functional expression of specific CF-causing mutations, and they have been classified into five main groups depending on their effects on CFTR mutations: potentiators, correctors, stabilizers, read-through agents, and amplifiers. To date, four CFTR modulators have reached the market, and these pharmaceutical therapies are transforming patients' lives with short- and long-term improvements in clinical outcomes. Such breakthroughs have paved the way for the development of novel CFTR modulators, which are currently under experimental and clinical investigations. Furthermore, recent insights into the CFTR structure will be useful for the rational design of next-generation modulator drugs. This review aims to provide a summary of recent developments in CFTR-directed therapeutics. Barriers and future directions are also discussed in order to optimize treatment adherence, identify feasible and sustainable solutions for equitable access to these therapies, and continue to expand the pipeline of novel modulators that may result in effective precision medicine for all individuals with CF.

Keywords: CFTR mutations; cell models; clinical trials; cystic fibrosis; drug development; high-throughput screening; lung; personalized medicine.

Copyright © 2020 Lopes-Pacheco.

Figures

Figure 1
Figure 1
From gene to protein structure. (A) CF transmembrane conductance regulator (CFTR) gene is located on the long arm of chromosome (Chr) 7. (B) The gene contains 27 exons and spans approximately 190 kb of human genomic DNA. (C) The mRNA is 6.2 kb long including the untranslated regions (adapted from Collins, 1992). (D) The protein forms a chloride/bicarbonate channel composed of five domains: two transmembrane domains (TMD1 and TMD2), two nucleotide-binding domains (NBD1 and NBD2) and a regulatory domain (RD) (adapted from Lopes-Pacheco, 2016). (E) The overall structure of human CFTR in the dephosphorylated, ATP-free conformation (adapted from Liu et al., 2017 with permission from Prof. J. Chen). (F) The 2,075 CFTR gene variants that have so far been reported consist of missense (38.9%), frameshift (16.1%), splicing (11.1%), and nonsense (8.4%) mutations; in-frame (2.1%) and large (2.8%) deletions or insertions; promoter mutations (0.9%); and possibly non-pathogenic variants (13.0%) (adapted from CFTR1 Database).
Figure 2
Figure 2
Demography of cystic fibrosis patients in different countries. (A) Distribution according to the total number of patients registered. (B) Top 10 countries with the highest number of patients registered. (C) Distribution according to the estimated prevalence of patients per 100,000 habitants. (D) Top 10 countries with the highest number of patients per 100,000 habitants. Global distribution by gender (E) and by age (F). [Data compiled from the last Patient Registry Report in Argentina (Pereyro et al., 2018), Australia (Cystic Fibrosis Australia, 2018), Brazil (Brazilian Cystic Fibrosis Study Group, 2019), Canada (Cystic Fibrosis Canada, 2019), Europe (European Cystic Fibrosis Society, 2019), New Zealand (Cystic Fibrosis New Zealand, 2019), South Africa (Zampoli et al., 2019), UK (Cystic Fibrosis Trust, 2019), and the USA (Cystic Fibrosis Foundation, 2019)].
Figure 3
Figure 3
Demography of CF transmembrane conductance regulator (CFTR) mutations in different countries. (A) Distribution according to the percentage of patients carrying the F508del mutation in at least one allele. (B) Global distribution by CF genotype: F508del-homozygous, F508del-heterozygous and carrying non-F508del mutations in both alleles. (C) Top 25 most prevalent non-F508del CFTR mutations considering the whole CF population. [Data compiled from the last Patient Registry Report in Argentina (Pereyro et al., 2018), Australia (Cystic Fibrosis Australia, 2018), Brazil (Brazilian Cystic Fibrosis Study Group, 2019), Canada (Cystic Fibrosis Canada, 2019), Europe (European Cystic Fibrosis Society, 2019), New Zealand (Cystic Fibrosis New Zealand, 2019), UK (Cystic Fibrosis Trust, 2019), and the USA (Cystic Fibrosis Foundation, 2019), and CFTR2 Database].
Figure 4
Figure 4
Classes of CF transmembrane conductance regulator (CFTR) mutations. Class I mutations lead to no protein synthesis or translation of shortened, truncated forms. They result from splice site abnormalities, frameshifts due to deletions or insertions, or nonsense mutations, which generate premature termination codons (PTCs). Class II mutations lead to a misfolding protein that fails to achieve conformational stability in the endoplasmic reticulum and then does not traffic to the plasma membrane (PM), being instead prematurely degraded by proteasomes. Class III mutations lead to a gating channel defect due to impaired response to agonists, although the protein is present at the PM. Class IV mutations lead to a channel conductance defect with a significant reduction in CFTR-dependent chloride transport. Class V mutations lead to a reduction in protein abundance of functional CFTR due to reduced synthesis or inefficient protein maturation. They result from alternative splicing, promoter or missense mutations. Class VI mutations lead to reduced protein stability at the PM, which results in increased endocytosis and degradation by lysosomes, and reduced recycling to the PM. Mutations in classes I and II are also known as minimal function mutations since they demonstrate no to very little CFTR function, while those in classes IV, V, and VI are known as residual function mutations since they demonstrate some CFTR function, although it is lower compared to the wild type (WT)-CFTR. (adapted from Lopes-Pacheco, 2016).
Figure 5
Figure 5
Cellular and molecular defects and potential CF transmembrane conductance regulator (CFTR) modulator approaches. Flowchart demonstrating the steps to identify each cellular and molecular defect of a CFTR gene variant and potential therapeutic approaches to correct each of these defects. Abbreviations: A, abrogated; I, impaired; N, normal; R, rescued.
Figure 6
Figure 6
Chemical structure of several CF transmembrane conductance regulator (CFTR) modulators tested in clinical trials or currently in the market. Advances in high-throughput screening technologies have been enabling the identification of small-molecules from different chemical series. In addition to the compounds displayed in this figure, the compounds VX-121, ABBV-2737, ABBV-3067, FDL176, and PTI-808 are also under investigation in clinical trials, but the chemical structures are still not available on the PubChem or DrugBank. *Clinical development has been discontinued.
Figure 7
Figure 7
A common binding site for ABBV-974 and ivacaftor. Ribbon diagram of the phosphorylated, ATP-bound CFTR in complex with (A) ABBV-974 and (B) ivacaftor. These structures have been deposited on the Protein Data Bank under accession codes 6O1V (CFTR-ABBV-974) and 6O2P (CFTR-ivacaftor). (adapted from Liu F. et al., 2019 with permission from Prof. J. Chen).
Figure 8
Figure 8
Timeline with several milestones in experimental and clinical research for cystic fibrosis since the discovery of CF transmembrane conductance regulator (CFTR) gene in 1989. The knowledge accumulated over these 30 years has been ensuring a better understanding of the molecular biology and protein structure of CFTR, and the pathophysiology of CF in order to translate the basic sciences into clinical practice. More than 10 novel CF therapies have been approved by the U.S. Food and Drug Administration (FDA) during this period with four of these being CFTR modulator drugs.

References

    1. Adam R. J., Hisert K. B., Dodd J. D., Grogan B., Launspach J. L., Barnes J. K., et al. (2016). Acute administration of ivacaftor to people with cystic fibrosis and a G551D-CFTR mutation reveals smooth muscle abnormalities. JCI Insight 1, e86183. 10.1172/jci.insight.86183
    1. Ahner A., Gong X., Schmidt B. Z., Peters K. W., Rabeh W. M., Thibodeau P. H., et al. (2013). Small heat shock proteins target cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier-dependent pathway. Mol. Biol. Cell. 24 (2), 74–84. 10.1091/mbc.e12-09-0678
    1. Aksit M. A., Bowling A. D., Evans T. A., Joynt A. T., Osorio D., Patel S., et al. (2019). Decreased mRNA and protein stability of W1282X limits response to modulator therapy. J. Cyst. Fibros. 18 (5), 606–613. 10.1016/j.jcf.2019.02.009
    1. Alshafie W., Chappe F. G., Li M., Anini Y., Chappe V. M. (2014). VIP regulates CFTR membrane expression and function in Calu-3 cells by increasing its interaction with NHERF1 and P-ERM in a VPAC1- and PKCϵ-dependent manner. Am. J. Physiol. Cell Physiol. 307 (1), C107–C119. 10.1152/ajpcell.00296.2013
    1. Amaral M. D., de Boeck K., ECFS Strategic Planning Task Force on ‘Speeding up access to new drugs for CF' (2019). Theranostics by testing CFTR modulators in patients-derived materials: The current status and a proposal for subjects with rare CFTR mutations. J. Cyst. Fibros. 18 (5), 685–6925. 10.1016/j.jcf.2019.06.010
    1. Anderson D. H. (1938). Cystic fibrosis of the pancreas and its relation to celiac disease. Am. J. Dis. Child. 56, 344. 10.1001/archpedi.1938.01980140114013
    1. Angelis A., Tordrup D., Kanavos P. (2015). Socio-economic burden of rare diseases: A systematic review of cost of illness evidence. Health Policy 119 (7), 964–979. 10.1016/j.healthpol.2014.12.016
    1. Armirotti A., Tomati V., Matthes E., Veit G., Cholon D. M., Phuan P. W., et al. (2019). Bioactive thymosin alpha-1 does not influence F508del-CFTR maturation and activity. Sci. Rep. 9 (1), 10310. 10.1038/s41598-019-46639-1
    1. Athanazio R. A., Silva Filho L. V. R. F., Vergara A. A., Ribeiro A. F., Riedi C. A., Procianoy E. D. F. A., et al. (2017). Brazilian guidelines for the diagnosis and treatment of cystic fibrosis. J. Bras. Pneumol. 43 (3), 219–245. 10.1590/s1806-37562017000000065
    1. Attwood M. M., Rask-Andersen M., Schiöth H. B. (2018). Orphan drugs and their impact on pharmaceutical development. Trends Pharmacol. Sci. 39 (6), 525–535. 10.1016/j.tips.2018.03.003
    1. Avramescu R. G., Kai Y., Xu H., Bidaud-Meynard A., Schnúr A., Frenkiel S., et al. (2017). Mutation-specific downregulation of CFTR2 variant by gating potentiators. Hum. Mol. Genet. 26 (24), 4873–4885. 10.1093/hmg/ddx367
    1. Awatade N. T., Ulyiakina I., Farinha C. M., Clarke L. A., Mendes K., Solé A., et al. (2014). Measurements of functional responses in human primary lung cells as a basis for personalized therapy for cystic fibrosis. EBioMedicine 2 (2), 147–153. 10.1016/j.ebiom.2014.12.005
    1. Awatade N. T., Wong S. L., Hewson C. K., Fawcett L. K., Kicic A., Jaffe A., et al. (2018). Human primary epithelial cell models: Promising tools in the era of cystic fibrosis personalized medicine. Front. Pharmacol. 9, 1429. 10.3389/fphar.2018.01429
    1. Awatade N. T., Ramalho S., Silva I. A. L., Felício V., Botelho H. M., de Poel E., et al. (2019). R560S: a class II CFTR mutation that is not rescued by current modulators. J. Cyst. Fibros. 18 (2), 182–189. 10.1016/j.jcf.2018.07.001
    1. Balázs A., Mall M. A. (2018). Role of the SLC26A9 chloride channel as disease modifier and potential therapeutic target in cystic fibrosis. Front. Pharmacol. 9, 1112. 10.3389/fphar.2018.01112
    1. Balk E. M., Trikalinos T. A., Mickle K., Cramer G., Chapman R., Khan S., et al. (2018). Modulator treatments for cystic fibrosis: effectiveness and value – Evidence report May 3, 2018. Institute for Clinical and Economic Review (ICER) Available at: (accessed Nov 09, 2019).
    1. Barical A., Lee R. E., Randell S. H., Hawkins F. (2019). Challenges facing airway epithelial cell-based therapy for cystic fibrosis. Front. Pharmacol. 10, 74. 10.3389/fphar.2019.00074
    1. Barry P. J., Plant B. J., Nair A., Bicknell S., Simmonds N. J., Bell N. J., et al. (2014). Effects of ivacaftor in patients with cystic fibrosis who carry the G551D mutation and have severe lung disease. Chest 146 (1), 152–158. 10.1378/chest.13-2397
    1. Bell S. C., Barry P. J., De Boeck K., Drevinek P., Elborn J. S., Plant B. J., et al. (2019). CFTR activity is enhanced by the novel GLPG222, given with and without ivacaftor in two randomized trials. J. Cyst. Fibros. 18 (5), 700–707. 10.1016/j.jcf.2019.04.014
    1. Berg A., Hallowell S., Tivvetts M., Beasley C., Brown-Philips T., Healy A., et al. (2019). High-throughput surface liquid absorption and secretion assays to identify F508del CFTR correctors using patient primary airway epithelial cultures. SLAS Discovery 24 (7), 724–737. 10.1177/2472555219849375
    1. Bergbower E., Boinot C., Sabirzhanova I., Guggino W., Cebotaru L. (2018). The CFTR-associated ligand arrests the trafficking of the mutant ΔF508 CFTR chnnel in the ER contributing to cystic fibrosis. Cell. Physiol. Biochem. 45 (2), 639–655. 10.1159/000487120
    1. Berkers G., van Mourik P., Vonk A. M., Kruisselbrink E., Dekkers J. F., de Winter-de Groot K. M., et al. (2019). Rectal organoids enable personalized treatment of cystic fibrosis. Cell Rep. 26 (7), 1701–1708.e3. 10.1016/j.celrep.2019.01.068
    1. Bessonova L., Volkova N., Higgins M., Bengtsson L., Tian S., Simard C., et al. (2018). Data from US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor. Thorax 73 (8), 731–740. 10.1136/thoraxjnl-2017-210394
    1. Beumer W., Swildens J., Leal T., Noel S., Anthonijsz H., van der Horst G., et al. (2019). Evaluation of eluforsen, a novel RNA oligonucleotide for restoration of CFTR in in vitro and murine model of p.Phe508del cystic fibrosis. PloS One 14 (6), e0219182. 10.1371/journal.pone.0219182
    1. Bomberger J. M., Coutermarsh B. A., Barnaby R. L., Stanton B. A. (2012). Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human epithelial cells. J. Biol. Chem. 287, 17130–17139. 10.1074/jbc.M111.338855
    1. Borowitz D., Lubarsky B., Wilschanski M., Munck A., Gelfond D., Bodewes F., et al. (2016). Nutritional status improves in cystic fibrosis patients with the G551D mutation after treatment with ivacaftor. Dig. Dis. Sci. 61 (1), 198–207. 10.1007/s10620-015-3834-2
    1. Boucher R. C., Stutts M. J., Knowles M. R., Cantley L., Gatzy J. T. (1986). Na+ transport in cystic fibrosis respiratory epithelial. Abnormal basal rate and response to anenylate cyclase activation. J. Clin. Invest. 78 (5), 1245–1252. 10.1172/JCI112708
    1. Boyle M. P., Bell S. C., Konstan M. W., McColley S. A., Rowe S. M., Rietschel E., et al. (2014). A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir. Med. 2014 2 (7), 527–538. 10.1016/S2213-2600(14)70132-8
    1. Brazilian Cystic Fibrosis Study Group (2019). Relatório do Registro Brasileiro de Fibrose Cística 2017, Available at: .
    1. Brewington J. J., Filbrandt E. T., LaRosa F. J., Moncivaiz J. D., Ostmann A. J., Strecker L. M., et al. (2018). Brushed nasal epithelial cells are a surrogate for bronchial epithelial CFTR studies. JCI Insight 3 (13), 99385. 10.1172/jci.insight.99385
    1. Brinks V., Lipinska K., de Jager M., Beumer W., Button B., Livraghi-Butrico A., et al. (2019). The cystic fibrosis-like airway surface layer is not a significant barrier for delivery of eluforsen to airway epithelial cells. J. Aerosol Med. Pulm. Drug Deliv. 32 (5), 303–315. 10.1089/jamp.2018.1502
    1. Burgel P. R., Munck A., Durieu I., Chiron R., Mely L., Prevotat A., et al. (2020). Real-life safety and effectiveness of lumacaftor-ivacaftor in patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 201 (2), 188–197. 10.1164/rccm.201906-1227OC
    1. Bush A., Simmonds N. J. (2012). Hot off the breath: ‘I've a cost for'—the 64 milion dollar question. Thorax 67 (5), 382–384. 10.1136/thoraxjnl-2012-201798
    1. Byrnes L. J., Xu Y., Qiu X., Hall J. D., West G. M. (2018). Sites associated with Kalydeco binding on human cystic fibrosis transmembrane conductance regulator revealed by hydrogen/deuterium exchange. Sci. Rep. 8 (1), 4664. 10.1038/s41598-018-22959-6
    1. Calabrese F., Lunardi F., Nannini N., Balestro E., Loy M., Marulli G., et al. (2015). Higher risk of acute cellular rejection in lung transplant recipients with cystic fibrosis. Ann. Transplant. 20, 769–776. 10.12659/AOT.894785
    1. Carlile G. W., Robert R., Goepp J., Matthes E., Liao J., Kus B., et al. (2015). Ibuprofen rescues mutant cystic fibrosis transmembrane conductance regulator trafficking. J. Cyst. Fibros. 14 (1), 16–25. 10.1016/j.jcf.2014.06.001
    1. Castellani C., Duff A. J. A., Bell S. C., Heijerman H. G. M., Munck A., Ratjen F., et al. (2018). ECFS best practice guidelines: the 2018 version. J. Cyst. Fibros. 17 (2), 153–178. 10.1016/j.jcf.2018.02.006
    1. CFTR1 Database Cystic Fibrosis Mutation Database. (accessed Nov 09th, 2019).
    1. CFTR2 Database Clinical and Functional Translation of CFTR. (accessed Nov 09th, 2019).
    1. Chappe V., Hinkson D. A., Zhu T., Chang X. B., Riordan J. R., Hanrahan J. W. (2003). Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA. J. Physiol. 548 (Pt 1), 39–52. 10.1113/jphysiol.2002.035790
    1. Chen K. G., Mallon B. S., Park K., Robey P. G., McKay R. D. G., Gottesman M. M., et al. (2018). Pluripotent stem cell platforms for drug discovery. Trends Mol. Med. 24 (9), 805–820. 10.1016/j.molmed.2018.06.009
    1. Cheng S. H., Gregory R. J., Marshall J., Paul S., Souza D. W., White G. A., et al. (1990). Defective intracellular transport and processing of CFTR is the molecular basis of the most cystic fibrosis. Cell 63 (4), 827–834. 10.1016/0092-8674(90)90148-8
    1. Cholon D. M., Quinney N. L., Fulcher M. L., Esther C. R., Jr., Das J., Dokholyan N. V., et al. (2014). Potentiator ivacaftor abrogates pharmacological correction of ΔF508 CFTR in cystic fibrosis. Sci. Transl. Med. 6 (246), 246ra96. 10.1126/scitranslmed.3008680
    1. Clancy J. P., Rowe S. W., Accurso F. J., Aitken M. L., Amin R. S., Ashlock M. A., et al. (2012). Results of a phae IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax 67 (1), 12–18. 10.1136/thoraxjnl-2011-200393
    1. Clarke L. A., Awatade N. T., Felício V. M., Silva I. A., Calucho M., Pereira L., et al. (2019). The effect of premature termination códon mutations on CFTR mRNA abundance in human nasal epithelial and intestinal organoids: a basis for read-through therapies in cystic fibrosis. Hum. Mutat. 40 (3), 326–334. 10.1002/humu.23692
    1. Cohen-Cymberknoh M., Shoseyov D., Kerem E. (2011). Managing cystic fibrosis: strategies that increase life expectancy and improve quality of life. Am. J. Respir. Crit. Care Med. 183 (11), 1463–14715. 10.1164/rccm.201009-1478CI
    1. Cohen-Cymberknoh M., Shoseyov D., Breuer O., Shamali M., Wilschanski M., Kerem E. (2016). Treatment of cystic fibrosis in low-income countries. Lancet Respir. Med. 4 (2), 91–92. 10.1016/S2213-2600(15)00507-X
    1. Collins F. S. (1992). Cystic fibrosis: molecular biology and therapeutic implications. Science 256 (5058), 774–779. 10.1126/science.1375392
    1. Corvol H., Mésinèle J., Douksieh I. H., Strug L. J., Boëlle P. Y., Guillot L. (2018). SLC26A9 gene is associated with lung function response to ivacaftor in patients with cystic fibrosis. Front. Pharmacol. 9, 828. 10.3389/fphar.2018.00828
    1. Cui G., Stauffer B. B., Imhoff B. R., Rab A., Hong J. S., Sorscher E. J., et al. (2019). VX-770-mediated potentiation of numerous human CFTR disease mutants is influenced by phosphorylation level. Sci. Rep. 9 (1), 13460. 10.1038/s41598-019-49921-4
    1. Cusing P. R., Vouilleme L., Pellegrini M., Boisguerin P., Madden D. R. (2010). A stabilizing influence: CAL PDZ inhibition extends the half-life of ΔF508-CFTR. Angew. Chem. Int. Ed. Engl. 49 (51), 9907–9911. 10.1002/anie.201005585
    1. Cystic Fibrosis Australia (2018). Australian Cystic Fibrosis Data Registry – Annual Report 2016, Available at: .
    1. Cystic Fibrosis Canada (2019). The canadian cystic fibrosis registry – 2018 annual data report, Available at: .
    1. Cystic Fibrosis Foundation (2019). 2018 patient registry – annual data report, Available at: .
    1. Cystic Fibrosis New Zealand (2019). PORT NZ – 2015 National Data Registry, Available at: .
    1. Cystic Fibrosis Trust (2019). UK Cystic Fibrosis Registry – Annual Data Report 2018, Available at: .
    1. Dalemans W., Barbry P., Champigny G., Jallat S., Dott K., Dreyer D., et al. (1991). Altered chloride ion channe kinetics associated with delta F508 cystic fibrosis mutation. Nature 354 (6354), 526–528. 10.1038/354526a0
    1. Davies J. C., Cunningham S., Harris W. T., Lapey A., Regelmann W. E., et al. (2016). Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients in patients aged 2-5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir. Med. 4 (2), 107–115. 10.1016/S2213-2600(15)00545-7
    1. Davies J. C., Moskowitz S. M., Brown C., Horsley A., Mall M. A., McKone E. F., et al. (2018). VX-659-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two phe508del alleles. N. Eng. J. Med. 379 (17), 1599–1611. 10.1056/NEJMoa1807119
    1. Davies J. C., Van de Seen O., van Koningsbruggen-Ritschel S., Drevinek P., Derichs N., McKone E. F., et al. (2019. a). GLPG1837, a CFTR potentiator, in p.Gly551Asp (G551D)-CF patients: an open-label, single-arm, phase 2a study (SAPHIRA1). J. Cyst. Fibros. 18 (5), 693–699. 10.1016/j.jcf.2019.05.006
    1. Davies J. C., Drevinek P., Elborn J. S., Kerem E., Lee .T, ECFS Strategic Planning Task Force on ‘Speeding up access to new drugs for CF' (2019. b). Speeding up access to new drugs for CF: considerations for clinical trial design and delivery. J. Cyst. Fibros. 18 (5), 677–6845. 10.1016/j.jcf.2019.06.011
    1. De Boeck K., Amaral M. D. (2016). Progress in therapies for cystic fibrosis. Lancet Respir. Med. 4 (8), 662–674. 10.1016/S2213-2600(16)00023-0
    1. De Boeck K., Munck A., Walker S., Faro A., Hiatt P., Gilmartin G., et al. (2014). Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J. Cyst. Fibros. 13 (6), 674–680. 10.1016/j.jcf.2014.09.005
    1. De Wilde G., Gees M., Musch S., Verdonck K., Jans M., Wesse A. S., et al. (2019). Identification of GLPG/ABBV-2737, a novel class of corrector, which exerts functional synergy with other CFTR modulators. Front. Pharmacol. 10, 514. 10.3389/fphar.2019.00514
    1. De Winter-de Groot K. M., Janssens H. M., van Uum R. T., Dekkers J. F., Berkers G., Vonk A., et al. (2018). Stratifying infants with cystic fibrosis for disease severity using intestinal organoids swelling as a biomarker of CFTR function. Eur. Respir. J. 52 (3), 1702529. 10.1183/13993003.02529-2017
    1. De Winter-de Groot K. M., Berkers G., Marck-van der Wilt R. E. F., van der Meer R., Vonk A., Dekkers J. F., et al. (2019). Foskolin-induced swelling of intestinal organoids correlated with disease severity in adults with cystic fibrosis and homozygous F508del mutations. J. Cyst. Fibros. 10.1016/j.jcf.2019.10.022
    1. Dekkers J. F., Berkers G., Kruisselbrink E., Vonk A., de Jonge H. R., Janssens H. N., et al. (2016. a). Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8 (344), 344ra84. 10.1126/scitranslmed.aad8278
    1. Dekkers J. F., Gogorza Gondra R. A., Kruisselbrink E., Bonk A. M., Janssens H. M., de Winter-de Groot K. M., et al. (2016. b). Optimal correction of distinct CFTR fonding mutants in rectal cystic fibrosis organoids. Eur. Respir. J. 48 (2), 451–458. 10.1183/13993003.01192-2015
    1. Denning G. M., Anderson M. P., Amara J. F., Marshall J., Smith A. E., Welsh M. J. (1992). Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358 (6389), 761–764. 10.1038/358761a0
    1. Di Sant' Agnese P. A., Darling R. C., Perera G. A., Shea E. (1953). Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas. Clinical significance and relationship to disease. Pediatrics 12, 549–563.
    1. Diana S., Polizzi A. M., Santostasi T., Ratclif L., Pantaleo M. G., Leonetti G., et al. (2016). The novel complex allele [A238V;F508del] of the CFTR gene: clinical phenotype and possible implications for cystic fibrosis etiological therapies. J. Hum. Genet. 61 (6), 473–481. 10.1038/jhg.2016.15
    1. Donaldson S. H., Solomon G. M., Zeitlin P. L., Flume P. A., Casey A., McCoy K., et al. (2017). Pharmacokinetics and safety of cavosonstat (N91115) in health and cystic fibrosis adults homozygous for F508del-CFTR. J. Cyst. Fibros. 16 (3), 371–379. 10.1016/j.jcf.2017.01.009
    1. Donaldson S. H., Pilewski J. M., Griese M., Cooke J., Viswanathan L., Tullis E., et al. (2018. a). Tezacaftor/Ivacaftor in subjects with cystic fibrosis and F508del/F508del-CFTR or F508del/G551D-CFTR. Am. J. Respir. Crit. Care Med. 197 (2), 214–224. 10.1164/rccm.201704-0717OC
    1. Donaldson S. H., Laube B. L., Corcoran T. E., Bhambhvani P., Zeman K., Ceppe A., et al. (2018. b). Effect of ivacaftor on mucociliary clearance and clinical outcomes in cystic fibrosis patients with G551D-CFTR. JCI Insight 3 (24), 122695. 10.1172/jci.insight.122695
    1. Donnelley M., Parsons D. W. (2018). Gene therapy for cystic fibrosis lung disease: overcoming the barriers to translation to the clinic. Front. Pharmacol. 9, 1381. 10.3389/fphar.2018.01381
    1. Drevinek P., Pressler T., Cipolli M., De Boeck K., Schwarz C., Bouisset F., et al. (2019). Antisense oligonucleotide eluforsen id safe and improves respiratory symptoms in F508del cystic fibrosis. J. Cyst. Fibros. 10.1016/j.jcf.2019.05.014
    1. Drumm M. L., Pope H. A., Cliff W. H., Rommens J. M., Marvin S. A., Tsui L. C., et al. (1990). Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 62 (6), 1227–1233. 10.1016/0092-8674(90)90398-X
    1. Drumm M. L., Wilkinson D. J., Smit L. S., Worrell R. T., Strong T. V., Frizzell R. A., et al. (1991). Choride condunctance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes. Science 254 (5039), 1797–1799. 10.1126/science.1722350
    1. Du M., Jones J. R., Lanier J., Keeling K. M., Lindsey J. R., Tousson A., et al. (2002). Aminoglycoside suppression of a premature stop mutation in a Cftr-/I mouse carrying a human CFTR-G542X- transgene. J. Mol. Med. (Berl.) 80 (9), 595–604. 10.1007/s00109-002-0363-1
    1. Du M., Lui X., Welch E. M., Hirawat S., Peltz S. W., Bedwell D. M. (2008). PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc. Natl. Acad. Sci. U. S. A. 105 (6), 2064–2069. 10.1073/pnas.0711795105
    1. Duncan G. A., Kim N., Colon-Cortes Y., Rodriguez J., Mazur M., Birket S. E., et al. (2018). An adeno-associated viral vector capable of penetrating the mucus barrier to inhaled gene therapy. Mol. Ther. Methods Clin. Dev. 9, 296–304. 10.1016/j.omtm.2018.03.006
    1. Durmowicz A. G., Lim R., Rogers H., Rosebraugh C. J., Chowdhury B. A. (2018). The U.S. Food and Drug Administration's experience with ivacaftor in cystic fibrosis. Establishing efficacy using in vitro data in lieu if a clinical trial. Ann. Am. Thorac. Soc 15 (1), 1–2. 10.1513/AnnalsATS.201708-668PS
    1. Eckford P. D., Li C., Ramjeesingh M., Bear C. E. (2012). Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner. J. Biol. Chem. 287 (44), 36639–36649. 10.1074/jbc.M112.393637
    1. Edgeworth D., Keating D., Ellis M., Button M., Williams E., Clark D., et al. (2017). Improvement in exercise duration, lung function and well-being in G551D-cystic fibrosis patients: a double-blind, placebo-controlled, randomized, cross-over study with ivacaftor treatment. Clin. Sci. (Lond.) 131 (15), 2037–2045. 10.1042/CS20170995
    1. Elborn J. S., Ramsey B. W., Boyle M. P., Konstan M. W., Huang X., Marigowda G., et al. (2016). Efficacy and safety of lumacaftor/ivacaftor combination therapy in patients with cystic fibrosis homozygous for phe508del CFTR by pulmonary function subgroup: a pooled analysis. Lancet Respir. Med. 4 (8), 617–626. 10.1016/S2213-2600(16)30121-7
    1. European Cystic Fibrosis Society (2019). ECFS Patient Registry – 2017 Annual Data Report, Available at: .
    1. Farrell P., Férec C., Macek M., Frischer T., Renner S., Riss K., et al. (2018). Estimating the age of p.(phe508del) with family studies of geographically distinct European populations and the early spread of cystic fibrosis. Eur. J. Hum. Genet. 26 (12), 1832–1839. 10.1038/s41431-018-0234-z
    1. Fay J. F., Aleksandrov L. A., Jensen T. J., Cui L. L., Kousouros J. N., He L., et al. (2018). Cryo-EM visualization of an active high open probability CFTR anion channel. Biochemistry 57 (43), 6234–6246. 10.1021/acs.biochem.8b00763
    1. Ferkol T., Quinton P. (2015). Precision medicine: at what price? Am. J. Respir. Care Med. 192 (6), 658–659. 10.1164/rccm.201507-1428ED
    1. Flume P. A., Wainwright C. E., Elizabeth Tullis D., Rodriguez S., Niknian M., Higgins M., et al. (2018). Recovery of lung function following a pulmonary exacerbation in patients with cystic fibrosis and the G551D-CFTR mutation treated with ivacaftor. J. Cyst. Fibros. 17 (1), 83–88. 10.1016/j.jcf.2017.06.002
    1. Flume P. A., Suthoff E. D., Kosinski M., Marigowda G., Quittner A. L. (2019). Measuring recovery in health-related quality of life during and after pulmonary exacerbations in patients with cystic fibrosis. J. Cyst. Fibros. 18 (5), 737–742. 10.1016/j.jcf.2018.12.004
    1. Frost F. J., Nazareth D. S., Charman S. C., Winstanley C., Walshaw M. J. (2019). Ivacaftor is associated with reduced lung infection by key cystic fibrosis pathogens. A cohort study using national registry report. Ann. Am. Thorac. Soc 16 (11), 1375–1382. 10.1513/AnnalsATS.201902-122OC
    1. Fukuda R., Okiyoneda T. (2018). Peripheral protein quality control as a novel drug target for CFTR stabilizer. Front. Pharmacol. 9, 1100. 10.3389/fphar.2018.01100
    1. Fulcher M. L., Randell S. H. (2013). Human nasal and trachea-bronchial respiratory epithelial cell culture. Methods Mol. Biol. 945, 109–121. 10.1007/978-1-62703-125-7_8
    1. Garg V., Shen J., Li C., Agarwal S., Gebre A., Robertson S., et al. (2019). Pharmacokinetic and drug-drug interaction profiles of the combination of tezacaftor/ivacaftor. Clin. Transl. Sci. 12 (3), 267–275. 10.1111/cts.12610
    1. Gees M., Much S., Van der Plas S., Wesse A. S., Vandevelde A., Verdonck K., et al. (2018). Identification and characterization of novel CFTR potentiators. Front. Pharmacol. 9, 1221. 10.3389/fphar.2018.01221
    1. Gentzsch M., Cholon D. M., Quinney N. L., Boyles S. E., Martino M. E. B., Ribeiro C. M. P. (2018). The cystic fibrosis airway milieu enhances rescue of F508del in a pre-clinical model. Eur. Respir. J. 52 (6), 1801133. 10.1183/13993003.01133-2018
    1. Giuliano K. A., Wachi S., Drew L., Dukovski D., Green O., Bastos C., et al. (2018). Use of a high-throughput phenotypic screening strategy to identify amplifiers, a novel pharmacological class of small molecules that exhibit functional synergy with potentiators and correctors. SLAS Discovery 23 (2), 111–121. 10.1177/2472555217729790
    1. Glozman R., Okiyoneda T., Mulvihill C. M., Rini J. M., Barriere H., Lukacs G. L. (2009). N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic. J. Cell. Biol. 184 (6), 847–862. 10.1083/jcb.200808124
    1. Gonzalez-Hilarion S., Beghyn T., Jia J., Debreuck N., Berte G., Mamchaoui K., et al. (2012). Rescue of nonsense mutations by amlexanox in human cells. Orphanet. J. Rare Dis. 7, 58. 10.1186/1750-1172-7-58
    1. Goralski J. L., Nasr S. Z., Uluer A. (2017). Overcoming barriers to a successful transition from pediatric to adult care. Pediatr. Pulmonol. 52 (S48), S52–S60. 10.1002/ppul.23778
    1. Graeber S. Y., Dopfer C., Naehrlich L., Gyulumyan L., Scheuermann H., Hirtz S., et al. (2018). Effects of lumacaftor-ivacaftor therapy on cystic fibrosis transmembrane conductance regulator function in phe508del homozygous patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 197 (11), 1433–1442. 10.1164/rccm.201710-1983OC
    1. Gulland A. (2016). Cystic fibrosis drug is not cost effective, says NICE. BMJ 353, i3409. 10.1136/bmj.i3409
    1. Haardt M., Benharouga M., Lechardeur D., Kartner N., Lukacs G. L. (1999). C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation. J. Biol. Chem. 274 (31), 21873–21877. 10.1074/jbc.274.31.21873
    1. Habib A. R., Kajbafzadeh M., Desai S., Yang C. L., Skolnik K., Quon B. S. (2019). A systematic review of clinical efficacy and safety of CFTR modulators in cystic fibrosis. Sci. Rep. 9 (1), 7234. 10.1038/s41598-019-43652-2
    1. Haggie P. M., Phuan P. W., Tan J. A., Xu H., Avramescu R. G., Perdomo D., et al. (2017). Correctors and porentiators rescue function of the truncated W1282X-cystic fibrosis transmembrane regulator (CFTR) translation product. J. Biol. Chem. 292 (3), 771–785. 10.1074/jbc.M116.764720
    1. Han S. T., Rab A., Pellicore M. J., Davis E. F., McCague A. F., Evans T. A., et al. (2018). Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators. JCI Insight 3 (14), 121159. 10.1172/jci.insight.121159
    1. Harbeson S. L., Morgan A. J., Liu J. F., Aslanian A. M., Nguyen S., Bridson G. W., et al. (2017). Altering metabolic profiles of drugs by precision deuteration 2: discovery of a deuterated analog of ivacaftor with differentiated pharmacokinetics for clinical development. J. Pharmacol. Exp. Ther. 362 (2), 359–367. 10.1124/jpet.117.241497
    1. Harris J. K., Wagner B. D., Zemanick E. T., Robertson C. E., Stevens M. J., Heltshe S. L., et al. (2019). Changes in airway microbiome and inflammation with ivacaftor treatment in patients with cystic fibrosis and the G551D mutation. Ann. Am. Thorac. Soc. 10.1513/AnnalsATS.201907-493OC
    1. Haws C. M., Nepomuceno I. B., Krouse M. E., Wakelee H., Law T., Xia Y., et al. (1996). Delta F508del-CFTR channels: kinetics, activation by forskolin, and potentiation by xanthines. Am. J. Physiol. 270 (5 Pt 1), 1544–1555. 10.1152/ajpcell.1996.270.5.C1544
    1. Hayes D., Jr., McCoy K. S., Sheikh S. I. (2014). Resolution of cystic fibrosis-related diabetes with ivacaftor therapy. Am. J. Respir. Crit. Care Med. 190 (5), 590–591. 10.1164/rccm.201405-0882LE
    1. Hayes D., Jr., Kopp B. T., Hill C. L., Lallier S. W., Schwartz C. M., Tadesse M., et al. (2019). Cell therapy for cystic fibrosis lung disease: regenerative basal cell amplification. Stem Cells Trans. Med. 8 (3), 225–235. 10.1002/sctm.18-0098
    1. He L., Kota P., Aleksandrov A. A., Cui L., Jensen T., Dokholyan N. V., et al. (2013). Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein. FASEB J. 27 (2), 536–545. 10.1096/fj.12-216119
    1. Heijerman H. G. M., McKone E. F., Downey D. G., Van Braeckel E., Rowe S. M., Tullis E., et al. (2019). Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 394 (10212), 1940–1948. 10.1016/S0140-6736(19)32597-8
    1. Heltshe S. L., Mayer-Hamblett N., Burns J. L., Khan U., Baines A., Ramsey B. W., et al. (2015). Pseudomonas aeruginosa in cystic fibrosis with G551D-CFTR treated with ivacaftor. Clin. Infect. Dis. 60 (5), 703–712. 10.1093/cid/ciu944
    1. Hisert K. B., Heltshe S. L., Pope C., Jorth P., Wu X., Edward R. M., et al. (2017). Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections. Am. J. Respir. Crit. Care Med. 195 (12), 1617–1628. 10.1164/rccm.201609-1954OC
    1. Hou X., Wu Q., Rajagopalan C., Zhang C., Boubamdan M., Wei H., et al. (2019). CK19 stabilizes CFTR at the cell surface by limiting its endocytic pathway degradation. FASEB J. 33 (11), 12602–12615. 10.1096/fj.201901050R
    1. Howard M., Frizzell R. A., Bedwell D. M. (1996). Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat. Med. 2 (4), 467–469. 10.1038/nm0496-467
    1. Hudson R. P., Dawson J. E., Chong P. A., Yang Z., Millen L., Thomas P. J., et al. (2017). Direct binding of the corrector VX-809 to human CFTR NBD1: Evidence of an allosteric coupling between the binding site and the NBD1:CL4 interface. Mol. Pharmacol. 92 (2), 124–135. 10.1124/mol.117.108373
    1. Hutt D. M., Herman D., Rodrigues A. P., Noel S., Pilewski J. M., Matteson J., et al. (2010). Reduced histone deacetylase 7 activity function to misfolded CFTR in cystic fibrosis. Nat. Chem. Biol. 6 (1), 25–33. 10.1038/nchembio.275
    1. Hutt D. M., Loguercio S., Campos A. R., Balch W. E. (2018). A proteomic variant approach (ProVarA) for personalized medicine of inherited and somatic disease. J. Mol. Med. 430 (18 Pt A), 2951–2973. 10.1016/j.jmb.2018.06.017
    1. Igreja S., Clarke L. A., Botelho H. M., Marques L., Amaral M. D. (2016). Correction of a cystic fibrosis splicing mutation by antisense oligonucleotides. Hum. Mutat. 37 (2), 209–215. 10.1002/humu.22931
    1. Illek B., Fiscker H. (1998). Flavonoids stimulate Cl conductance of human airway epithelium in vitro and in vivo. Am. J. Physiol. 275 (5), L902–L910. 10.1152/ajplung.1998.275.5.L902
    1. Jensen T. J., Loo M. A., Pind S., Williams D. B., Goldberg A. L., Riordan J. R. (1995). Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83 (1), 129–135. 10.1016/0092-8674(95)90241-4
    1. Jih K. Y., Hwang T. C. (2013). VX-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc. Natl. Acad. Sci. U. S. A. 110 (11), 4404–4409. 10.1073/pnas.1215982110
    1. Kalid O., Mense M., Fischman S., Shitrit A., Bihler H., Ben-Zeev E., et al. (2010). Small molecule correctors of F508del-CFTR discovered by structure-based virtual screening. J. Comput. Aided Mol. Des. 24 (12), 971–991. 10.1007/s10822-010-9390-0
    1. Kandasamy J., Atia-Glikin D., Shulman E., Shapira K., Shavit M., Belakhov V., et al. (2012). Increased selectivity toward cytoplasmic versus mitochondrial ribosome confers improved efficiency of synthetic aminoglycosides in fixing damaged genes: a strategy for treatment of genetic disease caused by nonsense mutations. J. Med. Chem. 55 (23), 10630–10643. 10.1021/jm3012992
    1. Keating D., Marigowda G., Burr L., Daines C., Mall M. A., NcKone E. F., et al. (2018). VX-445-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two phe508del alleles. N. Engl. J. Med. 379 (17), 1612–1620. 10.1056/NEJMoa1807120
    1. Keenan M. M., Huang L., Jordan N. J., Wong E., Cheng Y., Valley H. C., et al. (2019). Nonsense mediated RNA decay pathway inhibition restores expression and function of W1282X CFTR. Am. J. Respir. Cell. Mol. Biol. 61 (3), 290–300. 10.1165/rcmb.2018-0316OC
    1. Kelly A., De Leon D. D., Sheikh S., Cambum D., Kubrak C., Peleckis A. J., et al. (2019). Islet hormone and incretin secretion in cystic fibrosis after four months of ivacaftor therapy. Am. J. Respir. Crit. Care Med. 199 (3), 342–351. 10.1164/rccm.201806-1018OC
    1. Kerem B., Rommens J. M., Buchanan J. A., Markiewicz D., Cox T. K., Chakravarti A., et al. (1989). Identification of the cystic fibrosis gene: genetic analysis. Science 245 (4922), 1073–1080. 10.1126/science.2570460
    1. Kerem E., Konstan M. W., De Boeck K., Accurso F. J., Sermet-Gaudelus I., Wilschanski M., et al. (2014). Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomized, double-blind, placebo-controlled phase 3 trial. Lancet Respir. Med. 2 (7), 539–547. 10.1016/S2213-2600(14)70100-6
    1. Kim S. J., Skach W. R. (2012). Mechanisms of CFTR folding at the endoplasmic reticulum. Front. Pharmacol. 3, 201. 10.3389/fphar.2012.00201
    1. Knowles M. R., Stutts M. J., Spock A., Fischer N., Gatzy J. T., Boucher R. C. (1983). Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221 (4615), 1067–1070. 10.1126/science.6308769
    1. Konstan M. W., McKone E. F., Moss R. B., Marigowda G., Tian S., Waltz D., et al. (2017). Assessment of safety and efficacy of long-term treatment with combination lumacaftor and ivacaftor therapy in patients with cystic fibrosis homozygous for the F508del-CFTR mutation (PROGRESS): a phase 2, extension study. Lancet Respir. Med. 5 (2), 107–118. 10.1016/S2213-2600(16)30427-1
    1. Laselva O., Molinski S., Casavola V., Bear C. E. (2018). Correctors of the major cystic fibrosis mutant interact through membrane-spanning domains. Mol. Pharmacol. 93 (6), 612–618. 10.1124/mol.118.111799
    1. Leonard A., Lebecque P., Dingemanse J., Leal T. (2012). A randomized placebo-controlled trial of miglustat in cystic fibrosis based on nasal potential difference. J. Cyst. Fibros. 11 (3), 231–236. 10.1016/j.jcf.2011.12.004
    1. Leubitz A., Frydman-Marom A., Sharpe N., van Duzer J., Campbell K. C. M., Vanhoutte F. (2019). Safety, tolerability, and pharmacokinetics of single ascending dose of ELX-02, a potential treatment for genetic disorder caused by nonsense mutations, in healthy volunteers. Clin. Pharmacol. Drug Dev. 8 (8), 984–994. 10.1002/cpdd.647
    1. Liang F., Shang H., Jordan N. J., Wong E., Mercadante D., Saltz J., et al. (2017). High-throughput screening for readthrough modulators of CFTR PTC mutations. SLAS Technol. 22 (3), 315–324. 10.1177/2472630317692561
    1. Liu F., Zhang Z., Csanády L., Gadsby D. C., Cheng J. (2017). Molecular structure of the human CFTR ion channel. Cell 169 (1), 85–95.e8. 10.1016/j.cell.2017.02.024
    1. Liu F., Zhang Z., Levit A., Levring J., Touhara K. K., Shoichet B. K., et al. (2019). Structural identification of a hotspot on CFTR for potentiation. Science 364 (6446), 1184–1188. 10.1126/science.aaw7611
    1. Liu Q., Sabirzhanova I., Bergbower E. A. S., Yanda M., Guggino W. B., Cebotaru L. (2019). The CFTR corrector, VX-809 (lumacaftor), rescues ABCA4 trafficking mutants: a potential treatment for Stargardt disease. Cell. Physiol. Biochem. 53 (2), 400–412. 10.33594/000000146
    1. Lobo M. J., Amaral M. D., Zaccolo M., Farinha C. M. (2016). EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1. J. Cell Sci. 129 (13), 2599–2612. 10.1242/jcs.185629
    1. Loo T. W., Clarke D. M. (2017). Corrector VX-809 promotes interactions between cytoplasmic loop one and the first nucleotide-binding domain of CFTR. Biochem. Pharmacol. 136, 24–31. 10.1016/j.bcp.2017.03.020
    1. Lopes-Pacheco M., Boinot C., Sabirzhanova I., Morales M. M., Guggino W. B., Cebotaru L. (2015). Combination of correctors rescue ΔF508del-CFTR by reducing its association with Hsp40 and Hsp27. J. Biol. Chem. 290 (42), 25636–25645. 10.1074/jbc.M115.671925
    1. Lopes-Pacheco M., Sabirzhanova I., Rapino D., Morales M. M., Guggino W. B., Cebotaru L. (2016). Correctors rescue CFTR mutations in nucleotide-binding domain 1 (NBD1) by modulating proteostasis. Chembiochem 17 (6), 493–505. 10.1002/cbic.201500620
    1. Lopes-Pacheco M., Boinot C., Sabirzhanova I., Rapino D., Cebotaru L. (2017). Combination of correctors rescues CFTR transmembrane-domain by mitigating their interactions with proteostasis. Cell. Physiol. Biochem. 41 (6), 2194–2210. 10.1159/000475578
    1. Lopes-Pacheco M., Kitoko J. Z., Morales M. M., Petrs-Silva H., Rocco P. R. M. (2018). Self-complementary and tyrosine-mutant rAAV vectors enhance transduction in cystic fibrosis bronchial epithelial cells. Exp. Cell Res. 372 (2), 99–107. 10.1016/j.yexcr.2018.09.015
    1. Lopes-Pacheco M., Pedemonte N., Kicic A. (2019). Editorial: Emerging therapeutic approaches for cystic fibrosis. Front. Pharmacol. 10, 1440. 10.3389/fphar.2019.01440
    1. Lopes-Pacheco M. (2016). CFTR Modulators: Shedding light on precision medicine for cystic fibrosis. Front. Pharmacol. 7, 275. 10.3389/fphar.2016.00275
    1. Loureiro C. A., Matos A. M., Dias-Alvez Â., Pereira J. F., Uliyakina I., Barros P., et al. (2015). A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint. Sci. Signal. 8 (377), ra48. 10.1126/scisignal.aaa1580
    1. Lucarelli M., Narzi L., Pierandrei S., Bruno S. M., Stamato A., d'Avanzo M., et al. (2010). A new complex allele of the CFTR gene partially explains the variable phenotype of the L997F mutation. Genet. Med. 12 (9), 548–555. 10.1097/GIM.0b013e3181ead634
    1. Lukacs G. L., Verkman A. S. (2012). CFTR: folding, misfolding and correcting the ΔF508 conformational defect. Trends Mol. Med. 18 (2), 81–91. 10.1016/j.molmed.2011.10.003
    1. Marson F. A. L., Bertuzzo C. S., Ribeiro J. D. (2016). Classification of CFTR mutation classes. Lancet Respir. Med. 4 (8), e37–e38. 10.1016/S2213-2600(16)30188-6
    1. Matos A. M., Gomes-Duarte A., Faria M., Barros P., Jordan P., Amaral M. D., et al. (2018). Prolonged co-treatment with HGF sustains epithelial integrity and improves pharmacological rescue of phe508del-CFTR. Sci. Rep. 8 (1), 13026. 10.1038/s41598-018-31514-2
    1. Matthes E., Goepp J., Carlile G. W., Luo Y., Dejgaard K., Billet A., et al. (2016). Low free drug concentration prevents inhibition of F508del CFTR functional expression by the potentiator VX-770 (ivacaftor). Br. J. Pharmacol. 173 (3), 459–470. 10.1111/bph.13365
    1. Matthes E., Goepp J., Martini C., Shan J., Liao J., Thomas D. Y., et al. (2018). Variable responses to CFTR correctors in vitro: estimating the design effect in precision medicine. Front. Pharmacol. 9, 1490. 10.3389/fphar.2018.01490
    1. McCague A. F., Raraigh K. S., Pellicore M. J., Davis-Marcisak E. F., Evans T. A., Han S. T., et al. (2019). Correlating cystic fibrosis transmembrane conductance regulator function with clinical features to inform precision treatment of cystic fibrosis. Am. J. Respir. Crit. Care Med. 199 (9), 1116–1126. 10.1164/rccm.201901-0145OC
    1. McColley S. A., Konstan M. W., Ramsey B. W., Stuart Elborn J., Boyle M. P., Wainwright C. E., et al. (2019). Limacaftor/ivacaftor pulmonary exacerbations in patients irrespective of initial changes in FEV1. J. Cyst. Fibros. 18 (1), 94–101. 10.1016/j.jcf.2018.07.011
    1. McGarry M. E., Illek B., Ly N. P., Zlock L., Olshansky S., Moreno C., et al. (2017). In vivo and in in vitro ivacaftor response in cystic fibrosis patients with residual CFTR function: N-of-1 studies. Pediatr. Pulmonol. 52 (4), 472–479. 10.1002/ppul.23659
    1. McKone E. F., Borowitz D., Devinek P., Griese M., Konstan M. W., Wainwright C., et al. (2014). Long-term safety and efficacy of ivacaftor in patients with cystic fibrosis who have the Gly551Asp-CFTR mutation: a phase 3, open-label extension study (PERSIST). Lancet Respir. Med. 2, 902–910. 10.1016/S2213-2600(14)70218-8
    1. McNamara J. J., McColley S. A., Marigowda G., Liu F., Tian S., Owen C. A., et al. (2019). Safety, pharmacokinetics and pharmacodynamics of lumacaftor and ivacaftor combination therapy in children aged 2-5 years with cystic fibrosis homozygous for F508del-CFTR: ah open-label phase 3 study. Lancet Respir. Med. 7 (4), 325–335. 10.1016/S2213-2600(18)30460-0
    1. Merket S., Schubert M., Olmer R., Engles L., Radetzki S., Veltman M., et al. (2019). High-throughput screening for modulators of CFTR activity based on genetically engineered cystic fibrosis disease-specific iPSCs. Stem Cell Rep. 12 (6), 1389–1403. 10.1016/j.stemcr.2019.04.014
    1. Michels M., Matte U., Fraga L. R., Mancuso A. C. B., Ligabue-Braun R., Berneira E. F. R., et al. (2019). Determining the pathogenicity of CFTR missense variants: multiple comparison of in silico predictors and variant annotation data bases. Genet. Mol. Biol. 42 (3), 560–570. 10.1590/1678-4685-gmb-2018-0148
    1. Middleton P. G., Mall M. A., Drevínek P., Lands L. C., McKone E. F., Polineni D., et al. (2019). Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single phe508del allele. N. Eng. J. Med. 381 (19), 1809–1819. 10.1056/NEJMoa1908639
    1. Milla C. E., Ratjen F., Marigowda G., Liu F., Waltz D., Rosenfeld. M. (2017). Lumacaftor/ivacaftor in patients aged 6-11 years with cystic fibrosis and homozygous for F508del-CFTR. Am. J. Respir. Crit. Care Med. 195 (7), 912–920. 10.1164/rccm.201608-1754OC
    1. Molinski S. V., Ahmadi S., Ip W., Ouyang H., Villella A., Miller J. P., et al. (2017). Orkambi® and amplifier co-therapy improves function from a rare CFTR mutation in gene-edited cells and patient tissue. EMBO Mol. Med. 9 (9), 1224–1243. 10.15252/emmm.201607137
    1. Moniz S., Sousa M., Moraes B. J., Mendes A. I., Palma M., Barreto C., et al. (2013). HGF stimulation of Rac1 signaling enhances pharmacological correction of the most prevalent cystic fibrosis mutant F508del-CFTR. ACS Chem. Biol. 8 (2), 432–442. 10.1021/cb300484r
    1. Moore P. J., Tarran R. (2018). The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease. Expert Opin. Ther. Targets 22 (8), 687–701. 10.1080/14728222.2018.1501361
    1. Mutyam V., Du M., Xue X., Keeling K. M., White E. L., Bostwick J. R., et al. (2016). Discovery of clinically approved agents that promote suppression of cystic fibrosis transmembrane conductance regulator nonsense mutations. Am. J. Respir. Crit. Care Med. 194 (9), 1092–1103. 10.1164/rccm.201601-0154OC
    1. Mutyam V., Libby E. F., Peng N., Hadjiliadis D., Bonk M., Solomon G. M., et al. (2017). Therapeutic benefit observed with the CFTR potentiator, ivacaftor, in a CF patient homozygous for the W1282X CFTR nonsense mutation. J. Cyst. Fibros. 16 (1), 24–29. 10.1016/j.jcf.2016.09.005
    1. Narayanan S., Mainz J. G., Gala S., Tabori H., Grossoehme D. (2017). Adherence to therapies in cystic fibrosis: a targeted literature review. Expert Rev. Respir. Med. 11 (2), 129–145. 10.1080/17476348.2017.1280399
    1. Nguyen L. S., Wilkinson M. F., Gecz J. (2014). Nonsense-mediated mRNA decay: inter-individual variability and human disease. Neurosci. Biobehav. Rev. 46 (Pt 2), 175–186. 10.1016/j.neubiorev.2013.10.016
    1. Noël S., Wilke M., Bot A. G., De Jonge H. R., Becq F. (2008). Parallel improvement of sodium and chloride transport defect by miglustat (n-butyldeoxyjyrimicin) in cystic fibrosis epithelial cells. J. Pharmacol. Exp. Ther. 325 (3), 1016–10235. 10.1124/jpet.107.135582
    1. Norez C., Noel S., Wilke M., Bijvelds M., Jorna H., Melin P., et al. (2006). Rescue of functional delF508-CFTR channels in cystic fibrosis epithelial cells by the alpha-glucosidase inhibitor miglustat. FEBS Lett. 580 (8), 2081–2086. 10.1016/j.febslet.2006.03.010
    1. O'Neal W. K., Knowles M. R. (2018). Cystic fibrosis disease modifiers: complex genetics defines the phenotypic diversity in a monogenic disease. Annu. Rev. Genomics Hum. Genet. 19, 201–222. 10.1146/annurev-genom-083117-021329
    1. O'Sullivan B. P., Orenstein D. M., Milla C. E. (2013). Pricing for orphan drugs: will the market bear what society cannot? JAMA 310 (13), 1343–1344. 10.1001/jama.2013.278129
    1. Oates G. R., Schechter M. S. (2016). Socioeconomic status and health outcomes: cystic fibrosis as a model. Expert Rev. Respir. Med. 10 (9), 967–977. 10.1080/17476348.2016.1196140
    1. Okiyoneda T., Barrière H., Bagdány M., Rabeh W. M., Du K., Höhfeld J., et al. (2010). Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 329, 805–810. 10.1126/science.1191542
    1. Okiyoneda T., Veit G., Dekkers J. F., Bagdany M., Soya N., Roldan A., et al. (2013). Mechanism-based corrector combination restores ΔF508-CFTR folding and function. Nat. Chem. Biol. 9 (7), 444–454. 10.1038/nchembio.1253
    1. Okiyoneda T., Veit G., Sakai R., Aki M., Pujihara T., Higashi M., et al. (2018). Chaperone-independent peripheral quality control of CFTR by RFFL E3 ligase. Del. Cell 44 (6), 694–708. 10.1016/j.devcel.2018.02.001
    1. Oliver K. E., Rauscher R., Mijnders M., Wang W., Wolpert M. J., Maya J., et al. (2019). Slowing ribosome velocity restores folding and function of mutant CFTR. J. Clin. Invest. 129 (2), 5236–5253. 10.1172/JCI124282
    1. Orestein D. M., O'Sullivan B. P., Quinton P. M. (2015). Cystic fibrosis: breakthrough drugs at break-the-bank prices. Glob. Adv. Health Med. 4 (6), 8–9. 10.7453/gahmj.2015.123
    1. Osman G., Rodriguez J., Chan S. Y., Chisholm J., Duncan G., Kim N., et al. (2018). PEGylated enhanced cell penetration peptide nanoparticles for lung gene therapy. J. Control. Release 285, 35–45. 10.1016/j.jconrel.2018.07.001
    1. Pankow S., Bamberger C., Calzolari D., Martínez-Bartolomé S., Lavallée-Adam M., Balch W. E., et al. (2015). ΔF508 CFTR interactome remodeling promotes rescue of cystic fibrosis. Nature 528 (7583), 510–516. 10.1038/nature15729
    1. Park J., Khloya P., Seo Y., Kumar S., Lee H. K., Jeon D. K., et al. (2016). Potentiaton of ΔF508- and G551D-CFTR-mediated Cl- current by novel hydroxypyrazolines. PloS One 11 (2), e0149131. 10.1371/journal.pone.0149131
    1. Patel W., Moore P. J., Sassano M. F., Lopes-Pacheco M., Aleksandrov A. A., Amaral M. D., et al. (2019). Increased in cytosolic Ca2+ induce dynamin and calcineurin-dependent internalisation of CFTR. Cell. Mol. Life Sci. 76 (5), 977–994. 10.1007/s00018-018-2989-3
    1. Pearson I., Rothwell B., Olaye A., Knight C. (2018). Economic modeling considerations for rare diseases. Value Health 21 (5), 515–524. 10.1016/j.jval.2018.02.008
    1. Pedemonte N., Lukacs G. L., Du K., Caci E., Zegarra-Moran O., Galietta L. J., et al. (2005. a). Small-molecule correctors of defective deltaF508-CFTR cellular processing identified by high-throughput screening. J. Clin. Invest. 115 (9), 2564–2571. 10.1172/JCI24898
    1. Pedemonte N., Sonawane N. D., Taddei A., Hu J., Zegarra-Moran O., Suen Y. F., et al. (2005. b). Phenylglycine and sulfonamide correctors of defective delta F508 and G551D cystic fibrosis transmembrane conductance regulator chloride-channel gating. Mol. Pharmacol. 67 (5), 1797–1807. 10.1124/mol.105.010959
    1. Pedemonte N., Tomati V., Sondo E., Galietta L. J. (2010). Influence of cell background on pharmacological rescue of mutant CFTR. Am. J. Physiol. Cell. Physiol. 298 (4), C866–C874. 10.1152/ajpcell.00404.2009
    1. Pereira S. V., Ribeiro J. D., Ribeiro A. F., Bertuzzo C. S., Marson F. A. L. (2019). Novel, rare and common pathogenic variants in the CFTR gene screened by high-throughput sequencing technology and predicted by in silico tools. Sci. Rep. 9 (1), 6234. 10.1038/s41598-019-42404-6
    1. Pereyro S., on behalf of Associación Argentina de Lucha contra la Enfermedad Fibroquística del Páncreas [FIPAN] (2018). Registro de Fibrosis Quística, Available at: .
    1. Phuan P. W., Veit G., Tan J., Roldan A., Finkbeiner W. E., Lukacs G. L., et al. (2014). Synergy-based small-molecule screen using a human lung epithelial cell line yields ΔF508-CFTR correctors that augment VX-809 maximal efficacy. Mol. Pharmacol. 86 (1), 42–51. 10.1124/mol.114.092478
    1. Phuan P. W., Veit G., Tan J. A., Finkbeiner W. E., Lukacs G. L., Verkman A. S. (2015). Potentiators of defective ΔF508-CFTR gating that do not interfere with corrector action. Mol. Pharmacol. 88 (4), 791–799. 10.1124/mol.115.099689
    1. Phuan P. W., Son J. H., Tan J. A., Musante I., Zlock L., Nielson D. W., et al. (2018). Combination potentiator (‘co-potentiator') therapy for CF caused CFTR mutants, including N1303K, that are poorly responsive to single potentiators. J. Cyst. Fibros. 17 (5), 595–606. 10.1016/j.jcf.2018.05.010
    1. Pranke I., Hatton A., Simonin J., Jais J. P., Le Pimpec-Barthes F., Carsin A., et al. (2017). Correction of CFTR function in nasal epithelial cells from cystic fibrosis predicts improvement of respiratory function by CFTR modulators. Sci. Rep. 7 (1), 7375. 10.1038/s41598-017-07504-1
    1. Pranke I., Bidou L., Martin N., Blanchet S., Hatton A., Karri S., et al. (2018). Factors influencing readthrough therapy for frequent cystic fibrosis premature termination codons. ERJ Open Res. 4 (1), 00080–02017. 10.1183/23120541.00080-2017
    1. Pranke I., Hatton A., Masson A., Flament T., Le Bourgeois M., Chedevergne F., et al. (2019). Might brushed nasal cells be a surrogate for CFTR modulator clinical response? Am. J. Respir. Crit. Care Med. 199 (1), 123–126. 10.1164/rccm.201808-1436LE
    1. Prayle A., Watson A., Fortnum H., Smyth A. (2010). Side effects of aminoglycosides on the kidney, ear and balance in cystic fibrosis. Thorax 65 (7), 654–658. 10.1136/thx.2009.131532
    1. Pushpakom S., Iorio F., Eyers P. A., Escott K. J., Hopper S., Wells A., et al. (2019). Drug repurposing: progress, challenges and recommendation. Nat. Rev. Drug Discovery 18 (1), 41–58. 10.1038/nrd.2018.168
    1. Quinton P. M. (1983). Chloride impermeability in cystic fibrosis. Nature 301, 421–422. 10.1038/301421a0
    1. Quittner A. L., Zhang J., Marynchenko M., Chopra P. A., Signorovitch J., Yushkina Y., et al. (2014). Pulmonary medication adherence and health-care use in cystic fibrosis. Chest 146 (1), 142–151. 10.1378/chest.13-1926
    1. Quittner A., Suthoff E., Rendas-Baum R., Bayliss M. S., Sermet-Gaudelus I., Castiglione B., et al. (2015). Effect of ivacaftor treatment in patients with cystic fibrosis and the G551D-CFTR mutation: patient-reported outcomes in the STRIVE randomized, controlled trial. Health Qual. Life Outcomes 13, 93. 10.1186/s12955-015-0293-6
    1. Quittner A. L., Saez-Flores E., Barton J. D. (2016). The psychological burden of cystic fibrosis. Curr. Opin. Pulm. Med. 22 (2), 187–191. 10.1097/MCP.0000000000000244
    1. Ramos K. J., Smith P. J., McKone E. F., Pilewski J. M., Lucy A., Hempstead S. E., et al. (2019). Lung transplant referral for individuals with cystic fibrosis: Cystic Fibrosis Foundation consensus guidelines. J. Cyst. Fibros. 18 (3), 321–333. 10.1016/j.jcf.2019.03.002
    1. Ramsey B. W., Davies J., McElvaney N. G., Tullis E., Bell S. C., Drevínek P., et al. (2011). A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 365 (18), 1663–1672. 10.1056/NEJMoa1105185
    1. Rapino D., Sabirzhanova I., Lopes-Pacheco M., Grover R., Guggino W. B., Cebotaru L. (2015). Rescue of NBD2 mutants N1303K and S1235R of CFTR by small-molecule correctors and transcomplementation. PloS One 10 (3), e0119796. 10.1371/journal.pone.0119796
    1. Ratjen F., Hug C., Marigowda G., Tian S., Huang X., Stanojevic S., et al. (2017). Efficacy and safety of lumacaftor and ivacaftor in patients aged 6-11 with cystic fibrosis homozygous for F508del-CFTR: a randomized, placebo-controlled phase 3 trial. Lancet Respir. Med. 5 (7), 557–567. 10.1016/S2213-2600(17)30215-1
    1. Ren H. Y., Grove D. E., De La Rosa O., Houck S. A., Sopha P., Van Goor F., et al. (2013). VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator through action on membrane-spanning domain 1. Mol. Biol. Cell 24 (19), 3016–3024. 10.1091/mbc.e13-05-0240
    1. Rich D. P., Anderson M. P., Gregory R. J., Cheng S. H., Paul S., Jefferson D. M., et al. (1990). Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347 (6291), 358–363. 10.1038/347358a0
    1. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., et al. (1989). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245 (4922), 1066–1073. 10.1126/science.2475911
    1. Riordan J. R. (2005). Assembly of functional CFTR chloride channels. Annu. Rev. Physiol. 67, 701–718. 10.1146/annurev.physiol.67.032003.154107
    1. Romani L., Oikonomou V., Moretti S., Iannitti R. G., D'Adamo M. C., Villella V. R., et al. (2017). Thymosin α1 represents a potential single-molecule-based therapy for cystic fibrosis. Nat. Med. 23 (5), 590–600. 10.1038/nm.4305
    1. Rommens J. M., Ianuzzi M. C., Drumm M. L., Melmer G., Dean M., Rozmahel R., et al. (1989). Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245 (4922), 1059–1065. 10.1126/science.2772657
    1. Ronan N. J., Elborn J. S., Plant B. J. (2017). Current and emerging comorbidities in cystic fibrosis. Presse Med. 46 (6 Pt 2), e125–e138. 10.1016/j.lpm.2017.05.011
    1. Ronan N. J., Einarsson G. G., Twomey M., Mooney D., Mullane D., NiChroinin M., et al. (2018). CORK Study in cystic fibrosis: sustained improvement in ultra-low-dose chest CT scores after CFTR modulation with ivacaftor. Chest 153 (2), 395–403. 10.1016/j.chest.2017.10.005
    1. Rosenfeld M., Wainwright C. E., Higgins M., Wang L. T., McKee C., Campbell D., et al. (2018). Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): a phase 3 single-arm study. Lance Respir. Med. 6 (7), 545–553. 10.1016/S2213-2600(18)30202-9
    1. Rosenfeld M., Cunningham S., Harris W. T., Lapey A., Regelmann W. E., Sawicki G. S., et al. (2019). An open-label extension study of ivacaftor in children with CF and a CFTR gating mutation initiating treatment at age 2-5 years (KLIMB). J. Cyst. Fibros. 18 (6), 838–843. 10.1016/j.jcf.2019.03.009
    1. Rowe S. M., Miller S., Sorscher E. J. (2005). Cystic fibrosis. N. Eng. J. Med. 352 (19), 1992–2001. 10.1056/NEJMra043184
    1. Rowe S. M., Sloane P., Tang L. P., Backer K., Mazur M., Buckley-Lanier J., et al. (2011). Suppression of CFTR premature termination codons and rescue of CFTR protein and function by the synthetic aminoglycoside NB54. J. Mol. Med. (Berl.) 89 (11), 1149–1161. 10.1007/s00109-011-0787-6
    1. Rowe S. M., Heltshe S. L., Gonska T., Donaldson S. H., Borowitz D., Gelfond D., et al. (2014). Clinical mechanism of cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am. J. Respir. Crit. Care Med. 190 (2), 175–184. 10.1164/rccm.201404-0703OC
    1. Rowe S. M., Daines C., Ringshausen F. C., Kerem E., Tullis E., Nair N., et al. (2017. a). Tezacaftor-Ivacaftor in residual-function heterozygotes with cystic fibrosis. N. Eng. J. Med. 377 (21), 2024–2034. 10.1056/NEJMoa1709847
    1. Rowe S. M., McColley S. A., Rietschel E., Li X., Bell S. C., Konstan M. W., et al. (2017. b). Lumacaftor/Ivacaftor treatment of patients with cystic fibrosis heterozygous for F508del-CFTR. Ann. Am. Thorac. Soc 14 (2), 213–219. 10.1513/AnnalsATS.201609-689OC
    1. Rubenstein R. C., Egan M. E., Zeitlin P. L. (1997). In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR. J. Clin. Invest. 100 (10), 2457–2465. 10.1172/JCI119788
    1. Ruffin M., Roussel L., Maillé É., Rousseau S., Bronchiero E. (2018). VX-809/VX-770 treatment reduces inflammatory response to Pseudomonas aeruginosa inprimary differentiated cystic fiborisis bronchial epithelial cells. Am. J. Phyiol. Lun Cell. Mol. Physiol. 314 (4), L635–L641. 10.1152/ajplung.00198.2017
    1. Sabirzhanova I., Lopes-Pacheco M., Rapino D., Grover R., Handa J. T., Guggino W. B., et al. (2015). Rescuing trafficking mutants of the ATP-binding cassette protein, ABCA4, with small molecule correctors as a treatment for Stargardt eye disease. J. Biol. Chem. 290 (32), 19743–19755. 10.1074/jbc.M115.647685
    1. Saint-Criq V., Gray M. A. (2017). Role of CFTR in epithelial physiology. Cell. Mol. Life Sci. 74 (1), 93–115. 10.1007/s00018-016-2391-y
    1. Sampson H. M., Robert R., Liao J., Matthes E., Carlile G. W., Hanrahan J. W., et al. (2011). Identification of a NBD1-binding pharmacological chaperone that corrects the trafficking defect of F508del-CFTR. Chem. Biol. 18 (2), 231–242. 10.1016/j.chembiol.2010.11.016
    1. Sawicki G. S., Ren C. L., Konstan M. W., Millar S. J., Pasta D. J., Quittner A. L., et al. (2013). Treatment complexity in cystic fibrosis: trends over time and associations with site-specific outcomes. J. Cyst. Fibros. 12 (5), 461–467. 10.1016/j.jcf.2012.12.009
    1. Sawicki G. S., McKone E. F., Pasta D. J., Millar S. J., Wagener J. S., Johnson C. A., et al. (2015). Sustained benefit from ivacaftor demonstrated by combining clinical trial and cystic fibrosis patient registry data. Am. J. Respir. Crit. Care Med. 192, 836–842. 10.1164/rccm.201503-0578OC
    1. Scanio M. J. C., Searle X. B., Liu B., Koenig J. R., Altenbach R., Gfesser G. A., et al. (2019). Discovery of ABBV-GLPG-3221, a potent corrector of CFTR for the treatment of cystic fibrosis. ACS Med. Chem. Lett. 10 (11), 1543–1548. 10.1021/acsmedchemlett.9b00377
    1. Scheneider E. K. (2018). Cytochrome P450 3A4 induction: lumacaftor versus ivacaftor potentially resulting in significantly reduced plasma concentration of ivacaftor. Drug Metab. Lett. 12 (1), 71–74. 10.2174/1872312812666180328105259
    1. Schlander M., Garattini S., Holm S., Kolominsky-Rabas P., Nord E., Persson U., et al. (2014). Incremental cost per quality-adjuested life year gained? The need for alternative methods to evaluate medical interventions for ultra-rare disorders. J. Comp. Eff. Res. 3 (4), 399–422. 10.2217/cer.14.34
    1. Sergeev V., Chou F. Y., Lam G. Y., Hamilton C. M., Wilcox P. G., Quon B. S. (2019). The extra-pulmonary effects of CFTR modulators in cystic fibrosis. Ann. Am. Thorac. Soc. 10.1513/AnnalsATS.201909-671CME
    1. Sermet-Gaudelus I., Renouil M., Fajac A., Bidou L., Parbaille B., Pierrot S., et al. (2007). In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: a pilot study. BMC Med. 5, 5. 10.1186/1741-7015-5-5
    1. Sermet-Gaudelus I., Boeck K. D., Casimir G. J., Bermeulen F., Leal T., Mogenet A., et al. (2010). Ataluren (PTC124) induced cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am. J. Respir. Crit. Care Med. 182 (10), 1262–1272. 10.1164/rccm.201001-0137OC
    1. Sermet-Gaudelus I., Delion M., Durieu I., Jacquot J., Hubert D. (2016). Bone demineralization is improved by ivacaftor in patients with cystic fibrosis carrying the p.Gly551Asp mutation. J. Cyst. Fibros. 15 (6), e67–e69. 10.1016/j.jcf.2016.09.003
    1. Sermet-Gaudelus I., Clancy J. P., Nichols D. P., Nick J. A., De Boeck K., Solomon G. M., et al. (2019). Antisense oligonucleotide eluforsen improves CFTR function in F508del cystic fibrosis. J. Cyst. Fibros. 18 (4), 536–542. 10.1016/j.jcf.2018.10.015
    1. Shakkottai A., Kidwell K. M., Townsend M., Nasr S. Z. (2014). A five-year retrospective analysis of adherence in cystic fibrosis. Pediatr. Pulmonol. 50 (12), 1224–1229. 10.1002/ppul.23307
    1. Sharma M., Pampinella F., Nemes C., Benharouga M., So J., Du K., et al. (2004). Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J. Cell Biol. 164 (6), 923–933. 10.1083/jcb.200312018
    1. Sharma D., Xing S., Hung Y. T., Caskey R. N., Dowell M. L., Touchette D. R. (2018). Cost-effectiveness analysis of lumacaftor and ivacaftor combination for the treatment of patients with cystic fibrosis in the United States. Orphanet. J. Rare Dis. 13 (1), 172. 10.1186/s13023-018-0914-3
    1. Sharma N., Evans T. A., Pellicore M. J., Davis E., Aksit M. A., McCague A. F., et al. (2018). Capitalizing on the heterogeneous effects of CFTR nonsense and frameshift variants to inform therapeutic strategy for cystic fibrosis. PloS Genet. 14 (11), e1007723. 10.1371/journal.pgen.1007723
    1. Simpson J. C., Joggerst B., Laketa V., Verissimo F., Cetin C., Erfle H., et al. (2012). Genome-wide RNAi screening identified human proteins with a regulatory function in the early secretory pathway. Nat. Cell. Biol. 14 (7), 764–774. 10.1038/ncb2510
    1. Singh A. K., Fan Y., Balut C., Alani S., Manelli A., Swensen A. M., et al. (2019). Biological characterization of F508delCFTR protein processing by the CFTR corrector ABBV-2222/GLPG2222. J. Pharmacol. Exp. Ther. 372 (1), 107–118. 10.1124/jpet.119.261800
    1. Siracusa C. M., Ryan J., Burns L., Wang Y., Zhang N., Clancy J. P., et al. (2015). Eletronic monitoring reveals highly variable adherence patterns in patients prescribed ivacaftor. J. Cyst. Fibros. 14 (5), 621–626. 10.1016/j.jcf.2015.05.009
    1. Solem C. T., Vera-Llonch M., Liu S., Botteman M., Castiglione B. (2016). Impact of pulmonary exacerbations and lung function on generic health-related quality of life in patients with cystic fibrosis. Health Qual. Life Outcomes 14, 63. 10.1186/s12955-016-0465-z
    1. Sondo E., Caci E., Galietta L. J. (2014). The TMEM16A chloride channel as an alternative therapeutic target in cystic fibrosis. Int. J. Biochem. Cell Biol. 52, 73–76. 10.1016/j.biocel.2014.03.022
    1. Sondo E., Falchi F., Caci E., Ferrera L., Giacomini E., Pesce E., et al. (2018). Pharmacological inhibition of the ubiquitin ligase RNF5 rescues F508del-CFTR in cystic fibrosis airway epithelia. Cell Chem. Biol. 25 (7), 891–905. 10.1016/j.chembiol.2018.04.010
    1. Stallings V. A., Sainath N., Oberle M., Bertolaso C., Schall J. I. (2018). Energy balance and mechanisms of weight gating with ivacaftor treatment of cystic fibrosis gating mutations. J. Pediatr. 201, 229–237.e4. 10.1016/j.jpeds.2018.05.018
    1. Stanton B. A., Coutermarsh B., Bsrnaby R., Hogan D. (2015). Pseudomonas aeruginosa reduced VX-809 stimulates F508del-CFTR chloride secretion by airway epithelial cells. PloS One 10 (5), e0127742. 10.1371/journal.pone.0127742
    1. Stephenson A. L., Sykes J., Stanojevic S., Quon B. S., Marshall B. C., Petren K., et al. (2017). Survival comparison of patients with cystic fibrosis in Canada and the United States: a population-based cohort study. Ann. Intern. Med. 166 (8), 537–546. 10.7326/M16-0858
    1. Strauss D. G., Blinova K. (2017). Clinical trials in a dish. Trends Pharmacol. Sci. 38 (1), 4–7. 10.1016/j.tips.2016.10.009
    1. Strug L. J., Gonska T., He G., Keenan K., Ip W., Boëlle P. Y., et al. (2016). Cystic fibrosis gene modifier SLC26A9 modulates airway response to CFTR-directed therapeutics. Hum. Mol. Genet. 25 (50), 2590–4600. 10.1093/hmg/ddw290
    1. Sun X., Yi Y., Yan Z., Rosen B. H., Liang B., Winter M. C., et al. (2019). In utero and postnatal VX-770 administration rescues multiorgan disease in a ferret model of cystic fibrosis. Sci. Transl. Med. 11 (485), eaau7531. 10.1126/scitranslmed.aau7531
    1. Suthoff E. D., Bonafede M., Limone B., O'Callaghan L., Sawicki G. S., Wagener J. S. (2016). Healthcare resource utilization associated with ivacaftor use in patients with cystic fibrosis. J. Med. Econ. 19 (9), 845–851. 10.1080/13696998.2016.1178125
    1. Swiatecka-Urban A., Brown A., Moreau-Marquis S., Renuka J., Coutermarsh B., Barnaby R., et al. (2005). The short apical membrane half-life of rescue {Delta}F508-cystic fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis of {Delta}F508-CFTR in polarized human airway epithelial cells. J. Biol. Chem. 280, 36762–36772. 10.1074/jbc.M508944200
    1. Taylor-Cousar J. L., Munck A., McKone E. F., van der Ent C. K., Moeller A., Simard C., et al. (2017). Tezacaftor-Ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N. Eng. J. Med. 377 (21), 2013–2023. 10.1056/NEJMoa1709846
    1. Taylor-Cousar J. L., Jain M., Barto T. L., Haddad T., Atkinson J., Tian S., et al. (2018). Lumacaftor/ivacaftor in patients with cystic fibrosis and advanced lung disease homozygous for F508del-CFTR. J. Cyst. Fibros. 17 (2), 228–235. 10.1016/j.jcf.2017.09.012
    1. Taylor-Cousar J. L., Mall M. A., Ramsey B. W., McKone E. F., Tullis E., Marigowda G., et al. (2019). Clinical development of triple-combination CFTR modulators for cystic fibrosis patients with one or two F508del alleles. ERJ Open Res. 5 (2), 00082–02019. 10.1183/23120541.00082-2019
    1. Tomati V., Sondo E., Armirotti A., Caci E., Pesce E., Marini M., et al. (2015). Genetic inhibition of the ubiquitin ligase Rnf5 attenuates phenotypes associated to F508del cystic fibrosis mutation. Sci. Rep. 5L, 12138. 10.1038/srep12138
    1. Tomati V., Pesce E., Caci E., Sondo E., Scudieri P., Marini M., et al. (2018. a). High-throughput screening identifies FAU protein as a regulator of mutant cystic fibrosis transmembrane conductance regulator channel. J. Biol. Chem. 293 (4), 1203–1217. 10.1074/jbc.M117.816595
    1. Tomati V., Caci E., Ferrera L., Pesce E., Sondo E., Cholon D. M., et al. (2018. b). Thymosin α-1 does not correct F508del-CFTR in cystic fibrosis airway epithelia. JCI Insight 3 (3), e98699. 10.1172/jci.insight.98699
    1. Tosco A., De Gregorio F., Esposito S., De Stefano D., Sana I., Ferrari E., et al. (2016). A novel treatment of cystic fibrosis acting on-target: cysteamine plus epigallocatechin gallate for autophagy-dependent recue of class II-mutated CFTR. Cell Death Differ. 23 (8), 1380–1393. 10.1038/cdd.2016.22
    1. Trimble A. T., Donaldson S. H. (2018). Ivacaftor withdrawal syndrome in cystic fibrosis patients with the G551D mutation. J. Cyst. Fibros. 17 (2), e13–e16. 10.1016/j.jcf.2017.09.006
    1. Tsabari R., Elyashar H. I., Cymberknowh M. C., Breuer O., Armoni S., Livnat F., et al. (2016). CFTR potentiator therapy ameliorates impaired insulin secretion in CF patients with a gating mutation. J. Cystic Fibros. 15 (3), e25–e27. 10.1016/j.jcf.2015.10.012
    1. Van der Plas S. E., Kelgtermans H., De Munck T., Martina S. L. X., Dropsit D., Quinton E., et al. (2018). Discovery of N-(3-Carbamoyl-5,5,7,7-tetramethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-2-yl)-lH-pyrazole-5-carboxamide. J. Med. Chem. 61 (4), 1425–1435. 10.1021/acs.jmedchem.7b01288
    1. Van Goor F., Straley K. S., Cao D., González J., Hadida S., Hazlewood A., et al. (2006). Rescue of deltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am. J. Physiol. Lung Cell. Mol. Physiol. 290 (6), L1117–L1130. 10.1152/ajplung.00169.2005
    1. Van Goor F., Hadida S., Gootenhuis P. D., Burton B., Cao D., Neuberger T., et al. (2009). Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl. Acad. Sci. U. S. A. 106 (44), 18825–18830. 10.1073/pnas.0904709106
    1. Van Goor F., Hadida S., Gootenhuis P. D., Burton B., Stack J. H., Straley K. S., et al. (2011). Correction of the F508del-CFTR protein processing defect in vitro by investigational drug VX-809. Proc. Natl. Acad. Sci. U. S. A. 108 (46), 18843–18848. 10.1073/pnas.1105787108
    1. Van Koningsbruggen-Rietschel S., Conrath K., Fischer R., Sutharsan S., Kempa A., Gleiber W., et al. (2019). GLPG2737 in lumacaftor/ivacaftor-treated CF subjects homozygous for the F508del mutation: A randomized phase 2A trial (PELICAN). J. Cyst. Fibros. 10.1016/j.jcf.2019.09.006
    1. Veit G., Avramescu R. G., Perdomo D., Phuan P. W., Bagdany M., Apaja P. M., et al. (2014). Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression. Sci. Transl. Med. 6 (246), 246ra97. 10.1126/scitranslmed.3008889
    1. Veit G., Avramescu R. G., Chiang A. N., Houck S. A., Cai Z., Peters K. W., et al. (2016. a). From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol. Biol. Cell. 27 (3), 424–433. 10.1091/mbc.e14-04-0935
    1. Veit G., Oliver K., Apaja P. M., Perdomo D., Bidaud-Meynard A., Lin S. T., et al. (2016. b). Ribosomal stalk protein silencing partially corrects the ΔF508del-CFTR function expression defect. PLoS. Biol. 14 (5), e1002462. 10.1371/journal.pbio.1002462
    1. Veit G., Xu H., Dreano E., Avramescu R. G., Bagdany N., Beitel L. K., et al. (2018). Structure-guided combination therapy to potently improve the function of mutant CFTRs. Nat. Med. 24 (11), 1732–1742. 10.1038/s41591-018-0200-x
    1. Veit G., da Fonte D. F., Avramescu R. G., Premchandar A., Bagdany M., Xu H., et al. (2019). Mutation-specific dual potentiators maximize rescue of CFTR gating mutants. J. Cyst. Fibros. 10.1016/j.jcf.2019.10.011
    1. Volkava N., Moy K., Evans J., Campbell D., Tian S., Simard C., et al. (2019). Disease progression in patients with cystic fibrosis treated with ivacaftor: Data from national US and UK registries. J. Cyst. Fibros. 10.1016/j.jcf.2019.05.015
    1. Wainwright C. E., Elborn J. S., Ramsey B. W., Marigowda G., Huang X., Cipolli M., et al. (2015). Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for phe508del CFTR. N. Engl. J. Med. 373 (3), 220–231. 10.1056/NEJMoa1409547
    1. Walker S., Glume P., McNamara J., Solomon M., Chilvers M., Chmiel J., et al. (2019). A phase 3 study of tezacaftor in combination with ivacaftor in children aged 6 through 11 years with cystic fibrosis. J. Cyst. Fibros. 18 (5), 708–713. 10.1016/j.jcf.2019.06.009
    1. Wang X., Venable J., LaPointe P., Hutt D. M., Koulov A. V., Coppinger J., et al. (2006). Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127 (4), 803–815. 10.1016/j.cell.2006.09.043
    1. Wang X., Liu B., Searle X., Yeung C., Bogdan A., Greszler S., et al. (2018). Discovery of 4-[(2R,4R)-4-({[1-(2,2-Difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)-7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic Acid (ABBV/GLPG-2222), a potent cystic fibrosis transmembrane conductance regulator (CFTR) corrector for the treatment of cystic fibrosis. J. Med. Chem. 61 (4), 1436–1449. 10.1021/acs.jmedchem.7b01339
    1. Welch E. M., Barton E. R., Zhuo J., Tomizawa Y., Friesen W. J., Trifillis. P., et al. (2007). PTC124 targets genetic disorders caused by nonsense mutations. Nature 447 (7140), 87–91. 10.1038/nature05756
    1. Welsh M. J., Smith A. E. (1993). Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73 (7), 1251–1254. 10.1038/nature05756
    1. Whiting P., Al M., Burgers L., Weswood M., Ryder S., Hoogendoorn M., et al. (2014). Ivacaftor for the treatment of patients with cystic fibrosis and the G551D mutation: a systematic review and cost-effectiveness analysis. Health Technol. Assess. 18 (18), 1–106. 10.3310/hta18180
    1. Wilschanski M., Zielenski J., Markiewicz D., Tsui L. C., Corey M., Levison H., et al. (1995). Correlation of sweat chloride concentration with classes of cystic fibrosis transmembrane conductance regulator gene mutations. J. Pediatr. 127 (5), 705–710. 10.1016/S0022-3476(95)70157-5
    1. Wilschanski M., Yahav Y., Yaacov Y., Blau H., Bentur L., Rivlin J., et al. (2003). Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N. Eng. J. Med. 349 (15), 1433–1441. 10.1056/NEJMoa022170
    1. Wilschanski M., Miller L. L., Shoseyov D., Blau H., Rivlin J., Aviram M., et al. (2011). Chronic ataluren (PTC124) treatment of nonsense mutation cystic fibrosis. Eur. Respir. J. 38 (1), 59–69. 10.1183/09031936.00120910
    1. Xue X., Mutyam V., Tang L., Biswas S., Du M., Jackson L. A., et al. (2014). Synthetic aminoglycosides efficiently suppress cystic fibrosis transmembrane conductance regulator nonsense mutations and are enhanced by ivacaftor. Am. J. Respir. Cell. Mol. Biol. 50 (4), 805–816. 10.1165/rcmb.2013-0282OC
    1. Xue X., Mutyam V., Thakerar A., Mobley J., Bridges R. J., Rowe S. M., et al. (2017). Identification of the amino acids inserted during suppression of CFTR nonsense mutations and determination of their functional consequences. Hum. Mol. Genet. 26 (16), 3116–3129. 10.1093/hmg/ddx196
    1. Yeh H. I., Sohma Y., Conrath K., Hwang T. C. (2017). A common mechanism for CFTR potentiators. J. Gen. Physiol. 149 (12), 1105–1118. 10.1085/jgp.201711886
    1. Yeh H. I., Qui L., Sohma Y., Conrath K., Zou X., Hwang T. C. (2019). Identifying the molecular target sites for CFTR potentiators GLPG1837 and VX-770. J. Gen. Physiol. 151 (7), 912–928. 10.1085/jgp.201912360
    1. Yu H., Burton B., Huang C. J., Worley J., Cao D., Johnson J. P., Jr., et al. (2012). Ivacaftor potentiation of multiple CFTR channels with gating mutations. J. Cyst. Fibros. 11 (3), 237–245. 10.1016/j.jcf.2011.12.005
    1. Zaman K., Sawczak V., Zaidi A., Butler M., Bennett D., Getsy P., et al. (2016). Augmentation of CFTR maturation by S-nitroglutathione reductase. Am. J. Physiol. Lung Cell. Mol. Physiol. 310 (3), L263–L270. 10.1152/ajplung.00269.2014
    1. Zampoli M., Zar H., Morrow B., The South African Cystic Fibrosis Registry Steering Committee (2019). The South African Cystic Fibrosis Registry Initiative (SACFRI): Implementation challenges and initial data. Abstracts of the joint ALLSA, SATS and CWIG Congress in Petroria, July 2019. Afr. J. Thoracic Crit. Care Med. 25 (2), 675. Available at: (accessed Nov 09th, 2019).
    1. Zeitlin P. L., Diener-West M., Rubenstein R. C., Boyle M. P., Lee C. K., Brass-Ernst L. (2002). Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate. Mol. Ther. 6 (1), 119–124. 10.1006/mthe.2002.0639
    1. Zhang L., Button B., Gabriel S. E., Burkett S., Yan Y., Skiadopoulos M. H., et al. (2009). CFTR delivery to 25% of surface epithelial cells restores normal rates of mucus transport to human cystic fibrosis airway epithelium. PloS Biol. 7 (7), e1000155. 10.1371/journal.pbio.1000155
    1. Zhang Z., Liu F., Chen J. (2017). Conformation changes of CFTR upon phosphorylation and ATP binding. Cell 170 (3), 483–491. 10.1016/j.cell.2017.06.041
    1. Zhang Z., Liu F., Chen J. (2018). Molecular structure of the ATP-bound, phosphorylated human CFTR. Proc. Natl. Acad. Sci. U. S. A. 115 (50), 12757–12762. 10.1073/pnas.1815287115
    1. Zhuo Z., Wang X., Li M., Sohma Y., Zou X., Hwang T. C. (2005). High affinity ATP/ADP analogues as new tools for studying CFTR gating. J. Physiol. 569 (Pt 2), 447–457. 10.1113/jphysiol.2005.095083
    1. Ziaian T., Sawyer M. G., Reynolds K. E., Carbone J. A., Clark J. J., Baghurst P. A., et al. (2006). Treatment burden and health-related quality of life of children with diabetes, cystic fibrosis and asthma. J. Paediatr. Child. Health 42 (10), 596–600. 10.1111/j.1440-1754.2006.00943.x

Source: PubMed

3
Subscribe