The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis

Bruno Bonaz, Thomas Bazin, Sonia Pellissier, Bruno Bonaz, Thomas Bazin, Sonia Pellissier

Abstract

The microbiota, the gut, and the brain communicate through the microbiota-gut-brain axis in a bidirectional way that involves the autonomic nervous system. The vagus nerve (VN), the principal component of the parasympathetic nervous system, is a mixed nerve composed of 80% afferent and 20% efferent fibers. The VN, because of its role in interoceptive awareness, is able to sense the microbiota metabolites through its afferents, to transfer this gut information to the central nervous system where it is integrated in the central autonomic network, and then to generate an adapted or inappropriate response. A cholinergic anti-inflammatory pathway has been described through VN's fibers, which is able to dampen peripheral inflammation and to decrease intestinal permeability, thus very probably modulating microbiota composition. Stress inhibits the VN and has deleterious effects on the gastrointestinal tract and on the microbiota, and is involved in the pathophysiology of gastrointestinal disorders such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) which are both characterized by a dysbiosis. A low vagal tone has been described in IBD and IBS patients thus favoring peripheral inflammation. Targeting the VN, for example through VN stimulation which has anti-inflammatory properties, would be of interest to restore homeostasis in the microbiota-gut-brain axis.

Keywords: cholinergic anti-inflammatory pathway; microbiota-gut-brain axis; stress; vagus nerve; vagus nerve stimulation.

Figures

Figure 1
Figure 1
Communication between the central nervous system and the microbiota through the vagus nerve (VN). VN afferent fibers can be stimulated by microbiota components either directly or indirectly via gut endocrine cells (GEC). VN afferent fibers exert stimuli on the central nervous system via the central autonomic network (CAN). VN afferent fibers are able to stimulate efferent fibers through the inflammatory reflex. VN efferent fibers can reduce digestive inflammation and reduce intestinal permeability by tight junction reinforcement. These actions of vagal efferent fibers can indirectly modulate microbiota composition. Alongside with brain-VN-microbiota axis exists bi-directional communication by various ways.
Figure 2
Figure 2
Vagal terminal afferent endings. Antral gland afferent endings begin to divide at the level of the muscularis mucosae, and surrond gastric antral glands creating arbors. Villus afferent endings divide at the basal pole of the crypts, and ramify repeatedly at the apical half of the villus. Crypt afferent endings divide at the basal pole of the crypts, and collaterals encircle multiple time the crypts or the intestinal glands.

References

    1. Abreu M. T., Fukata M., Arditi M. (2005). TLR signaling in the gut in health and disease. J. Immunol. 174, 4453–4460. 10.4049/jimmunol.174.8.4453
    1. Agostoni E., Chinnock J. E., De Daly M. B., Murray J. G. (1957). Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J. Physiol. 135, 182–205. 10.1113/jphysiol.1957.sp005703
    1. Barbara G., Cremon C., Stanghellini V. (2014). Inflammatory bowel disease and irritable bowel syndrome: similarities and differences. Curr. Opin. Gastroenterol. 30, 352–358. 10.1097/MOG.0000000000000070
    1. Bellono N. W., Bayrer J. R., Leitch D. B., Castro J., Zhang C., O'Donnell T. A., et al. . (2017). Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198.e16. 10.1016/j.cell.2017.05.034
    1. Benarroch E. E. (1993). The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin. Proc. 68, 988–1001. 10.1016/S0025-6196(12)62272-1
    1. Ben-Menachem E. (2001). Vagus nerve stimulation, side effects, and long-term safety. J. Clin. Neurophysiol. 18, 415–418. 10.1097/00004691-200109000-00005
    1. Bercik P., Park A. J., Sinclair D., Khoshdel A., Lu J., Huang X., et al. . (2011). The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23, 1132–1139. 10.1111/j.1365-2982.2011.01796.x
    1. Blackshaw L. A., Grundy D. (1993a). Effects of 5-hydroxytryptamine (5-HT) on the discharge of vagal mechanoreceptors and motility in the upper gastrointestinal tract of the ferret. J. Auton. Nerv. Syst. 45, 51–59. 10.1016/0165-1838(93)90361-W
    1. Blackshaw L. A., Grundy D. (1993b). Effects of 5-hydroxytryptamine on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret. J. Auton. Nerv. Syst. 45, 41–50. 10.1016/0165-1838(93)90360-7
    1. Bogunovic M., Davé S. H., Tilstra J. S., Chang D. T., Harpaz N., Xiong H., et al. . (2007). Enteroendocrine cells express functional toll-like receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1770–G1783. 10.1152/ajpgi.00249.2006
    1. Bonaz B. (2013). Inflammatory bowel diseases: a dysfunction of brain-gut interactions? Minerva Gastroenterol. Dietol. 59, 241–259.
    1. Bonaz B. L., Bernstein C. N. (2013). Brain-gut interactions in inflammatory bowel disease. Gastroenterology 144, 36–49. 10.1053/j.gastro.2012.10.003
    1. Bonaz B., De Giorgio R., Taché Y. (1993a). Peripheral bombesin induces c-fos protein in the rat brain. Brain Res. 600, 353–357. 10.1016/0006-8993(93)91397-B
    1. Bonaz B., Picq C., Sinniger V., Mayol J. F., Clarençon D. (2013). Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol. Motil. 25, 208–221. 10.1111/nmo.12076
    1. Bonaz B., Sinniger V., Pellissier S. (2016a). Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J. Physiol. 594, 5781–5790. 10.1113/JP271539
    1. Bonaz B., Sinniger V., Pellissier S. (2016b). Vagal tone: effects on sensitivity, motility, and inflammation. Neurogastroenterol. Motil. 28, 455–462. 10.1111/nmo.12817
    1. Bonaz B., Sinniger V., Pellissier S. (2017). Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J. Intern. Med. 282, 46–63. 10.1111/joim.12611
    1. Bonaz B., Taylor I., Taché Y. (1993b). Peripheral peptide YY induces c-fos-like immunoreactivity in the rat brain. Neurosci. Lett. 163, 77–80. 10.1016/0304-3940(93)90233-B
    1. Borovikova L. V., Ivanova S., Nardi D., Zhang M., Yang H., Ombrellino M., et al. . (2000a). Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton. Neurosci. 85, 141–147. 10.1016/S1566-0702(00)00233-2
    1. Borovikova L. V., Ivanova S., Zhang M., Yang H., Botchkina G. I., Watkins L. R., et al. . (2000b). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462. 10.1038/35013070
    1. Bravo J. A., Forsythe P., Chew M. V., Escaravage E., Savignac H. M., Dinan T. G., et al. . (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U.S.A. 108, 16050–16055. 10.1073/pnas.1102999108
    1. Brookes S. J., Spencer N. J., Costa M., Zagorodnyuk V. P. (2013). Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol. 10, 286–296. 10.1038/nrgastro.2013.29
    1. Cenit M. C., Sanz Y., Codoñer-Franch P. (2017). Influence of gut microbiota on neuropsychiatric disorders. World J. Gastroenterol. 23, 5486–5498. 10.3748/wjg.v23.i30.5486
    1. Cheadle G. A., Costantini T. W., Bansal V., Eliceiri B. P., Coimbra R. (2014). Cholinergic signaling in the gut: a novel mechanism of barrier protection through activation of enteric glia cells. Surg. Infect. 15, 387–393. 10.1089/sur.2013.103
    1. Costantini T. W., Bansal V., Peterson C. Y., Loomis W. H., Putnam J. G., Rankin F., et al. . (2010). Efferent vagal nerve stimulation attenuates gut barrier injury after burn: modulation of intestinal occludin expression. J. Trauma 68, 1349–1354; discussion 1354–1356. 10.1097/TA.0b013e3181dccea0
    1. Costantini T. W., Krzyzaniak M., Cheadle G. A., Putnam J. G., Hageny A. M., Lopez N., et al. . (2012). Targeting alpha-7 nicotinic acetylcholine receptor in the enteric nervous system: a cholinergic agonist prevents gut barrier failure after severe burn injury. Am. J. Pathol. 181, 478–486. 10.1016/j.ajpath.2012.04.005
    1. Cryan J. F., Dinan T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712. 10.1038/nrn3346
    1. de Haan J. J., Thuijls G., Lubbers T., Hadfoune M., Reisinger K., Heineman E., et al. . (2010). Protection against early intestinal compromise by lipid-rich enteral nutrition through cholecystokinin receptors. Crit. Care Med. 38, 1592–1597. 10.1097/CCM.0b013e3181e2cd4d
    1. de Souza H. S. P., Fiocchi C., Iliopoulos D. (2017). The IBD interactome: an integrated view of aetiology, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol. 14, 739–749. 10.1038/nrgastro.2017.110
    1. Delmas J., Laux G. (1933). Anatomie Médico-Chirurgicale du Système Nerveux Végétatif: (Sympathique and Parasympathique), Paris: Masson.
    1. Du M. H., Luo H. M., Hu S., Lv Y., Lin Z. L., Ma L. (2013). Electroacupuncture improves gut barrier dysfunction in prolonged hemorrhagic shock rats through vagus anti-inflammatory mechanism. World J. Gastroenterol. 19, 5988–5999. 10.3748/wjg.v19.i36.5988
    1. Ducarouge B., Pelissier-Rota M., Powell R., Buisson A., Bonaz B., Jacquier-Sarlin M. (2017). Involvement of CRF2 signaling in enterocyte differentiation. World J. Gastroenterol. 23, 5127–5145. 10.3748/wjg.v23.i28.5127
    1. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., et al. . (2005). Diversity of the human intestinal microbial flora. Science 308, 1635–1638. 10.1126/science.1110591
    1. Eisenstein M. (2016). Microbiome: bacterial broadband. Nature 533, S104–S106. 10.1038/533S104a
    1. Forsythe P., Kunze W., Bienenstock J. (2016). Moody microbes or fecal phrenology: what do we know about the microbiota-gut-brain axis? BMC Med. 14:58. 10.1186/s12916-016-0604-8
    1. Gaykema R. P., Goehler L. E., Lyte M. (2004). Brain response to cecal infection with Campylobacter jejuni: analysis with Fos immunohistochemistry. Brain Behav. Immun. 18, 238–245. 10.1016/j.bbi.2003.08.002
    1. Goehler L. E., Gaykema R. P., Nguyen K. T., Lee J. E., Tilders F. J., Maier S. F., et al. . (1999). Interleukin-1beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J. Neurosci. 19, 2799–2806.
    1. Goehler L. E., Gaykema R. P., Opitz N., Reddaway R., Badr N., Lyte M. (2005). Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav. Immun. 19, 334–344. 10.1016/j.bbi.2004.09.002
    1. Goehler L. E., Park S. M., Opitz N., Lyte M., Gaykema R. P. (2008). Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav. Immun. 22, 354–366. 10.1016/j.bbi.2007.08.009
    1. Gunawardene A. R., Corfe B. M., Staton C. A. (2011). Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int. J. Exp. Pathol. 92, 219–231. 10.1111/j.1365-2613.2011.00767.x
    1. Hosoi T., Okuma Y., Matsuda T., Nomura Y. (2005). Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion. Auton. Neurosci. 120, 104–107. 10.1016/j.autneu.2004.11.012
    1. Hu S., Du M. H., Luo H. M., Wang H., Lv Y., Ma L., et al. . (2013). Electroacupuncture at zusanli (ST36) prevents intestinal barrier and remote organ dysfunction following gut ischemia through activating the cholinergic anti-inflammatory-dependent mechanism. Evid. Based Complement. Alternat. Med. 2013:592127. 10.1155/2013/592127
    1. Karl J. P., Margolis L. M., Madslien E. H., Murphy N. E., Castellani J. W., Gundersen Y., et al. . (2017). Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G559–G571. 10.1152/ajpgi.00066.2017
    1. Kobayashi Y., Sugahara H., Shimada K., Mitsuyama E., Kuhara T., Yasuoka A., et al. . (2017). Therapeutic potential of bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Sci. Rep. 7:13510. 10.1038/s41598-017-13368-2
    1. Konturek P. C., Brzozowski T., Konturek S. J. (2011). Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J. Physiol. Pharmacol. 62, 591–599.
    1. Krzyzaniak M., Peterson C., Loomis W., Hageny A. M., Wolf P., Reys L., et al. . (2011). Postinjury vagal nerve stimulation protects against intestinal epithelial barrier breakdown. J. Trauma 70, 1168–75; discussion 1175–1176. 10.1097/TA.0b013e318216f754
    1. Lal S., Kirkup A. J., Brunsden A. M., Thompson D. G., Grundy D. (2001). Vagal afferent responses to fatty acids of different chain length in the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G907–G915. 10.1152/ajpgi.2001.281.4.G907
    1. Levy G., Fishman J. E., Xu D., Chandler B. T., Feketova E., Dong W., et al. . (2013). Parasympathetic stimulation via the vagus nerve prevents systemic organ dysfunction by abrogating gut injury and lymph toxicity in trauma and hemorrhagic shock. Shock 39, 39–44. 10.1097/SHK.0b013e31827b450d
    1. Li Y., Hao Y., Zhu J., Owyang C. (2000). Serotonin released from intestinal enterochromaffin cells mediates luminal non-cholecystokinin-stimulated pancreatic secretion in rats. Gastroenterology 118, 1197–1207. 10.1016/S0016-5085(00)70373-8
    1. Luyer M. D., Greve J. W., Hadfoune M., Jacobs J. A., Dejong C. H., Buurman W. A. (2005). Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J. Exp. Med. 202, 1023–1029. 10.1084/jem.20042397
    1. Lynch S. V., Pedersen O. (2016). The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379. 10.1056/NEJMra1600266
    1. Lyte M. (2011). Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays 33, 574–581. 10.1002/bies.201100024
    1. Marsland A. L., Walsh C., Lockwood K., John-Henderson N. A. (2017). The effects of acute psychological stress on circulating and stimulated inflammatory markers: a systematic review and meta-analysis. Brain Behav. Immun. 64, 208–219. 10.1016/j.bbi.2017.01.011
    1. Martelli D., Farmer D. G., Yao S. T. (2016). The splanchnic anti-inflammatory pathway: could it be the efferent arm of the inflammatory reflex? Exp. Physiol, 101, 1245–1252. 10.1113/EP085559
    1. Mayer E. A., Tillisch K., Gupta A. (2015). Gut/brain axis and the microbiota. J. Clin. Invest. 125, 926–938. 10.1172/JCI76304
    1. McEwen B. S. (2008). Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur. J. Pharmacol. 583, 174–185. 10.1016/j.ejphar.2007.11.071
    1. Meregnani J., Clarençon D., Vivier M., Peinnequin A., Mouret C., Sinniger V., et al. . (2011). Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton. Neurosci. 160, 82–89. 10.1016/j.autneu.2010.10.007
    1. Moussaoui N., Jacobs J. P., Larauche M., Biraud M., Million M., Mayer E., et al. . (2017). Chronic early-life stress in rat pups alters basal corticosterone, intestinal permeability, and fecal microbiota at weaning: influence of sex. J. Neurogastroenterol. Motil. 23, 135–143. 10.5056/jnm16105
    1. Mulak A., Bonaz B. (2004). Irritable bowel syndrome: a model of the brain-gut interactions. Med. Sci. Monit. 10, RA55–RA62.
    1. Näslund E., Hellström P. M. (2007). Appetite signaling: from gut peptides and enteric nerves to brain. Physiol. Behav. 92, 256–262. 10.1016/j.physbeh.2007.05.017
    1. Netter F. H. (1989). Atlas of Human Anatomy. Ardsley, NY: Ciba-Geigy Corporation.
    1. Notari L., Riera D. C., Sun R., Bohl J. A., McLean L. P., Madden K. B., et al. . (2014). Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection. PLoS ONE 9:e84763. 10.1371/journal.pone.0084763
    1. Olofsson P. S., Katz D. A., Rosas-Ballina M., Levine Y. A., Ochani M., Valdés-Ferrer S. I., et al. . (2012). alpha7 nicotinic acetylcholine receptor (alpha7nAChR) expression in bone marrow-derived non-T cells is required for the inflammatory reflex. Mol. Med. 18, 539–543. 10.2119/molmed.2011.00405
    1. O'Mahony S. M., Marchesi J. R., Scully P., Codling C. A., Ceolho M. E., Quigley E. M., et al. . (2009). Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol. Psychiatry 65, 263–267. 10.1016/j.biopsych.2008.06.026
    1. Oświecimska J., Szymlak A., Roczniak W., Girczys-Połedniok K., Kwiecien J. (2017). New insights into the pathogenesis and treatment of irritable bowel syndrome. Adv. Med. Sci. 62, 17–30. 10.1016/j.advms.2016.11.001
    1. Overman E. L., Rivier J. E., Moeser A. J. (2012). CRF induces intestinal epithelial barrier injury via the release of mast cell proteases and TNF-alpha. PLoS ONE 7:e39935. 10.1371/journal.pone.0039935
    1. Pavlov V. A., Wang H., Czura C. J., Friedman S. G., Tracey K. J. (2003). The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol. Med. 9, 125–134.
    1. Pellissier S., Dantzer C., Canini F., Mathieu N., Bonaz B. (2010). Psychological adjustment and autonomic disturbances in inflammatory bowel diseases and irritable bowel syndrome. Psychoneuroendocrinology 35, 653–662. 10.1016/j.psyneuen.2009.10.004
    1. Pellissier S., Dantzer C., Mondillon L., Trocme C., Gauchez A. S., Ducros V., et al. . (2014). Relationship between vagal tone, cortisol, TNF-alpha, epinephrine and negative affects in Crohn's disease and irritable bowel syndrome. PLoS ONE 9:e105328. 10.1371/journal.pone.0105328
    1. Perez-Burgos A., Wang B., Mao Y. K., Mistry B., McVey Neufeld K. A., Bienenstock J., et al. . (2013). Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G211–G220. 10.1152/ajpgi.00128.2012
    1. Perez-Burgos A., Wang L. K. A., McVey Neufeld M. Y., Ahmadzai M., Janssen L. J., et al. . (2015). The TRPV1 channel in rodents is a major target for antinociceptive effect of the probiotic Lactobacillus reuteri DSM 17938. J. Physiol. 593, 3943–3957. 10.1113/JP270229
    1. Porcelli P. (2004). Psychological abnormalities in patients with irritable bowel syndrome. Ind. J. Gastroenterol. 23, 63–69.
    1. Porges S. W. (1995). Cardiac vagal tone: a physiological index of stress. Neurosci. Biobehav. Rev. 19, 225–233. 10.1016/0149-7634(94)00066-A
    1. Powley T. L., Spaulding R. A., Haglof S. A. (2011). Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture. J. Comp. Neurol. 519, 644–660. 10.1002/cne.22541
    1. Quigley E. M. M. (2017). Microbiota-brain-gut axis and neurodegenerative diseases. Curr. Neurol. Neurosci. Rep. 17:94. 10.1007/s11910-017-0802-6
    1. Rao M., Rastelli D., Dong L., Chiu S., Setlik W., Gershon M. D., et al. (2017). Enteric glia regulate gastrointestinal motility but are not required for maintenance of the epithelium in mice. Gastroenterology 153, 1068–1081.e7. 10.1053/j.gastro.2017.07.002
    1. Raybould H. E. (2010). Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton. Neurosci. 153, 41–46. 10.1016/j.autneu.2009.07.007
    1. Ressler K. J., Mayberg H. S. (2007). Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat. Neurosci. 10, 1116–1124. 10.1038/nn1944
    1. Reyes A., Haynes M., Hanson N., Angly F. E., Heath A. C., Rohwer F., et al. . (2010). Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338. 10.1038/nature09199
    1. Sahar T., Shalev A. Y., Porges S. W. (2001). Vagal modulation of responses to mental challenge in posttraumatic stress disorder. Biol. Psychiatry 49, 637–643. 10.1016/S0006-3223(00)01045-3
    1. Samuel B. S., Shaito A., Motoike T., Rey F. E., Backhed F., Manchester J. K., et al. . (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl. Acad. Sci. U.S.A. 105, 16767–16772. 10.1073/pnas.0808567105
    1. Sarkar A., Lehto S. M., Harty S., Dinan T. G., Cryan J. F., Burnet P. W. (2016). Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 39, 763–781. 10.1016/j.tins.2016.09.002
    1. Schwartz G. J., Plata-Salamán C. R., Langhans W. (1997). Subdiaphragmatic vagal deafferentation fails to block feeding-suppressive effects of LPS and IL-1 beta in rats. Am. J. Physiol. 273(3 Pt 2), R1193–R1198. 10.1152/ajpregu.1997.273.3.R1193
    1. Smith R., Thayer J. F., Khalsa S. S., Lane R. D. (2017). The hierarchical basis of neurovisceral integration. Neurosci. Biobehav. Rev. 75, 274–296. 10.1016/j.neubiorev.2017.02.003
    1. Strader A. D., Woods S. C. (2005). Gastrointestinal hormones and food intake. Gastroenterology 128, 175–191. 10.1053/j.gastro.2004.10.043
    1. Strigo I. A., Craig A. D. (2016). Interoception, homeostatic emotions and sympathovagal balance. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 371:20160010. 10.1098/rstb.2016.0010
    1. Taché Y., Bonaz B. (2007). Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J. Clin. Invest. 117, 33–40. 10.1172/JCI30085
    1. Taché Y., Larauche M., Yuan P. Q., Million M. (2018). Brain and gut CRF signaling: biological actions and role in the gastrointestinal tract. Curr. Mol. Pharmacol. 11, 51–71. 10.2174/1874467210666170224095741
    1. Tanida M., Yamano T., Maeda K., Okumura N., Fukushima Y., Nagai K. (2005). Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neurosci. Lett. 389, 109–114. 10.1016/j.neulet.2005.07.036
    1. Theoharides T. C., Cochrane D. E. (2004). Critical role of mast cells in inflammatory diseases and the effect of acute stress. J. Neuroimmunol. 146, 1–12. 10.1016/j.jneuroim.2003.10.041
    1. Theoharides T. C., Donelan J. M., Papadopoulou N., Cao J., Kempuraj D., Conti P. (2004). Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol. Sci. 25, 563–568. 10.1016/j.tips.2004.09.007
    1. Tse J. K. Y. (2017). Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders. ACS Chem. Neurosci. 8, 1438–1447. 10.1021/acschemneuro.7b00176
    1. van der Kleij H., O'Mahony C., Shanahan F., O'Mahony L., Bienenstock J. (2008). Protective effects of Lactobacillus rhamnosus [corrected] and Bifidobacterium infantis in murine models for colitis do not involve the vagus nerve. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1131–R1137. 10.1152/ajpregu.90434.2008
    1. Van Houten J. M., Wessells R. J., Lujan H. L., DiCarlo S. E. (2015). My gut feeling says rest: increased intestinal permeability contributes to chronic diseases in high-intensity exercisers. Med. Hypotheses 85, 882–886. 10.1016/j.mehy.2015.09.018
    1. Veiga-Fernandes H., Mucida D. (2016). Neuro-immune interactions at barrier surfaces. Cell 165, 801–811. 10.1016/j.cell.2016.04.041
    1. Wang F. B., Powley T. L. (2007). Vagal innervation of intestines: afferent pathways mapped with new en bloc horseradish peroxidase adaptation. Cell Tissue Res. 329, 221–230. 10.1007/s00441-007-0413-7
    1. Wang H., Wang L., Shi X., Qi S., Hu S., Tong Z., et al. . (2015). Electroacupuncture at zusanli prevents severe scalds-induced gut ischemia and paralysis by activating the cholinergic pathway. Evid. Based Complement. Alternat. Med. 2015:787393. 10.1155/2015/787393
    1. Wang H., Yu M., Ochani M., Amella C. A., Tanovic M., Susarla S., et al. . (2003). Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421, 384–388. 10.1038/nature01339
    1. Williams E. K., Chang R. B., Strochlic D. E., Umans B. D., Lowell B. B., Liberles S. D. (2016). Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221. 10.1016/j.cell.2016.05.011
    1. Wood S. K., Woods J. H. (2007). Corticotropin-releasing factor receptor-1: a therapeutic target for cardiac autonomic disturbances. Expert Opin. Ther. Targets 11, 1401–1413. 10.1517/14728222.11.11.1401
    1. Wu T., Rayner C. K., Young R. L., Horowitz M. (2013). Gut motility and enteroendocrine secretion. Curr. Opin. Pharmacol. 13, 928–934. 10.1016/j.coph.2013.09.002
    1. Yu Y. B., Li Y. Q. (2014). Enteric glial cells and their role in the intestinal epithelial barrier. World J. Gastroenterol. 20, 11273–11280. 10.3748/wjg.v20.i32.11273
    1. Yuan P. Q., Taché Y. (2017). Abdominal surgery induced gastric ileus and activation of M1-like macrophages in the gastric myenteric plexus: prevention by central vagal activation in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G320–G329. 10.1152/ajpgi.00121.2017
    1. Zagon A. (2001). Does the vagus nerve mediate the sixth sense? Trends Neurosci. 24, 671–673. 10.1016/S0166-2236(00)01929-9
    1. Zhou H., Liang H., Li Z. F., Xiang H., Liu W., Li J. G. (2013). Vagus nerve stimulation attenuates intestinal epithelial tight junctions disruption in endotoxemic mice through alpha7 nicotinic acetylcholine receptors. Shock 40, 144–151. 10.1097/SHK.0b013e318299e9c0

Source: PubMed

3
Subscribe