Validity and repeatability of cardiopulmonary exercise testing in interstitial lung disease

Owen W Tomlinson, Laura Markham, Rebecca L Wollerton, Bridget A Knight, Anna Duckworth, Michael A Gibbons, Chris J Scotton, Craig A Williams, Owen W Tomlinson, Laura Markham, Rebecca L Wollerton, Bridget A Knight, Anna Duckworth, Michael A Gibbons, Chris J Scotton, Craig A Williams

Abstract

Background: Cardiopulmonary exercise testing (CPET), and its primary outcome of peak oxygen uptake (VO2peak), are acknowledged as biomarkers in the diagnostic and prognostic management of interstitial lung disease (ILD). However, the validity and repeatability of CPET in those with ILD has yet to be fully characterised, and this study fills this evidence gap.

Methods: Twenty-six people with ILD were recruited, and 21 successfully completed three CPETs. Of these, 17 completed two valid CPETs within a 3-month window, and 11 completed two valid CPETs within a 6-month window. Technical standards from the European Respiratory Society established validity, and repeatability was determined using mean change, intraclass correlation coefficient and typical error.

Results: Every participant (100%) who successfully exercised to volitional exhaustion produced a maximal, and therefore valid, CPET. Approximately 20% of participants presented with a plateau in VO2, the primary criteria for establishing a maximal effort. The majority of participants otherwise presented with secondary criteria of respiratory exchange ratios in excess of 1.05, and maximal heart rates in excess of their predicted values. Repeatability analyses identified that the typical error (expressed as percent of coefficient of variation) was 20% over 3-months in those reaching volitional exhaustion.

Conclusion: This work has, for the first time, fully characterised how patients with ILD respond to CPET in terms of primary and secondary verification criteria, and generated novel repeatability data that will prove useful in the assessment of disease progression, and future evaluation of therapeutic regimens where VO2peak is used as an outcome measure.

Keywords: Aerobic fitness; Clinical physiology; Maximal exercise; Pulmonary disease.

Conflict of interest statement

M. A. Gibbons has received support to attend conferences and professional fees from Roche and Boehringer-Ingelheim. Other authors declare no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Example VO2 responses to increasing work-rate during cardiopulmonary exercise tests. A: Deceleration of VO2, producing a plateau (64-year old male with idiopathic pulmonary fibrosis); B: Linear response (70-year old male with idiopathic pulmonary fibrosis); C: Acceleration of VO2 against power (58-year old male with chronic hypersensitive pneumonitis). For all cases, the extrapolated regression line is fitted from 120 s, through to volitional exhaustion. VO2: oxygen uptake
Fig. 2
Fig. 2
Flowchart detailing participant enrolment and successful completion of cardiopulmonary exercise tests within study. CPET: cardiopulmonary exercise test; SpO2: peripheral capillary oxygen saturation
Fig. 3
Fig. 3
Frequency of VO2 profiles, and primary and secondary verification criteria, in each cardiopulmonary exercise test. 1 = All completed CPETs (CPET 1, n = 24; CPET 2, n = 22; CPET 3, n = 21). 2 = CPETs whereby participants reached volitional exhaustion (CPET 1, n = 14; CPET 2, n = 11; CPET 3, n = 17). CPET: cardiopulmonary exercise test; HRmax: maximal heart rate; RER: respiratory exchange ratio; VE/MVV: minute ventilation/maximal voluntary ventilation; VO2: oxygen uptake; VO2peak: peak oxygen uptake; WRpeak: peak work rate
Fig. 4
Fig. 4
Individual changes in absolute VO2peak over 3- and 6-months. A, B: three month changes; C, D: six-month changes. Data is provided for all participants (A, C) and for those only to reach volitional exhaustion (B, D). VO2peak: peak oxygen uptake
Fig. 5
Fig. 5
Bland Altman plots displaying mean bias and limits of agreement for absolute VO2peak obtained from cardiopulmonary exercise tests. A: CPETs performed 3 months apart for n = 17 participants. B: CPETs performed 6 months apart for n = 11 participants. C: CPETs performed 3 months apart for n = 10 participants, who reached volitional exhaustion only. D: CPETs performed 6 months apart for n = 5 participants, who reached volitional exhaustion only. In each instance, difference (y-axis) presents data from CPET 2–CPET 1 (i.e., a value above zero indicates CPET 2 was higher than CPET 1 and therefore an increase in function has occurred). CPET: cardiopulmonary exercise test

References

    1. Wallis A, Spinks K. The diagnosis and management of interstitial lung diseases. BMJ. 2015;350:h2072. doi: 10.1136/bmj.h2072.
    1. Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–1602. doi: 10.1016/S0140-6736(16)31678-6.
    1. Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–1544. doi: 10.1016/S0140-6736(16)31012-1.
    1. Collard HR, King TE, Jr, Bartelson BB, Vourlekis JS, Schwarz MI, Brown KK. Changes in clinical and physiologic variables predict survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2003;168(5):538–542. doi: 10.1164/rccm.200211-1311OC.
    1. Jegal Y, Kim DS, Shim TS, Lim CM, Do Lee S, Koh Y, et al. Physiology is a stronger predictor of survival than pathology in fibrotic interstitial pneumonia. Am J Respir Crit Care Med. 2005;171(6):639–644. doi: 10.1164/rccm.200403-331OC.
    1. Gille T, Laveneziana P. Cardiopulmonary exercise testing in interstitial lung diseases and the value of ventilatory efficiency. Eur Respir Rev. 2021;30(162):200355. doi: 10.1183/16000617.0355-2020.
    1. Fell CD, Liu LX, Motika C, Kazerooni EA, Gross BH, Travis WD, et al. The prognostic value of cardiopulmonary exercise testing in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;179(5):402–407. doi: 10.1164/rccm.200802-241OC.
    1. Triantafillidou C, Manali E, Lyberopoulos P, Kolilekas L, Kagouridis K, Gyftopoulos S, et al. The role of cardiopulmonary exercise test in IPF prognosis. Pulm Med. 2013;2013:514817. doi: 10.1155/2013/514817.
    1. Kawut SM, O’Shea MK, Bartels MN, Wilt JS, Sonett JR, Arcasoy SM. Exercise testing determines survival in patients with diffuse parenchymal lung disease evaluated for lung transplantation. Respir Med. 2005;99(11):1431–1439. doi: 10.1016/j.rmed.2005.03.007.
    1. Vainshelboim B, Oliveira J, Fox BD, Kramer MR. The prognostic role of ventilatory inefficiency and exercise capacity in idiopathic pulmonary fibrosis. Respir Care. 2016;61(8):1100–1109. doi: 10.4187/respcare.04471.
    1. Barratt SL, Davis R, Sharp C, Pauling JD. The prognostic value of cardiopulmonary exercise testing in interstitial lung disease: a systematic review. ERJ Open Res. 2020;6(3):00027-2020. doi: 10.1183/23120541.00027-2020.
    1. Radtke T, Crook S, Kaltsakas G, Louvaris Z, Berton D, Urquhart DS, et al. ERS statement on standardisation of cardiopulmonary exercise testing in chronic lung diseases. Eur Respir Rev. 2019;28(154):180101. doi: 10.1183/16000617.0101-2018.
    1. Bonini M, Fiorenzano G. Exertional dyspnoea in interstitial lung diseases: the clinical utility of cardiopulmonary exercise testing. Eur Respir Rev. 2017;26(143):160099. doi: 10.1183/16000617.0099-2016.
    1. Tomlinson O, Duckworth A, Markham L, Wollerton R, Knight B, Spiers A, et al. Feasibility of cardiopulmonary exercise testing in interstitial lung disease: the PETFIB study. BMJ Open Respir Res. 2021;8(1):e000793. doi: 10.1136/bmjresp-2020-000793.
    1. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–1343. doi: 10.1183/09031936.00080312.
    1. Cotes JE, Chinn DJ, Quanjer PH, Roca J, Yernault JC. Standardization of the measurement of transfer factor (diffusing capacity) Eur Respir J. 1993;6(Suppl 16):41–52. doi: 10.1183/09041950.041s1693.
    1. Ley B, Ryerson CJ, Vittinghoff E, Ryu JH, Tomassetti S, Lee JS, et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann Intern Med. 2012;156(10):684–691. doi: 10.7326/0003-4819-156-10-201205150-00004.
    1. Physical Activity Policy, Health Improvement Directorate. The General Practice Physical Activity Questionnaire (GPPAQ): A screening tool to assess adult physical activity levels, within primary care [Internet]. National Health Service; 2009. Available from:
    1. Barker AR, Williams CA, Jones AM, Armstrong N. Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. Br J Sports Med. 2011;45(6):498–503. doi: 10.1136/bjsm.2009.063180.
    1. Jones NL, Makrides L, Hitchcock C, Chypchar T, McCartney N. Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis. 1985;131(5):700–708.
    1. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020–2027. doi: 10.1152/jappl.1986.60.6.2020.
    1. Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. doi: 10.1249/00005768-198205000-00012.
    1. Hopkins WG. Spreadsheets for analysis of validity and reliability. Sportscience. 2015;19:36–42.
    1. Saynor ZL, Barker AR, Oades PJ, Williams CA. Reproducibility of maximal cardiopulmonary exercise testing for young cystic fibrosis patients. J Cyst Fibros. 2013;12(6):644–650. doi: 10.1016/j.jcf.2013.04.012.
    1. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):307–310. doi: 10.1016/S0140-6736(86)90837-8.
    1. Cohen J. A power primer. Psychol Bull. 1992;112(1):155–159. doi: 10.1037/0033-2909.112.1.155.
    1. American Thoracic Society, American College of Chest Physicians ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77. doi: 10.1164/rccm.167.2.211.
    1. Rossiter HB, Kowalchuk JM, Whipp BJ. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J Appl Physiol. 2006;100(3):764–770. doi: 10.1152/japplphysiol.00932.2005.
    1. Sansum KM, Weston ME, Bond B, Cockcroft EJ, O’Connor A, Tomlinson OW, et al. Validity of the supramaximal test to verify maximal oxygen uptake in children and adolescents. Pediatr Exerc Sci. 2019;31(2):213–222. doi: 10.1123/pes.2018-0129.
    1. Saynor ZL, Barker AR, Oades PJ, Williams CA. A protocol to determine valid VO2max in young cystic fibrosis patients. J Sci Med Sport. 2013;16(6):539–544. doi: 10.1016/j.jsams.2013.01.010.
    1. Causer AJ, Shute JK, Cummings MH, Shepherd AI, Bright V, Connett G, et al. Cardiopulmonary exercise testing with supramaximal verification produces a safe and valid assessment of VO2max in people with cystic fibrosis: a retrospective analysis. J Appl Physiol. 2018;125(4):1277–1283. doi: 10.1152/japplphysiol.00454.2018.
    1. Poole DC, Wilkerson DP, Jones AM. Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur J Appl Physiol. 2008;102(4):403–410. doi: 10.1007/s00421-007-0596-3.
    1. Poole DC, Jones AM. Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. J Appl Physiol. 2017;122(4):997–1002. doi: 10.1152/japplphysiol.01063.2016.
    1. Tomlinson OW, Barker AR, Chubbock LV, Stevens D, Saynor ZL, Oades PJ, et al. Analysis of oxygen uptake efficiency parameters in young people with cystic fibrosis. Eur J Appl Physiol. 2018;118(10):2055–2063. doi: 10.1007/s00421-018-3926-8.
    1. Arena R, Myers J, Hsu L, Peberdy MA, Pinkstaff S, Bensimhon D, et al. The minute ventilation/carbon dioxide production slope is prognostically superior to the oxygen uptake efficiency slope. J Card Fail. 2007;13(6):462–469. doi: 10.1016/j.cardfail.2007.03.004.
    1. Sun XG, Hansen JE, Stringer WW. Oxygen uptake efficiency plateau best predicts early death in heart failure. Chest. 2012;141(5):1284–1294. doi: 10.1378/chest.11-1270.
    1. Barron A, Francis DP, Mayet J, Ewert R, Obst A, Mason M, et al. Oxygen uptake efficiency slope and breathing reserve, not anaerobic threshold, discriminate between patients with cardiovascular disease over chronic obstructive pulmonary disease. JACC Heart Fail. 2016;4(4):252–261. doi: 10.1016/j.jchf.2015.11.003.
    1. Sun XG, Hansen JE, Stringer WW. Oxygen uptake efficiency plateau: physiology and reference values. Eur J Appl Physiol. 2012;112(3):919–928. doi: 10.1007/s00421-011-2030-0.
    1. Stanojevic S, Kaminsky DA, Miller MR, Thompson B, Aliverti A, Barjaktarevic I, et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J. 2022;60(1):2101499. doi: 10.1183/13993003.01499-2021.
    1. Bingisser R, Kaplan V, Scherer T, Russi EW, Bloch KE. Effect of training on repeatability of cardiopulmonary exercise performance in normal men and women. Med Sci Sports Exerc. 1997;29(11):1499–1504. doi: 10.1097/00005768-199711000-00017.
    1. Decato TW, Bradley SM, Wilson EL, Hegewald MJ. Repeatability and meaningful change of CPET parameters in healthy subjects. Med Sci Sports Exerc. 2018;50(3):589–595. doi: 10.1249/MSS.0000000000001474.
    1. McKone EF, Barry SC, FitzGerald MX, Gallagher CG. Reproducibility of maximal exercise ergometer testing in patients with cystic fibrosis. Chest. 1999;116(2):363–368. doi: 10.1378/chest.116.2.363.
    1. Hansen JE, Sun XG, Yasunobu Y, Garafano RP, Gates G, Barst RJ, et al. Reproducibility of cardiopulmonary exercise measurements in patients with pulmonary arterial hypertension. Chest. 2004;126(3):816–824. doi: 10.1378/chest.126.3.816.
    1. Marciniuk DD, Watts RE, Gallagher CG. Reproducibility of incremental maximal cycle ergometer testing in patients with restrictive lung disease. Thorax. 1993;48(9):894–898. doi: 10.1136/thx.48.9.894.
    1. National Institute for Health and Care Excellence. Idiopathic pulmonary fibrosis in adults: diagnosis and management [Internet]. London, UK; 2017. Available from:
    1. Ley B, Collard HR, King TE., Jr Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183(4):431–440. doi: 10.1164/rccm.201006-0894CI.
    1. Ringbaek T, Seersholm N, Viskum K. Standardised mortality rates in females and males with COPD and asthma. Eur Respir J. 2005;25(5):891–895. doi: 10.1183/09031936.05.00099204.
    1. Keogh RH, Szczesniak R, Taylor-Robinson D, Bilton D. Up-to-date and projected estimates of survival for people with cystic fibrosis using baseline characteristics: a longitudinal study using UK patient registry data. J Cyst Fibros. 2018;17(2):218–227. doi: 10.1016/j.jcf.2017.11.019.
    1. Fischer G, de Queiroz FB, Berton DC, Schons P, Oliveira HB, Coertjens M, et al. Factors influencing self-selected walking speed in fibrotic interstitial lung disease. Sci Rep. 2021;11:12459. doi: 10.1038/s41598-021-91734-x.

Source: PubMed

3
Subscribe